Направление тока и направление линий его магнитного поля. Направление тока и направление линий его магнитного поля (Ерюткин Е.С.)

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Направление тока и направление линий его магнитного поля

Повторим Чем создается магнитное поле? Как его можно обнаружить? Магнитная стрелка, поднесенная к проводнику, отклонилась. О чём это свидетельствует? С помощью чего можно наглядно показать магнитное поле? Как с помощью магнитных линий определить, в каком месте величина поля больше? Какое направление имеют магнитные линии? Какое направление имеют магнитные линии внутри полосового магнита?

Самостоятельная работа К магнитной стрелке, которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости чертежа, поднесли постоянный магнит. При этом стрелка А. Повернется на 180° Б. Повернется на 90° по часовой стрелке В. Повернется на 90° против часовой стрелки Г. Останется в прежнем положении N S

Самостоятельная работа 2. Что следует сделать, чтобы стержень из закалённой стали намагнитился, т.е. сам стал постоянным магнитом? А. Поднести к заряженному телу Б. Поместить в воду В. Поместить в сильное магнитное поле Г. Натереть шерстью

Самостоятельная работа 3. Стальную иглу расположили между полюсами магнита. Через некоторое время игла намагнитилась. Каким полюсам будут соответствовать точки 1 и 2? А. 1 – северному полюсу, 2 – южному Б. 2 – северному полюсу, 1 – южному В. 1 и 2 – северному полюсу Г. 1 и 2 – южному полюсу N S 1 2

Самостоятельная работа 4 . Магнитное поле существует А. Только вокруг движущихся электронов Б. Только вокруг движущихся положительных ионов В. Только вокруг движущихся отрицательных ионов Г. Вокруг всех движущихся заряженных частиц

Самостоятельная работа 5. Магнитная стрелка, поднесенная к проводнику, отклонилась. Это свидетельствует А. О существовании вокруг проводника электрического поля Б. О существовании вокруг проводника магнитного поля В. Об изменении в проводнике силы тока Г. Об изменении в проводнике направления тока

Самостоятельная работа 6. На рисунке указано положение магнитных линий поля, созданного полюсами постоянного магнита. Определите направление этих линий. А. Вверх Б. Вниз В. На нас Г. От нас S N

Самостоятельная работа 7 . На рисунке изображено неоднородное магнитное поле витка с током. Найдите пару точек, в которых сила действия поля на магнитную стрелку одинакова как по модулю, так и по направлению. А. A и D Б. A и C В. C и D Г. A и B

Связь между направлением тока в проводнике и направлением линий его магнитного поля N N S S

Правило буравчика (Правило правого винта) Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило буравчика

Правило правой руки для соленоида или для одиночного витка Если обхватить соленоид ладонью правой руки, направив 4 пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Правило правой руки для соленоида или для одиночного витка Можно определить магнитные полюсы катушки с током

Домашнее задание: § 44

Спасибо за внимание!


По теме: методические разработки, презентации и конспекты

Самостоятельная работа «Магнитное поле и его изображение. Действие магнитного поля на проводник с током. Сила Лоренца» в 12 вариантах. Физика 9 класс.

Данная самостоятельная работа поможет отработать навыки определения силы Ампера, силы Лоренца на уроках физики в 9 классе и в качестве повторения на уроках в 10 классах....

Магнитное поле. Действие магнитного поля на проводник с токам.

Вводный урок раздела "Электромагнитное поле" по теме "Магнитное поле. Действие магнитного поля на проводник с током.", 9 класс. Урок разработан по технологии критического мышления с использовани...

Решение задач на применение закона ЭДС индукции и определение энергии магнитного поля тока. 9 класс

Решение задач на применение закона ЭДС индукции и определение энергии магнитного поля тока.Цель урока: проверить знания учащихся на применение закона Фарадея, определение энергии магнитного поля тока....

На этом занятии мы узнаем всё о направлении тока и направлении линии его магнитного поля. Поднимаемый на уроке вопрос связывает между собой направление электрического токаи направление его магнитных линий. На примере опыта Эрстеда мы узнаем, как происходит изменение направления тока под воздействием на него магнитного поля. Также выучим правило «буравчика» или правило правого винта.

В ходе урока мы определим взаимосвязь электрического тока и направления его магнитных линий. Для поиска закономерностей необходимо обратиться к опыту, который впервые был проведен в 1820 году датским ученым Эрстедом.

Рис. 1. Схема опыта Эрстеда

Обратимся к схеме опыта. В двух штативах был укреплен прямой проводник, подключенный к источнику тока. Под проводником располагалась магнитная стрелка, когда протекал электрический ток, магнитная стрелка располагалась перпендикулярно проводнику с током. Следующий эксперимент с изменением полярности. Электрический ток протекает в противоположную сторону. В результате направление тока в проводнике изменилось. Что произошло с магнитной стрелкой? Магнитная стрелка развернулась на 180 °. Обратите внимание, теперь южный полюс стрелки указывал туда, куда указывал северный, а северный - в противоположном направлении.

О чем этот эксперимент говорит? О том, что, когда изменяется направление электрического тока, изменяется направление магнитных линий.

В результате многочисленных экспериментов, проведенных с токами, различными токами, было установлено правило, которое теперь называется либо правилом буравчика, либо правилом правого винта. Определение: если острие буравчика (сверла) направить по направлению тока, то направление вращения рукоятки укажет направление магнитных линий.

Рис. 2. Правило буравчика

Иногда это правило еще называют правилом правой руки . Определение: большой палец правой руки мы должны направить по направлению тока в проводнике. Тогда, условно обхватывая остальными четырьмя пальцами данный проводник, направление обхвата укажет направление магнитных линий.

Рис. 3. Правило правой руки

Кроме магнитных стрелок, исследование магнитного поля проводится при помощи контура с электрическим током. Если по контуру протекает электрический ток, то в магнитном поле этот контур будет разворачиваться определенным образом и вокруг него будет создаваться собственное магнитное поле. Если мы возьмем проводник и свернем его в большое количество витков, то такой проводник называют соленоид (от греческих слов «трубка» и «образный»).

Интересно, что и в этом случае мы можем воспользоваться правилом правой руки для определения направления линий магнитного поля такого соленоида. Если мы 4 пальца направим по току и отогнем большой палец, то его направление укажет на северный полюс соленоида. Внутри такого проводника, свернутого в большой соленоид, будет наблюдаться однородное магнитное поле.

Рис. 4. и его магнитное поле

В данном случае мы говорим о взаимосвязи электрического тока и направления его магнитных линий. Но может быть и наоборот. Если мы знаем направление магнитных линий, то по этим линиям мы можем определить направление электрического тока.

Список дополнительной литературы:

Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. - М.: 1974. Яворский Б.М., Пинский А.А. Основы физики. Т.2. - М.: Физматлит, 2003.

Продолжительное время электрические и магнитные поля изучались раздельно. Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. Рис. 1). Это доказало магнитное действие тока. После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.

Рис. 1. Опыт Эрстеда

Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. Рис. 2, ток направлен в рисунок, - из рисунка), возле которого установлены магнитные стрелки. После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу. Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.

Рис. 2. Расположение магнитных стрелок возле прямого проводника с током

Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис. 3).

Рис. 3. Расположение железных опилок вокруг проводника с током ()

Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) - если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. Рис. 4).

Рис. 4. Правило буравчика ()

Также можно использовать правило правой руки - если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 5).

Рис. 5. Правило правой руки ()

Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.

После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы. Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. Рис. 6 б) если ток течёт в противоположные стороны - проводники отталкиваются (см. Рис. 6 а).

Рис. 6. Опыт Ампера ()

Из своих опытов Ампер сделал следующие выводы:

1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.

2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.

3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.

На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.

Рис. 7. Иллюстрация к задаче

Решение

Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.

Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с помощью правила стрелы в виде точки слева от проводника и крестика справа от него (см. Рис. 8).

Аналогично определяем направление магнитных линий возле других сторон рамки.

Рис. 8. Иллюстрация к задаче

Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см. Рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.

Рис. 9. Опыт Ампера. Образование магнитного поля вблизи катушки с током

Для определения магнитных полюсов катушки с током используется правило правой руки для соленоида (см. Рис. 10) - если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то большой палец покажет направление линий магнитного поля внутри соленоида, то есть на его северный полюс. Это правило позволяет определять направление тока в витках катушки по расположению её магнитных полюсов.

Рис. 10. Правило правой руки для соленоида с током

Определите направление тока в катушке и полюсы у источника тока, если при прохождении тока в катушке возникают указанные на рисунке 11 магнитные полюсы.

Рис. 11. Иллюстрация к задаче

Решение

Согласно правилу правой руки для соленоида, обхватим катушку таким образом, чтобы большой палец показывал на её северный полюс. Четыре согнутых пальца укажут на направление тока вниз по проводнику, следовательно, правый полюс источника тока положительный (см. Рис. 12).

Рис. 12. Иллюстрация к задаче

На данном уроке мы рассмотрели явление возникновения магнитного поля вблизи прямого проводника с током и катушки с током (соленоида). Также были изучены правила нахождения магнитных линий данных полей.

Список литературы

  1. А.В. Перышкин, Е.М. Гутник. Физика 9. - Дрофа, 2006.
  2. Г.Н. Степанова. Сборник задач по физике. - М.: Просвещение, 2001.
  3. А.Фадеева. Тесты физика (7 - 11 классы). - М., 2002.
  4. В. Григорьев, Г. Мякишев Силы в природе. - М.: Наука, 1997.

Домашнее задание

  1. Интернет-портал Clck.ru ().
  2. Интернет-портал Class-fizika.narod.ru ().
  3. Интернет-портал Festival.1september.ru ().

Конспект урока
Тема: «Направление тока и направление линий его магнитного поля.»
Цель: Раскрыть сущность изучаемых явлений.
Задачи:
а) образовательная проконтролировать знания учащихся, полученные на предыдущем уроке, сформировать представления о структуре и содержании изучаемой физической теории, организовать усвоение основных определений по данной теме, познакомить с основными физическими величинами, сформулировать основные законы по данной теме.
б) развивающая формировать мотивацию постановкой познавательных задач, раскрытием связи теории и опыта, формировать умение анализировать факты при наблюдении или объяснении явлений, при работе с текстом учебника, развивать внимание, память, логическое и творческое мышления.
в) воспитательная формирование интереса к физике при анализе физических явлений, при демонстрации опытов, при решении задач, стимуляция работы учащихся, формирование научного мировоззрения учащихся.
Методы: объяснительно – иллюстративный, проблемный, репродуктивный, эвристический.
Оборудование: учебник, демонстрационное оборудование.
План урока:
1. Организационный момент (1 – 2 минуты).
2. Домашнее задание (2 – 3 минуты).
3. Проверка домашнего задания (10-15 минут).
4. Изложение нового материала (15 – 22 минуты).
5. Закрепление нового материала (5 – 10 минут).
Ход урока:
1. Организационный момент
2. Домашнее задание § 45, упр. 33(1, 2).
3. Проверка домашнего задания
Каковы свойства магнитного поля? (Порождается движущимися зарядами, обнаруживается по действию на движущиеся заряды или магнитную стрелку, оно материально, т. к. действует на тела, а значит, обладает энергией).
Дайте определение магнитных линий.
Какое магнитное поле образуется вокруг плоского магнита?
Какое магнитное поле образуется вокруг прямолинейного проводника с током?
Какое магнитное поле образуется внутри соленоида, длина которого значительно больше диаметра?
Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в различных точках неоднородного магнитного поля? Однородного магнитного поля?
Как изображают линии магнитного поля, направленные перпендикулярно в плоскости чертежа?
Как изменится период колебаний математического маятника с железным шариком, если под ним поместить сильный магнит? (Уменьшится).
4. Изложение нового материала
Связь направления линий магнитного поля тока с направлением тока в проводнике.
Правило буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.
Правило правой руки для соленоида: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
5. Закрепление нового материала
Вопросы.
Через соленоид протекал ток. Посредством реостата его сильно уменьшили, вследствие чего магнитное поле соленоида практически исчезло. Куда исчезла энергия?
Когда нет перемещения тела, то нет и механической работы. На что же расходуется энергия, подводимая к электромагниту, когда он «держит» груз?
Задачи.
Упражнение 35 (№ 1 – 5).
№ 1465.
Неизолированный провод нельзя наматывать на железный сердечник, так как при пропускании тока по проводу произойдет короткое замыкание и катушка сгорит.
№ 1466.
Так как железо является ферромагнетиком, то оно увеличивает действие магнитного поля катушки.
№ 1467.
Груз не оторвался, так как сердечник электромагнита обладает остаточной намагниченностью. При пропускании малого тока обратного направления катушка размагничивается, и груз отпадает.
№ 1468.
При нажатии рычага Р вниз замыкается цепь электромагнита М. Если ток превысит допустимое значение, то магнитное поле катушки усилится и притянет якорь Я, который освободит расцепитель. В результате под действием пружины рычаг разомкнет цепь катушки.
№ 1469.
Ток малой силы следует подключать к катушке электромагнитного реле, а рабочую цепь к верхним зажимам контактам реле (рис 361).
№ 1472.
Потому что на свободных концах гвоздей создаются одноименные магнитные полюса, которые отталкиваются друг от друга.
№ 1473.
Южный.
№ 1474.
При поднесении гвоздя к магниту на его концах создаются противоположные магнитные полюса. Поэтому он притягивается своими концами к разноименным полюсам магнита.

№ 1475.
Нет. Можно утверждать, что игла намагнитилась в поле магнитной стрелки и притянула противоположный полюс стрелки.
№ 1476.
Так как перечисленные материалы не являются ферромагнетиками (не обладают остаточной намагниченностью и не влияют на магнитное поле стрелки).
№ 1477.
Конец одного из стержней поднести к середине другого. Ненамагниченный стержень не будет притягивать намагниченный.

Рисунок 1Рисунок 315


Приложенные файлы

На рисунке 94 показано расположение магнитных стрелок вокруг проводника с током, расположенного перпендикулярно плоскости чертежа. Из рисунка видно, что изменение направления тока приводит к повороту всех магнитных стрелок на 180°. Причём в обоих случаях оси стрелок располагаются по касательным к магнитным линиям.

Рис. 94. Направление линий магнитного поля, созданного проводником с током, зависит от направления тока в проводнике

Следовательно, направление линий магнитного поля тока зависит от направления тока в проводнике.

Эта связь может быть выражена правилом буравчика (или правилом правого винта), которое заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока (рис. 95, 96).

Рис. 95. Применение правила буравчика: проводник с током расположен перпендикулярно плоскости чертежа

Рис. 96. Применение правила буравчика: проводник с током расположен в плоскости чертежа

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля - направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки. Это правило формулируется так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида (рис. 97).

Рис. 97. Определение направления линий магнитного поля внутри соленоида

Вы уже знаете, что магнитное поле соленоида (см. рис. 90) подобно полю постоянного полосового магнита (см. рис. 88). Соленоид, как и магнит, имеет полюсы: тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, - южным.

Зная направление тока в соленоиде, по правилу правой руки можно определить направление магнитных линий поля внутри него, а значит, и его магнитные полюсы.

И наоборот, по направлению магнитных линий поля внутри соленоида или расположению его полюсов можно определить направление тока в витках соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре витка с током.

Вопросы

  1. Опишите опыт, подтверждающий связь между направлением тока в проводнике и направлением линий магнитного поля, созданного проводником.
  2. Сформулируйте правило буравчика.
  3. Что можно определить, используя правило буравчика?
  4. Сформулируйте правило правой руки.
  5. Что можно определить с помощью правила правой руки?

Упражнение 32