Применение азота на основании его свойств. Химические свойства азота


Азот – это газ, слаборастворимый в воде, без вкуса, запаха и цвета. Не смотря на то, что название элемента означает «безжизненный», он необходим для жизнедеятельности. Использование азота в свободном виде широко распространено во многих отраслях промышленности. Производство связанного азота стало быстро развиваться после Первой мировой войны и в наше время достигло очень больших масштабов. Рассмотрим подробнее использование азота по отраслям.

Газ, нефть, химия

    Использование в газообразном виде для освоения скважин. Этот метод снижения в скважинах уровня жидкости является наиболее перспективным. Для него характерны надежность и простота регулирования и контроля процесса в большом диапазоне давлений и расходов. Газообразный азот помогает быстро опорожнять глубокие скважины, резко и быстро или плавно и медленно снижать давление в скважине; может обеспечить дренирование пласта с подпиткой сжатым газом, чтобы создать фонтанирование.

    Создание инертной среды при погрузочно-разгрузочных работах в емкостях. Азот также применяется в целях пожаротушения, испытания и продувки трубопроводов (особенно актуальна эта проблема на Крайнем Севере, где сосредоточена добыча газа и нефти, вследствие невозможности использования во время морозов пенообразующих средств и воды).

    Использование в чистом виде для синтеза аммиака и при производстве азотных удобрений, для переработки попутных газов и конверсии метана.

    Использование для уменьшения серных отложений на нефтеперерабатывающих заводах, для высокоэффективной переработки высокооктановых компонентов, для повышения производительности предприятий по крекингу нефти.

Металлургия

    Азот применяется во время отжига, при нейтральной закалке, при спекании порошковым металлом, цианировании, пайке твердым припоем, для защиты цветных и черных металлов.

    Азот нужен для работы загрузочного устройства доменной печи, сероводородных компрессоров, машины огневой зачистки металла цеха блюминга, коксохимического производства.

Горнодобывающая промышленность

    При пожаротушении в угледобывающих шахтах также используется азот.

    Пищевая промышленность.

    Азот необходим для хранения, перевалки и упаковки продуктов питания с целью увеличения сроков хранения и сохранности их вкусовых качеств.

    Использование азота важно для предотвращения размножения бактерий путем заполнения упаковки смесью диоксида углерода и азота.

    Азот применяют для защиты продуктов от вредных насекомых, для которых инертная атмосфера может быть губительной.

Фармацевтика

  • Азот используют при упаковке, транспортировке и вытеснении кислорода из резервуаров с продуктом.

Медицина

  • Использование азота распространено в лабораторных исследованиях, для проведения больничных анализов.

Целлюлозно-бумажная промышленность

  • Азот используется для обработки картона и бумаги, а также деревянных предметов катодным лучом или ультрафиолетом, с целью полимеризации лаковых покрытий. Это позволяет снизить затраты на фотоинициаторы, уменьшить выброс летучих соединений, повысить качество обработки.

Пожаротушение

  • Обладая инертными свойствами, азот позволяет вытеснить кислород и предотвратить реакцию окисления. Горение – это реакция быстрого окисления, которая происходит за счет присутствия кислорода и источника воспламенения (электрическая дуга, искра, химическая реакция с большим выделением тепла) в атмосфере. Азот позволяет не допустить такую ситуацию. При концентрации в среде азота 90 %, горения не возникает. Мобильные азотные станции и стационарные установки по производству азота от 5 до 5000 нм³/ч с чистотой от 90% до 99.99%, эффективно предотвращают возгорание, либо тушат его очаг.

Азот - химический элемент, который известен каждому. Его обозначают буквой N. Он, можно сказать, основа неорганической химии, и поэтому его начинают изучать еще в восьмом классе. В этой статье мы подробно рассмотрим азот, а также его характеристики и свойства.

История открытия элемента

Такие соединения, как аммиак, селитра, азотная кислота, были известны и применялись на практике задолго до получения чистого азота в свободном состоянии.


Во время эксперимента, проведенного в 1772 году, Даниель Резерфорд сжигал фосфор и прочие вещества в колоколе из стекла. Он выяснил, что газ, остающийся после сгорания соединений, не поддерживает горения и дыхания, и назвал его «удушливым воздухом».

В 1787 году Антуан Лавуазье установил, что газы, входящие в состав обычного воздуха, - это простые химические элементы, и предложил название «Азот». Чуть позже (в 1784 г.) физик Генри Кавендиш доказал, что это вещество входит в состав селитры (группы нитратов). Отсюда происходит латинское название азота (от позднелатинского nitrum и греческого gennao), предложенное Ж. А. Шапталем в 1790 году.

К началу XIX века учеными были выяснены химическая инертность элемента в свободном состоянии и его исключительная роль в соединениях с другими веществами. С этого момента «связывание» азота воздуха стало важнейшей технической проблемой химии.

Физические свойства


Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления - -209,86 °С, кипения - -195,8 °С. Азот с трудом сжижается. Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко - 3,39 Мн/м². Плотность в жидком состоянии - 808 кг/м³. В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t - 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.


При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли - нитраты и нитриты. Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак). Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота - малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера. Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN. При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии. Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе - аминокислот, аминов, нитросоединений и прочих.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Область применения

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ - в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.


Это вещество является одним из основных биогенных элементов и входит в состав важнейших элементов живых клеток - нуклеиновых кислот и белков. Однако количество азота в живых организмах невелико (примерно 1–3 % на сухую массу). Имеющийся в атмосфере молекулярный материал усваивают лишь сине-зеленые водоросли и некоторые микроорганизмы.

Довольно большие запасы этого вещества сосредоточены в почве в виде различных минеральных (нитраты, аммонийные соли) и органических соединений (в составе нуклеиновых кислот, белков и продуктов их распада, включая еще не полностью разложившиеся остатки флоры и фауны).

Растения отлично усваивают азот из грунта в виде органических и неорганических соединений. В природных условиях большое значение имеют особые почвенные микроорганизмы (аммонификаторы), которые способны минерализировать органический N почвы до солей аммония.

Нитратный азот грунта образуется в процессе жизнедеятельности нитрифицирующих бактерий, открытых С. Виноградским в 1890 году. Они окисляют аммонийные соли и аммиак до нитратов. Часть усвояемого флорой и фауной вещества теряется из-за воздействия денитрифицирующих бактерий.

Микроорганизмы и растения отлично усваивают как нитратный, так и аммонийный N. Они активно превращают неорганический материал в различные органические соединения - аминокислоты и амиды (глутамин и аспарагин). Последние входят в состав многих белков микроорганизмов, растений и животных. Синтез аспарагина и глутамина путем амидирования (ферментативного) аспарагиновой и глутаминовой кислот осуществляется многими представителями флоры и фауны.

Производство аминокислот происходит при помощи восстановительного аминирования ряда кетокислот и альдегидокислот, возникающих путем ферментативного переаминирования, а также в результате окисления различных углеводов. Конечными продуктами усвоения аммиака (NH₃) растениями и микроорганизмами являются белки, которые входят в состав ядра клеток, протоплазмы, а также откладываются в виде так называемых запасных белков.

Человек и большинство животных могут синтезировать аминокислоты лишь в довольно ограниченной мере. Они не способны производить восемь незаменимых соединений (лизин, валин, фенилаланин, триптофан, изолейцин, лейцин, метионин, треонин), и потому для них главным источником азота являются потребляемые с пищей белки, то есть, в конечном счете, - собственные белки микроорганизмов и растений.

Азот

Урок-исследование 9 класс

Жизнь ставит цели науке;
наука освещает путь жизни.

Н.Михайловский

Цели урока.

Обучающие: изучить взаимосвязь состава, строения, свойств и применения азота и его соединений.

Развивающие: продолжить развитие умений логически мыслить, самостоятельно работать с учебником и дополнительной литературой, находить главное, сравнивать, делать выводы; совершенствование способности к рефлексии.

Воспитательные: сформировать у учащихся гражданскую позицию на примере решения одной из глобальных проблем человечества.

Методы и методические приемы . Проблемный, частично-поисковый; самостоятельная работа с учебной и дополнительной литературой, беседа, химический эксперимент, составление опорного конспекта, самопроверка.

Организационные формы работы. Коллективная, индивидуальная, групповая с различными видами самостоятельной деятельности учащихся.

Оборудование и реактивы. План-схема (на доске ), схемы, опорные конспекты на каждом столе (см. приложение ), плакат с изображением вариантов приборов для сбора газа, карточки с заданиями для групп, стаканы, кристаллизатор с водой, цилиндр, свеча на кусочке пенопласта, спички; 25%-й раствор аммиака, универсальный индикатор, азотная кислота, раствор белка, образец почвы.

Опорный конспект заполняется учащимися по ходу урока.

ХОД УРОКА

I. Ориентировочно-мотивационный этап

Учитель. Сегодня мы будем изучать химический элемент, с которым связан не один «парадокс».

Про него говорят «безжизненный», и в то же время без него нет жизни. Его называют «источником танталовых мук человечества», элементом трагедий, войн и катастроф. Этот элемент – азот.

Давайте проведем исследование и вынесем свое заключение, каков этот элемент? Полезен он или вреден? Какова природа противоречий, его окружающих? Ответить на эти вопросы нам поможет план-схема на доске (схема 1).

Итак, наша цель: дать характеристику азоту, как химическому элементу и как простому веществу. Работать будем в группах, каждая группа получает свое задание.

Г р у п п а I. История открытия элемента азота. Происхождение названия. Применение азота.

Г р у п п а II. Нахождение азота в природе.

Г р у п п а III. Строение атома. Степени окисления.

Г р у п п а IV. Вид химической связи простого вещества азота. Физические свойства.

Г р у п п а V. Химические свойства азота. Получение азота.

II. Операционно-исполнительский этап

Учитель. На подготовку ответов выделяется 10 минут. Затем слушаем отчеты групп. (Во время подготовки учитель оказывает помощь группам, отдельным учащимся.) Во время отчетов групп каждому следует заполнить опорный конспект, который будет оцениваться в конце урока. Первая группа расскажет об истории открытия азота, происхождении названия этого химического элемента.

Г р у п п а I.

1-й ученик. Воздух всегда был объектом исследования естествоиспытателей и, казалось бы, должен быть хорошо изучен, но его основные части – азот и кислород – определили только в конце ХVIII в.

Официальной датой открытия азота считается 1772 г., а лавры первооткрывателя отданы Даниэлю Резерфорду. Однако еще в 1770 г. Карл Шееле – помощник аптекаря, будущий академик – выделил азот из сгоревшего воздуха. Открытие «носилось в воздухе», несколько исследователей вплотную подходили к нему. Но первое описание элемента дал Резерфорд. Он исследовал и охарактеризовал часть воздуха, оставшуюся в закрытом сосуде, где погибла от удушья подопытная мышь.

2-й ученик. С названием азоту не повезло. Резерфорд называл его «постоянным или удушливым воздухом». Джозеф Пристли – «флогистированный воздух», Карл Шееле – «дурной воздух», а Лавуазье дал название «азот» (от греч. – частица отрицания, – жизнь), т.е. «безжизненный».

Но почему символ азота – N, если первая буква названия «а»? Дело в том, что название «азот» сохранилось только в русском и французском языках, а англоязычные ученые называют азот Nitrogen, от латинского названия Nitrogenium, что означает «рождающий селитру».

Название прошло путь от «безжизненного» до «рождающего». Слово Nitrogenium пытались перевести на русский, и азот называли селитротвором, но название не прижилось, в 1824 г. вернулись к термину «азот».

Учитель. В наше время применение к азоту прилагательного «безжизненный» звучит парадоксально, ведь основу жизни на Земле составляют соединения, в которые входит азот. Вторая группа расскажет о том, где в природе встречается азот.

Г р у п п а II.

1-й ученик. Название «азот» расшифровывают как безжизненный. Да, живое существо в атмосфере азота гибнет, этот газ не поддерживает процессы горения. Но разве можно назвать «безжизненным» элемент, входящий в состав белков – носителей жизни? Из них построены ткани человеческого организма, белки входят в состав клеток животных и растений, причем в значительных количествах. Содержание элемента азота в организме при массе тела 70 кг – 1,8 кг, в мышечной ткани его – 7,2 %, в костной ткани – 4,3 %.

В атмосфере Земли этого газа содержится 78,09 % по объему или 75,6 % по массе. Над каждым гектаром земной поверхности «висят» 8 тысяч тонн азота. Сейчас мы продемонстрируем опыт, подтверждающий содержание азота и кислорода в воздухе.

2-й ученик. Зажигаю свечу, которая укреплена на пенопласте и свободно плавает в кристаллизаторе с водой; накрываю свечу цилиндром, объем которого разделен на пять равных частей с помощью делений. В цилиндре находился воздух, после того, как свеча погасла, в него поднялась вода на одно деление. В результате горения кислород израсходовался (кислород занимает 1/5 часть или приблизительно 20 % по объему в воздухе), остался азот и другие составляющие воздуха (их содержание незначительно). Можно сделать вывод, что на газ азот приходится четыре пятых части от объема воздуха, или около 80 %.

3-й ученик. Основной «фабрикой» белковых веществ на Земле являются растения. Они служат источником азотного питания для животных. Растения используют лишь «связанный» азот, который усваивают из почвы в виде ионов, например нитратов. Подсчитано, что один гектар пахотного чернозема содержит 18 т азота. А связанный азот появился в почве в результате жизнедеятельности микроорганизмов, которые живут в клубеньках на корнях бобовых растений (клевера, гороха, вики, люпина и др.).

Из природных минералов, содержащих связанный азот, наиболее известна чилийская селитра – NaNO 3 .

4-й ученик (демонстрирует схему (схема 2) содержания азота в природе). В природе азот в свободном состоянии содержится в воздухе (78 % по объему), в связанном состоянии азот содержат некоторые минералы, органические вещества, в том числе входящие в состав живых организмов.

Учитель. Азота довольно много в природе, но, по словам американского биохимика М.Камена, «азот – это вечные терзания голода среди океана изобилия». По данным ООН 1/3 населения планеты голодает, каждую минуту несколько человек умирает именно по этой причине. Почему именно азот связывают с нехваткой пищи, с голодом? Для ответа на этот вопрос сначала рассмотрим строение атома азота.

Г р у п п а III.

1-й ученик (дает у доски характеристику элемента по его положению в периодической системе). Азот – элемент V группы, главной подгруппы, 2-го периода. Его порядковый номер – 7, относительная атомная масса – 14. Число электронов в атоме – 7, число протонов в ядре – 7, число нейтронов в ядре – 7. Схема строения атома: +7, 2е, 5е. Электронная схема: 1s 2 2s 2 2p 3 . Электронно-графическая схема:

Атом азота имеет три неспаренных электрона на 2р-подуровне.

Степени окисления азота в соединениях: –3, +1, +2, +3, +4, +5.

Учитель (дает задание классу). Определите степени окисления азота в соединениях: HNО 3 , NН 3 , NO, KNО 2 , NО 2 , N 2 О, НNO 2 .

С а м о п р о в е р к а. Для этого ученик из группы III вывешивает карточки с правильными ответами на доску:

Учитель. Мы рассмотрели строение атома, знаем, что азота в воздухе довольно много. В чем же причина того, что растениям довольно трудно усвоить азот из воздуха? Рассмотрим вид химической связи в молекуле азота N 2 .

Г р у п п а IV.

1-й ученик. В свободном состоянии азот существует в виде двухатомной молекулы N 2 . В этой молекуле два атома азота связаны очень прочной тройной ковалентной неполярной связью.

Приводится схема образования ковалентной связи в молекуле N 2 , а также структурная формула:

1-й ученик. Вывод: именно прочностью молекулы обусловлена химическая инертность азота.

Учитель. Продолжаем выяснять, что представляет собой азот как простое вещество.

2-й ученик рассказывает о физических свойствах азота, демонстрируя схему-«паучок» (схема 3).

Учитель. Как можно собрать азот в лаборатории, основываясь на знании физических свойств?

Учащиеся IV группы дают аргументированный ответ, используя плакат с изображением нескольких вариантов приборов для сбора газов.

3-й ученик. Собрать азот в лаборатории можно методом вытеснения воздуха (пробирку-приемник закрепляют отверстием вниз), т.к. азот немного легче воздуха, а также методом вытеснения воды, т.к. он малорастворим в воде.

Учитель. Рассмотрим химические свойства азота.

Г р у п п а V.

1-й ученик (демонстрирует обобщенную схему (схема 4) химических свойств азота). Азот – химически инертен. При обычных условиях взаимодействует только с литием, образуя нитрид – Li 3 N. C другими металлами взаимодействует только при высоких температурах. При температуре 450–500 °С и высоком давлении 30–100 МПа в присутствии катализатора (порошка железа с примесью оксидов алюминия и калия) реагирует с водородом, образуя аммиак. При температуре электрической дуги взаимодействует с кислородом, образуя оксид азота(II).

2-й ученик. Большинство организмов используют азот в виде соединений (т.е. связанный), а содержащийся в воздухе молекулярный азот действительно практически инертен. В природе разрыв тройной связи между атомами азота происходит во время грозовых разрядов: при этом образуются первоначально оксиды азота, а затем и слабоконцентрированная азотная кислота (оксиды азота соединяются с каплями дождя). Это – путь связывания азота в природе и попадания его в почву.

Другой путь введения азота в почву выработала также сама природа – на корнях бобовых культур образуются клубеньки, содержащие микроорганизмы, фиксирующие газообразный азот.

Учитель. В природе постоянно происходит круговорот азота: соли азотной кислоты усваиваются из почвы растениями; с растительной пищей азот переходит в организмы животных и людей; затем снова попадает в почву с продуктами жизнедеятельности, гниения, разложения; кроме того, азот частично переходит в атмосферу и т.д. Однако в ходе круговорота количество «связанного» азота в почве уменьшается, и растения начинают ощущать его недостаток. Истощенная земля дает низкие урожаи. Как вернуть земле чудесную силу, сделать ее плодородной?

3-й ученик. Нужно вносить в землю азотные удобрения. Где их взять? Есть небольшие месторождения селитры в Чили, Калифорнии, Африке, Малой Азии, но они быстро могут иссякнуть.

Первая мировая война, 1914 г. Многие страны охватил пожар войны. Селитра нужна была для военных целей. Германия начала задыхаться в тисках «азотного голода».

Немецкий ученый Франц Габер сделал выдающееся открытие: он получил аммиак, используя при этом стальной цилиндр, высокое давление, нагревание, катализатор. Из аммиака затем нетрудно получить азотную кислоту. Таким образом была решена проблема «связывания» азота.

Учитель. Можно ли вносить аммиак или азотную кислоту непосредственно в почву?

4-й ученик. Проведем опыты.

а) Испытаем раствор аммиака (нашатырный спирт) индикатором. Среда щелочная. Аммиак – летучее вещество, имеет неприятный запах, вызывает ожоги. Вывод: вносить азот в почву в таком виде нельзя.

б) Исследуем действие азотной кислоты на белок (произошла денатурация); на водную вытяжку из почвы (идет реакция с выделением углекислого газа).

Вывод: вносить в почву непосредственно азотную кислоту нельзя.

Что же можно вносить в почву? Азотные удобрения, полученные при нейтрализации этих веществ, например аммиачную селитру:

NН 3 + НNО 3 = NH 4 NO 3 .

Учитель. Давайте рассмотрим вопрос, как получают азот в промышленности?

5-й ученик. Для технических целей азот получают из воздуха. При испарении жидкого воздуха азот улетучивается первым (t кип (азота) = –196 °С, а t кип (киcлорода) = –183 °С). В лаборатории чистый азот получают при разложении некоторых его соединений.

Учитель. Каковы же области применения азота? Ответ на этот вопрос готовила группа I.

Ученик. Азот применяется для получения удобрений, взрывчатых веществ, для создания инертной среды в электротехнике, в медицине, а также для заполнения теннисных мячей.

III. Рефлексивно-оценочный этап

Учитель. Подведем итоги урока. Как может быть решена проблема голода на Земле?

Ответ таков. Азот – это элемент жизни, т.к. входит в состав белков. Из белков построены ткани живых организмов. Человек и животные получают белки с пищей, растения сами способны синтезировать их из неорганических веществ, содержащихся в почве. При недостатке азота в почве его вносят в виде удобрений. Их, в свою очередь, получают, связывая атмосферный азот.

Химия пришла на помощь земледельцам. Неистощимый океан азота, в котором купается наша Земля, был покорен. Химики избавили человечество от «азотного голода». Таким образом:
«...жизнь ставит цель науке; наука освещает путь жизни» (Михайловский Н.).

Домашнее задание. Изучить параграф 23, подготовить рассказ о круговороте азота а природе (рисунок 27, стр. 110).

Л и т е р а т у р а

Габриелян О.С. Химия. 9 класс. М.: Дрофа, 1991; Крицман В.А. Книга для чтения по неорганической химии. М.: Просвещение, 1983; Митряева И.В . Источник танталовых мук человечества. Химия в школе, 2001, № 2, с. 18–20; Что мы знаем о химии? Под ред. проф. Ю.Н.Кукушкина. М.: Высшая школа, 1993.

ПРИЛОЖЕНИЕ

Опорный конспект по теме «Азот»

Фамилия, имя ученика

1. История открытия азота:

………………………….…………………..…………………..………………

………………………….…………………..…………………..………………

………………………….…………………..…………………..……….…… .

2. Нахождение в природе:

3. Положение азота в периодической системе:

порядковый номер: ………………………….………………….………… ;

группа ………………………….…………………..…………...............… ;

подгруппа ………………………….…………………..…….........……… .

4. Строение атома:

а) N {……… e , ……… p , ……… n };

б) N + ........................................ ;

в) электронная схема: ............... ;

г) электронографическая схема: ........................................ ;

д) степени окисления (подпишите значения на числовой оси):

5. Строение молекулы азота: ........................................ ;

а) химическая формула: ........................................ ;

б) вид химической связи в молекуле: ........................................ ;

в) схема образования связи: ........................................ ;

г) прочность связи: ........................................ .

Вывод о химических свойствах азота:

………………………….…………………..…………

………………………….…………………..…………

………………………….…………………..……….. .

7. Химические свойства азота (запишите уравнения реакций, указав условия их протекания, назовите продукты реакций):

а) ........................................ ;

б) ........................................ ;

в) ........................................ .

8. Получение азота в промышленности.

Из чего получают азот? ........................................ .

На чем основано получение? ........................................ .

9. Применение азота: ........................................ .

Азот является одним из самых распространенных на Земле элементов - в атмосфере его содержание превышает 78%. Существование такого большого количества азота в свободном состоянии говорит о его инертности и трудном взаимодействии с другими элементами в обычных условиях.

В связанном состоянии это вещество можно найти в органической и неорганической материи. Связанный с углеродом и кислородом, азот находится в белках животных и растений.

Само по себе название «азот» придумал Лавуазье, который в ходе многочисленных опытов установил наличие в атмосфере некоего инертного вещества. Ученый счел эту субстанцию безжизненной - по-гречески «azote».

Азотный цикл

Несмотря на инертность азота, в природе происходят постоянные процессы его фиксации или связывания. Так, например, в корнях бобовых растений накапливаются особые бактерии, которые фиксируют азот, перерабатывая его в нитраты.

В атмосфере этот газ окисляется во время разряда молний. Затем растворяются в осадках, образуя и азотистую. Со снегом, дождем, туманом азот попадает в почву, где происходит превращение его в нитриты или нитраты. Затем различные растения используют их для строительства белка. Животные питаются растениями, и перерабатывается в животный. При разложении растений и животных после смерти все азотные соединения в их организмах превращаются в аммиак. Бактерии разрушают его до простейших элементов, выделяя при этом вновь чистый азот и водород. Так происходит азотный цикл или круговорот азота в природе.

Химические свойства азота

Его основное свойство в нормальных условиях - это инертность, т.е. минимальная химическая активность. Атом азота может образовывать связь с другим атомом азота, что достаточно необычно для химических элементов (исключение составляют лишь кремний и углерод).

При нагревании этот элемент реагирует с большинством металлов. При этом образуются ионные, ковалентные или промежуточные нитриды с отрицательно заряженным ионом азота.

В реакции с водородом азот образует достаточно устойчивые соединения - азотоводороды, которые отдаленно напоминают углеводороды. К подобным веществам относятся аммиак, гидразин и азотистоводородная кислота.

Получение и применение азота

Соединения этого вещества, играют важную роль в промышленности и сельском хозяйстве. Способ получения азота в виде химического элемента зависит от необходимой степени его чистоты. Больше всего азота необходимо для но при этом допускается незначительное содержание в нем благородных газов.

Получение азота из атмосферы

Это один из самых экономичных способов, в ходе которого очищенный воздух последовательно сжижают путем охлаждения и расширения. Полученный перегоняют через фракции, медленно поднимая при этом температуру. При этом процессе сначала выделяются благородные газы, а затем азот. Остается только

Подобное получение азота позволяет произвести много миллионов тонн этого вещества каждый год. Используют азот в основном для последующего производства аммиака, который, в свою очередь, выступает в роли сырья для получения промышленных и сельскохозяйственных азотосодержащих соединений.

Чистую азотную атмосферу также могут использовать, когда необходимо полное отсутствие кислорода.

Получение азота в лаборатории

В небольших количествах этот газ получают, окисляя ионы аммония или аммиак. В частности, ион аммония можно окислить нитрит-ионом.

Получение азота в процессе разложения

При нагревании разлагаются азиды, аммиак разлагается нитриты разлагаются от взаимодействия с мочевиной или сульфаминовой кислотой - в результате всех этих реакций образуется азот.