Вывод производных функций. Найти производную: алгоритм и примеры решений. Вывод формулы производной экспоненты, e в степени x

6.1. Общие сведения

Центр параллельных сил
Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


Рис.6.2

Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

Отсюда находим координату центра параллельных сил zc :

Для определения координаты xc составим выражение момента сил относительно оси Oz .

Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

6.2. Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
Точка С в данном случае носит название центра тяжести площади .
Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

6.3. Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


Рис.6.3

Ответ: x c =17.0см; y c =18.0см.

3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


Рис.6.4

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


Рис. 6.5

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
Согласно формуле для центра тяжести линии:

6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



Рис.6.6

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

6.4. Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

Таблица 6.1

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где α - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где α - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Центром тяжести (или центром масс ) некоторого тела называется точка, обладающая тем свойством, что если подвесить тело за эту точку, то оно будет сохранять свое положение.

Ниже рассмотрены двумерные и трёхмерные задачи, связанные с поиском различных центров масс — в основном с точки зрения вычислительной геометрии.

В рассмотренных ниже решениях можно выделить два основных факта . Первый — что центр масс системы материальных точек равен среднему их координат, взятых с коэффициентами, пропорциональными их массам. Второй факт — что если мы знаем центры масс двух непересекающихся фигур, то центр масс их объединения будет лежать на отрезке, соединяющем эти два центра, причём он будет делить его в то же отношении, как масса второй фигуры относится к массе первой.

Двумерный случай: многоугольники

На самом деле, говоря о центре масс двумерной фигуры, можно иметь в виду одну из трёх следующих задач :

  • Центр масс системы точек — т.е. вся масса сосредоточена только в вершинах многоугольника.
  • Центр масс каркаса — т.е. масса многоугольника сосредоточена на его периметре.
  • Центр масс сплошной фигуры — т.е. масса многоугольника распределена по всей его площади.

Каждая из этих задач имеет самостоятельное решение, и будет рассмотрена ниже отдельно.

Центр масс системы точек

Это самая простая из трёх задач, и её решение — известная физическая формула центра масс системы материальных точек:

где — массы точек, — их радиус-векторы (задающие их положение относительно начала координат), и — искомый радиус-вектор центра масс.

В частности, если все точки имеют одинаковую массу, то координаты центра масс есть среднее арифметическое координат точек. Для треугольника эта точка называется центроидом и совпадает с точкой пересечения медиан:

Для доказательства этих формул достаточно вспомнить, что равновесие достигается в такой точке , в которой сумма моментов всех сил равна нулю. В данном случае это превращается в условие того, чтобы сумма радиус-векторов всех точек относительно точки , домноженных на массы соответствующих точек, равнялась нулю:

и, выражая отсюда , мы и получаем требуемую формулу.

Центр масс каркаса

Но тогда каждую сторону многоугольника можно заменить одной точкой — серединой этого отрезка (т.к. центр масс однородного отрезка есть середина этого отрезка), с массой, равной длине этого отрезка.

Теперь мы получили задачу о системе материальных точек, и применяя к ней решение из предыдущего пункта, мы находим:

где — точка-середина -ой стороны многоугольника, — длина -ой стороны, — периметр, т.е. сумма длин сторон.

Для треугольника можно показать следующее утверждение: эта точка является точкой пересечения биссектрис треугольника, образованного серединами сторон исходного треугольника. (чтобы показать это, надо воспользоваться приведённой выше формулой, и затем заметить, что биссектрисы делят стороны получившегося треугольника в тех же соотношениях, что и центры масс этих сторон).

Центр масс сплошной фигуры

Мы считаем, что масса распределена по фигуре однородно, т.е. плотность в каждой точке фигуры равна одному и тому же числу.

Случай треугольника

Утверждается, что для треугольника ответом будет всё тот же центроид , т.е. точка, образованная средним арифметическим координат вершин:

Случай треугольника: доказательство

Приведём здесь элементарное доказательство, не использующее теорию интегралов.

Первым подобное, чисто геометрическое, доказательство привёл Архимед, но оно было весьма сложным, с большим числом геометрических построений. Приведённое здесь доказательство взято из статьи Apostol, Mnatsakanian "Finding Centroids the Easy Way".

Доказательство сводится к тому, чтобы показать, что центр масс треугольника лежит на одной из медиан; повторяя этот процесс ещё дважды, мы тем самым покажем, что центр масс лежит в точке пересечения медиан, которая и есть центроид.

Разобьём данный треугольник на четыре, соединив середины сторон, как показано на рисунке:

Четыре получившихся треугольника подобны треугольнику с коэффициентом .

Треугольники №1 и №2 вместе образуют параллелограмм, центр масс которого лежит в точке пересечения его диагоналей (поскольку это фигура, симметричная относительно обеих диагоналей, а, значит, её центр масс обязан лежать на каждой из двух диагоналей). Точка находится посередине общей стороны треугольников №1 и №2, а также лежит на медиане треугольника :

Пусть теперь вектор — вектор, проведённый из вершины к центру масс треугольника №1, и пусть вектор — вектор, проведённый из к точке (которая, напомним, является серединой стороны, на которой она лежит):

Наша цель — показать, что вектора и коллинеарны.

Обозначим через и точки, являющиеся центрами масс треугольников №3 и №4. Тогда, очевидно, центром масс совокупности этих двух треугольников будет точка , являющаяся серединой отрезка . Более того, вектор от точки к точке совпадает с вектором .

Искомый центр масс треугольника лежит посередине отрезка, соединяющего точки и (поскольку мы разбили треугольник на две части равных площадей: №1-№2 и №3-№4):

Таким образом, вектор от вершины к центроиду равен . С другой стороны, т.к. треугольник №1 подобен треугольнику с коэффициентом , то этот же вектор равен . Отсюда получаем уравнение:

откуда находим:

Таким образом, мы доказали, что вектора и коллинеарны, что и означает, что искомый центроид лежит на медиане, исходящей из вершины .

Более того, попутно мы доказали, что центроид делит каждую медиану в отношении , считая от вершины.

Случай многоугольника

Перейдём теперь к общему случаю — т.е. к случаю мноугоугольника . Для него такие рассуждения уже неприменимы, поэтому сведём задачу к треугольной: а именно, разобьём многоугольник на треугольники (т.е. триангулируем его), найдём центр масс каждого треугольника, а затем найдём центр масс получившихся центров масс треугольников.

Окончательная формула получается следующей:

где — центроид -го треугольника в триангуляции заданного многоугольника, — площадь -го треугольника триангуляции, — площадь всего многоугольника.

Триангуляция выпуклого многоугольника — тривиальная задача: для этого, например, можно взять треугольники , где .

Случай многоугольника: альтернативный способ

С другой стороны, применение приведённой формулы не очень удобно для невыпуклых многоугольников , поскольку произвести их триангуляцию — сама по себе непростая задача. Но для таких многоугольников можно придумать более простой подход. А именно, проведём аналогию с тем, как можно искать площадь произвольного многоугольника: выбирается произвольная точка , а затем суммируются знаковые площади треугольников, образованных этой точкой и точками многоугольника: . Аналогичный приём можно применить и для поиска центра масс: только теперь мы будем суммировать центры масс треугольников , взятых с коэффициентами, пропорциональными их площадям, т.е. итоговая формула для центра масс такова:

где — произвольная точка, — точки многоугольника, — центроид треугольника , — знаковая площадь этого треугольника, — знаковая площадь всего многоугольника (т.е. ).

Трёхмерный случай: многогранники

Аналогично двумерному случаю, в 3D можно говорить сразу о четырёх возможных постановках задачи:

  • Центр масс системы точек — вершин многогранника.
  • Центр масс каркаса — рёбер многогранника.
  • Центр масс поверхности — т.е. масса распределена по площади поверхности многогранника.
  • Центр масс сплошного многогранника — т.е. масса распределена по всему многограннику.

Центр масс системы точек

Как и в двумерном случае, мы можем применить физическую формулу и получить тот же самый результат:

который в случае равных масс превращается в среднее арифметическое координат всех точек.

Центр масс каркаса многогранника

Аналогично двумерному случаю, мы просто заменяем каждое ребро многогранника материальной точкой, расположенной посередине этого ребра, и с массой, равной длине этого ребра. Получив задачу о материальных точках, мы легко находим её решение как взвешенную сумму координат этих точек.

Центр масс поверхности многогранника

Каждая грань поверхности многогранника — двухмерная фигура, центр масс которой мы умеем искать. Найдя эти центры масс и заменив каждую грань её центром масс, мы получим задачу с материальными точками, которую уже легко решить.

Центр масс сплошного многогранника

Случай тетраэдра

Как и в двумерном случае, решим сначала простейшую задачу — задачу для тетраэдра.

Утверждается, что центр масс тетраэдра совпадает с точкой пересечения его медиан (медианой тетраэдра называется отрезок, проведённый из его вершины в центр масс противоположной грани; таким образом, медиана тетраэдра проходит через вершину и через точку пересечения медиан треугольной грани).

Почему это так? Здесь верны рассуждения, аналогичные двумерному случаю: если мы рассечём тетраэдр на два тетраэдра с помощью плоскости, проходящей через вершину тетраэдра и какую-нибудь медиану противоположной грани, то оба получившихся тетраэдра будут иметь одинаковый объём (т.к. треугольная грань разобьётся медианой на два треугольника равной площади, а высота двух тетраэдров не изменится). Повторяя эти рассуждения несколько раз, получаем, что центр масс лежит на точке пересечения медиан тетраэдра.

Эта точка — точка пересечения медиан тетраэдра — называется его центроидом . Можно показать, что она на самом деле имеет координаты, равные среднему арифметическому координат вершин тетраэдра:

(это можно вывести из того факта, что центроид делит медианы в отношении )

Таким образом, между случаями тетраэдра и треугольника принципиальной разницы нет: точка, равная среднему арифметическому вершин, является центром масс сразу в двух постановках задачи: и когда массы находится только в вершинах, и когда массы распределены по всей площади/объёму. На самом деле, этот результат обобщается на произвольную размерность: центр масс произвольного симплекса (simplex) есть среднее арифметическое координат его вершин.

Случай произвольного многогранника

Перейдём теперь к общему случаю — случаю произвольного многогранника.

Снова, как и в двумерном случае, мы производим сведение этой задачи к уже решённой: разбиваем многогранник на тетраэдры (т.е. производим его тетраэдризацию), находим центр масс каждого из них, и получаем окончательный ответ на задачу в виде взвешенной суммы найденных центров масс.

Вывод формулы производной степенной функции (x в степени a). Рассмотрены производные от корней из x. Формула производной степенной функции высшего порядка. Примеры вычисления производных.

Производная от x в степени a равна a , умноженному на x в степени a минус один:
(1) .

Производная от корня степени n из x в степени m равна:
(2) .

Вывод формулы производной степенной функции

Случай x > 0

Рассмотрим степенную функцию от переменной x с показателем степени a :
(3) .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .

Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.

Теперь находим производную, применяя :
;
.
Здесь .

Формула (1) доказана.

Вывод формулы производной от корня степени n из x в степени m

Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4) .

Чтобы найти производную, преобразуем корень к степенной функции:
.
Сравнивая с формулой (3) мы видим, что
.
Тогда
.

По формуле (1) находим производную:
(1) ;
;
(2) .

На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).

Случай x = 0

Если , то степенная функция определена и при значении переменной x = 0 . Найдем производную функции (3) при x = 0 . Для этого воспользуемся определением производной:
.

Подставим x = 0 :
.
При этом под производной мы понимаем правосторонний предел, для которого .

Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , .
Этот результат получается и по формуле (1):
(1) .
Поэтому формула (1) справедлива и при x = 0 .

Случай x < 0

Снова рассмотрим функцию (3):
(3) .
При некоторых значениях постоянной a , она определена и при отрицательных значениях переменной x . А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n - целые числа, не имеющие общего делителя.

Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x . Например, при n = 3 и m = 1 мы имеем кубический корень из x :
.
Он определен и при отрицательных значениях переменной x .

Найдем производную степенной функции (3) при и при рациональных значениях постоянной a , для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции :

.
Здесь . Но
.
Поскольку , то
.
Тогда
.
То есть формула (1) справедлива и при :
(1) .

Производные высших порядков

Теперь найдем производные высших порядков от степенной функции
(3) .
Производную первого порядка мы уже нашли:
.

Вынося постоянную a за знак производной, находим производную второго порядка:
.
Аналогичным образом находим производные третьего и четвертого порядков:
;

.

Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.

Заметим, что если a является натуральным числом , , то n -я производная является постоянной:
.
Тогда все последующие производные равны нулю:
,
при .

Примеры вычисления производных

Пример

Найдите производную функции:
.

Решение

Преобразуем корни к степеням:
;
.
Тогда исходная функция приобретает вид:
.

Находим производные степеней:
;
.
Производная постоянной равна нулю:
.

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1

Формулы 3 и 5 докажите самостоятельно.


ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3 .

Пусть y = u(x) + v(x). Для значения аргумента x x имеем y (x x )=u (x x ) + v (x x ).

Δy =y (x x ) – y(x) = u(x x) + v(x x) u(x) v(x) = Δu v .

Следовательно,

Доказательство формулы 4 .

Пусть y=u(x)·v(x). Тогда y (x x )=u (x x v (x x ), поэтому

Δy =u (x x v (x x ) – u (x v (x ).

Заметим, что поскольку каждая из функций u и v дифференцируема в точке x , то они непрерывны в этой точке, а значит u (x x )→u(x), v (x x )→v(x) , при Δx →0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.

Пусть, например, y=u·v·w. Тогда,

y " = u "·( w) + u ·(v ·w) " = u v ·w + u ·(v "·w +v ·w ") = u v ·w + u ·v "·w + u·v ·w ".

Доказательство формулы 5 .

Пусть . Тогда

При доказательстве воспользовались тем, что v(x+ Δx) v(x) при Δx →0.

Примеры .

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ

Пусть y = f(u), а u = u (x ). Получаем функцию y , зависящую от аргумента x : y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией .

Областью определения функции y = f(u(x)) является либо вся область определения функции u =u (x ) либо та ее часть, в которой определяются значения u , не выходящие из области определения функции y = f(u) .

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u = u (x ) имеет в некоторой точке x 0 производную и принимает в этой точке значение u 0 = u (x 0 ), а функция y= f(u) имеет в точке u 0 производную y " u = f "(u 0 ), то сложная функция y = f(u(x)) в указанной точке x 0 тоже имеет производную, которая равна y " x = f "(u 0 u "(x 0 ), где вместо u должно быть подставлено выражение u = u (x ).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x .

Доказательство . При фиксированном значении х 0 будем иметь u 0 =u (x 0), у 0 =f(u 0 ). Для нового значения аргумента x 0 x :

Δu = u (x 0 + Δx ) – u (x 0), Δy =f (u 0 u ) – f (u 0 ).

Т.к. u – дифференцируема в точке x 0 , то u – непрерывна в этой точке. Поэтому при Δx →0 Δu →0. Аналогично при Δu →0 Δy →0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu →0)

где α→0 при Δu →0, а, следовательно, и при Δx →0.

Перепишем это равенство в виде:

Δy = y " u Δu +α·Δu .

Полученное равенство справедливо и при Δu =0 при произвольном α, так как оно превращается в тождество 0=0. При Δu =0 будем полагать α=0. Разделим все члены полученного равенства на Δx

.

По условию . Поэтому, переходя к пределу при Δx →0, получим y " x = y " u ·u " x . Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f , рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y " x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y " x = y " u ·u " x . Применяя эту же теорему для u " x получаем , т.е.

y " x = y " x · u " v · v " x = f " u (u u " v (v v " x (x ).

Примеры.

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ

Начнем с примера. Рассмотрим функцию y= x 3 . Будем рассматривать равенство y = x 3 как уравнение относительно x . Это уравнение для каждого значения у определяет единственное значение x : . Геометрически это значит, что всякая прямая параллельная оси Ox пересекает график функции y= x 3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y . Функция называется обратной по отношению к функции y= x 3 .

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x 2 >x 1 , то f(x 2 ) > f(x 1 ).

Аналогично функция называется убывающей , если меньшему значению аргумента соответствует большее значение функции, т.е. еслих 2 < х 1 , то f(x 2 ) > f(х 1 ).

Итак, пусть дана возрастающая или убывающая функция y= f(x) , определенная на некотором отрезке [a ; b ]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х 1 и х 2 . Пусть y 1 =f(x 1 ), y 2 =f(x 2 ). Из определения возрастающей функции следует, что если x 1 <x 2 , то у 1 <у 2 . Следовательно, двум различным значениям х 1 и х 2 соответствуют два различных значения функции у 1 и у 2 . Справедливо и обратное, т.е. если у 1 <у 2 , то из определения возрастающей функции следует, чтоx 1 <x 2 . Т.е. вновь двум различным значениям у 1 и у 2 соответствуют два различных значенияx 1 и x 2 . Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x , и можно сказать, что x есть некоторая функция аргумента y : x= g(у) .

Эта функция называется обратной для функции y=f(x) . Очевидно, что и функция y=f(x) является обратной для функции x=g(у) .

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х .

Пример. Пусть дана функция y = e x . Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny . Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a ; b ], причем f(a)=c, f(b)=d , то обратная функция определена и непрерывна на отрезке [c ; d ].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x 2 определена при –∞<x <+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x <+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x ≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y . Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x , а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.


ТЕОРЕМА О ПРОИЗВОДНОЙ ОБРАТНОЙ ФУНКЦИИ

Докажем теорему, позволяющую находить производную функции y=f(x) , зная производную обратной функции.

Теорема. Если для функции y=f(x) существует обратная функция x=g(y ), которая в некоторой точке у 0 имеет производную g "(v 0 ), отличную от нуля, то в соответствующей точке x 0 =g (x 0 ) функция y=f(x) имеет производную f "(x 0 ), равную , т.е. справедлива формула.

Доказательство . Т.к. x=g(y) дифференцируема в точке y 0 , то x=g(y) непрерывна в этой точке, поэтому функция y=f(x) непрерывна в точке x 0 =g (y 0 ). Следовательно, при Δx →0 Δy →0.

Покажем, что .

Пусть . Тогда по свойству предела . Перейдем в этом равенстве к пределу при Δy →0. Тогда Δx →0 и α(Δx)→0, т.е. .

Следовательно,

,

что и требовалось доказать.

Эту формулу можно записать в виде .

Рассмотрим применение этой теоремы на примерах.