Арифметическая прогрессия (9 класс): формулы, примеры

Цель игры :
  1. Обобщение и систематизация знаний учащихся по данной теме.
  2. Ознакомление учащихся с историческим материалом.

Оборудование: плакат к игре “Прогрессио – движение вперед”.

Все учащиеся разбиты на пять групп + совет мудрецов

Закончился двадцатый век.
Куда стремится человек?
Изучены космос и море,
Строенье звезд и вся Земля.
Но математиков зовет
Известный лозунг:
“Прогрессио – движение вперед”.

Сегодня у нас в классе состоится совет – совет Мудрецов. Мудрецы – ученики, сидящие в классе по группам. И Мудрецы, сидящие за этим столом.

Узнаёте ли вы их?

За столом сидят: Архимед, Гаусс, Магницкий.

Кто формулу суммы квадратов нашел?
И верной дорогой к прогрессу пришел?
Математик и физик. Я – Архимед.
О жизни моей ходит много легенд.

О! Я – Карл Гаусс! Нашел моментально сумму всех натуральных чисел от 1 до 100, будучи учеником начальной школы.

Магницкий. Господа! Имею честь представится. Я Леонтий Филиппович Магницкий – создатель первого учебника “Арифметика”.

Учитель. Скажите, ребята, почему эти ученые вдруг собрались вместе за одним столом? Какой вопрос математики объединяет их? Если вы не догодались, то внимательно посмотрите сценку.

Древняя индийская легенда

В классе появляется индусский царь со слугой.

Царь. Я, индусский царь Шерам, научился игре в шахматы и восхищен ее остроумием и разнообразием в ней положений. Слуга, позовим изобретателя Сету. Я желаю достойно наградить тебя, Сета, за прекрасную игру, которую ты придумал. Назови награду, которая тебя удовлетворит, и ты ее получишь.

Сета. Повелитель. Прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно

Царь. Простое пшеничное зерно?

Сета. Да, повелитель За вторую клетку прикажи выдать 2 зерна, за третью – 4, за четвертую – 8, за пятую – 16, и так до 64-й клетки.

Царь Шерам рассмеялся.

Учитель. О мудрецы 9– го класса, давайте посоветуемся. Стоит ли царю смеятся?

На доске запись: 1,2,4,8,16,….. S 64 – ?

Учащиеся решают. b 1= 1, q=2, n=64, S 64 =2 64 – 1.

Учитель. Как велико это число? Кто может это обяснить?

Архимед. Наимудрейшие! Если бы царю удалось засеять пшеницей площадь всей поверхности Земли, считая и моря, и океаны, и горы, и пустыню, и Арктику с Антарктидой, и получить удовлетворительный урожай, то, пожалуй, лет за пять он смог бы рассчитаться.

Гаусс. Математика – это точная наука. (Записывает на доске 18 446 744 073 709 551 615). 18 квинтильонов 446 квадрильонов 744 триллиона 73 биллиона 709 миллионов 551 тысяча 615.

Магницкий. Господа Мудрецы 9-го класса! Мои современники сказали бы так, что S 64 18,5 10 18 . Правда, я вам признаюсь, что в моем учебнике “Арифметика”, изданном 200 лет назад, по которому целых полвека учились дети, много задач по теме “Прогрессии”, но иные из них я сам решал с большим трудом, так как еще не нашел всех формул, связывающих входящие в них величины.

Под скрип пера о лист бумаги.
Заполните сии листы!
Да помогут вам наши начинанья!

Раздаются загатовки листов для проверки знаний теории, т. е. восстанавливается опорный конспект по теме “Прогрессии”.

Ученики заполняют таблицу. На доске появляется следующая таблица:

Прогрессии

Арифметическая a n

Геометрическая b n

Определение

b n+1 =b n q (q0,q1)

Формула n первых членов

a n =a 1 + (n-1)d

Сумма n первых членов прогрессии

S n =

S n = И поиск их был нами оценен.
Слова же следует теперь соединить,
В какую фразу можно их объеденить?

“Математика – царица наук, арифметика – царица математики”

О мудрецы времен!
Дружней вас не сыскать.
Совет сегодня завершен,
Но каждый должен знать:
Познание, упорство,труд
К прогрессу в жизни приведут!

Арифметическая и геометрическая прогрессии

Теоретические сведения

Теоретические сведения

Арифметическая прогрессия

Геометрическая прогрессия

Определение

Арифметической прогрессией a n называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d (d - разность прогрессий)

Геометрической прогрессией b n называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и тоже число q (q - знаменатель прогрессии)

Рекуррентная формула

Для любого натурального n
a n + 1 = a n + d

Для любого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристическое свойство
Сумма n-первых членов

Примеры заданий с комментариями

Задание 1

В арифметической прогрессии (a n ) a 1 = -6, a 2

По формуле n-ого члена:

a 22 = a 1 + d (22 - 1) = a 1 + 21 d

По условию:

a 1 = -6, значит a 22 = -6 + 21 d .

Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Ответ : a 22 = -48.

Задание 2

Найдите пятый член геометрической прогрессии: -3; 6;....

1-й способ (с помощью формулы n -члена)

По формуле n-ого члена геометрической прогрессии:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4 .

Так как b 1 = -3,

2-й способ (с помощью рекуррентной формулы)

Так как знаменатель прогрессии равен -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Ответ : b 5 = -48.

Задание 3

В арифметической прогрессии (a n ) a 74 = 34; a 76 = 156. Найдите семьдесят пятый член этой прогрессии.

Для арифметической прогрессии характеристическое свойство имеет вид .

Из этого следует:

.

Подставим данные в формулу:

Ответ : 95.

Задание 4

В арифметической прогрессии (a n ) a n = 3n - 4. Найдите сумму семнадцати первых членов.

Для нахождения суммы n-первых членов арифметической прогрессии используют две формулы:

.

Какую из них в данном случае удобнее применять?

По условию известна формула n-ого члена исходной прогрессии (a n ) a n = 3n - 4. Можно найти сразу и a 1 , и a 16 без нахождения d . Поэтому воспользуемся первой формулой.

Ответ : 368.

Задание 5

В арифметической прогрессии(a n ) a 1 = -6; a 2 = -8. Найдите двадцать второй член прогрессии.

По формуле n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1 + 21d .

По условию, если a 1 = -6, то a 22 = -6 + 21d . Необходимо найти разность прогрессий:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Ответ : a 22 = -48.

Задание 6

Записаны несколько последовательных членов геометрической прогрессии:

Найдите член прогрессии, обозначенный буквой x .

При решении воспользуемся формулой n-го члена b n = b 1 ∙ q n - 1 для геометрических прогрессий. Первый член прогрессии. Чтобы найти знаменатель прогрессии q необходимо взять любой из данных членов прогрессии и разделить на предыдущий. В нашем примере можно взять и разделить на. Получим, что q = 3. Вместо n в формулу подставим 3, так как необходимо найти третий член, заданной геометрической прогрессии.

Подставив найденные значения в формулу, получим:

.

Ответ : .

Задание 7

Из арифметических прогрессий, заданных формулой n-го члена, выберите ту, для которой выполняется условие a 27 > 9:

Так как заданное условие должно выполняться для 27-го члена прогрессии, подставим 27 вместо n в каждую из четырех прогрессий. В 4-й прогрессии получим:

.

Ответ : 4.

Задание 8

В арифметической прогрессии a 1 = 3, d = -1,5. Укажите наибольшее значение n , для которого выполняется неравенство a n > -6.

Понимание многих тем по математике и физике связано со знанием свойств числовых рядов. Школьники в 9 классе при изучении предмета "Алгебра" рассматривают одну из важных последовательностей чисел - арифметическую прогрессию. Приведем основные формулы арифметической прогрессии (9 класс), а также примеры их использования для решения задач.

Алгебраическая или арифметическая прогрессия

Числовой ряд, который будет рассмотрен в данной статье, называют двумя разными способами, представленными в названии этого пункта. Итак, под прогрессией арифметической в математике понимают такой числовой ряд, в котором стоящие рядом любые два числа отличаются на одну и ту же величину, носящую название разности. Числа в таком ряду принято обозначать буквами с нижним целочисленным индексом, например, a 1 , a 2 , a 3 и так далее, где индекс указывает номер элемента ряда.

Учитывая данное выше определение прогрессии арифметической, можно записать следующее равенство: a 2 -a 1 =...=a n -a n-1 =d, здесь d - разность прогрессии алгебраической и n - любое целое число. Если d>0, то можно ожидать, что каждый последующий член ряда будет больше предыдущего, в этом случае говорят о возрастающей прогрессии. Если d<0, тогда предыдущий член будет больше последующего, то есть ряд будет убывать. Частный случай возникает, когда d = 0, то есть ряд представляет собой последовательность, в которой a 1 =a 2 =...=a n .

Формулы арифметической прогрессии (9 класс школы)

Рассматриваемый ряд чисел, поскольку является упорядоченным и подчиняется некоторому математическому закону, обладает двумя важными для его использования свойствами:

  1. Во-первых, зная всего два числа a 1 и d, можно найти любой член последовательности. Это делается с помощью такой формулы: a n = a 1 +(n-1)*d.
  2. Во-вторых, для вычисления суммы n членов первых не обязательно складывать их по порядку, поскольку можно воспользоваться следующей формулой: S n = n*(a n +a 1)/2.

Первую формулу понять просто, так как она является прямым следствием того, что каждый член рассматриваемого ряда отличается от своего соседа на одинаковую разность.

Вторая формула арифметической прогрессии может быть получена, если обратить внимание на то, что сумма a 1 +a n оказывается эквивалентной суммам a 2 +a n-1 , a 3 +a n-2 и так далее. Действительно, поскольку a 2 = d+a 1 , a n-2 = -2*d+a n , a 3 = 2*d+a 1 , и a n-1 = -d+a n , то подставляя эти выражения в соответствующие суммы, получим, что они будут одинаковыми. Множитель n/2 во 2-й формуле (для S n) появляется из-за того, что сумм типа a i+1 +a n-i оказывается ровно n/2, здесь i - целое число, пробегающее значения от 0 до n/2-1.

Согласно сохранившимся историческим свидетельствам, формулу для суммы S n впервые получил Карл Гаусс (знаменитый немецкий математик), когда перед ним была поставлена задача школьным учителем сложить первые 100 чисел.

Пример задачи №1: найдите разность

Задачи, в которых ставится вопрос следующим образом: зная формулы арифметической прогрессии, как найти д (d), являются самыми простыми, которые только могут быть для этой темы.

Приведем такой пример: дана числовая последовательность -5,-2, 1, 4, ..., необходимо определить ее разность, то есть d.

Сделать это проще простого: необходимо взять два элемента и из большего по счету вычесть меньший. В данном случае имеем: d = -2 - (-5) = 3.

Чтобы быть наверняка уверенным в полученном ответе, рекомендуется проверить остальные разности, поскольку представленная последовательность может не удовлетворять условию прогрессии алгебраической. Имеем: 1-(-2)=3 и 4-1=3. Эти данные говорят о том, что мы получили правильный результат (d=3) и доказали, что ряд чисел в условии задачи действительно представляет собой прогрессию алгебраическую.

Пример задачи №2: найдите разность, зная два члена прогрессии

Рассмотрим еще одну интересную задачу, которая ставится вопросом, как найти разность. Формулу арифметической прогрессии в этом случае необходимо использовать для n-ного члена. Итак, задача: даны первое и пятое числа ряда, который соответствует всем свойствам алгебраической прогрессии, например, это числа a 1 = 8 и a 5 = -10. Как найти разность d?

Начинать решение этой задачи следует с записи общего вида формулы для n-ного элемента: a n = a 1 +d*(-1+n). Теперь можно пойти двумя путями: либо подставить сразу числа и работать уже с ними, либо выразить d, а затем переходить к конкретным a 1 и a 5 . Воспользуемся последним способом, получаем: a 5 = a 1 +d*(-1+5) или a 5 = 4*d+a 1 , откуда следует, что d = (a 5 -a 1)/4. Теперь можно спокойно подставить известные данные из условия и получить конечный ответ: d = (-10-8)/4 = -4,5.

Заметим, что в данном случае разность прогрессии оказалась отрицательной, то есть имеет место убывающая последовательность чисел. На этот факт необходимо обращать внимание при решении задач, чтобы не перепутать знаки "+" и "-". Все формулы, приведенные выше, являются универсальными, поэтому всегда следует их соблюдать независимо от знака чисел, с которыми осуществляются операции.

Пример решения задачи №3: найдите a1, зная разность и элемент

Изменим немного условие задачи. Пусть имеются два числа: разность d=6 и 9-й элемент прогрессии a 9 = 10. Как найти а1? Формулы арифметической прогрессии остаются неизменными, воспользуемся ими. Для числа a 9 имеем следующее выражение: a 1 +d*(9-1) = a 9 . Откуда легко получаем первый элемент ряда: a 1 = a 9 -8*d = 10 - 8*6 = -38.

Пример решения задачи №4: найдите a1, зная два элемента

Этот вариант задачи является усложненной версией предыдущего. Суть заключается в том же самом, необходимо вычислить a 1 , однако теперь разность d не известна, а вместо нее дан еще один элемент прогрессии.

Примером такого типа задач может служить следующий: найдите первое число последовательности, для которой известно, что она является прогрессией арифметической, и что ее 15-й и 23-й элементы равны 7 и 12, соответственно.

Решать эту задачу необходимо с записи выражения для n-ного члена для каждого известного из условия элемента, имеем: a 15 = d*(15-1)+a 1 и a 23 = d*(23-1)+a 1 . Как видно, мы получили два линейных уравнения, которые нужно разрешить относительно a 1 и d. Поступим так: вычтем из второго уравнения первое, тогда получим такое выражение: a 23 -a 15 = 22*d - 14*d = 8*d. При получении последнего уравнения были опущены значения a 1 , поскольку они сокращаются при вычитании. Подставляя известные данные, находим разность: d = (a 23 -a 15)/8 = (12-7)/8 = 0,625.

Значение d необходимо подставить в любую формулу для известного элемента, чтобы получить первый член последовательности: a 15 = 14*d+a 1 , откуда: a 1 =a 15 -14*d = 7-14*0,625 = -1,75.

Проверим полученный результат, для этого найдем a 1 через второе выражение: a 23 = d*22+a 1 или a 1 = a 23 -d*22 = 12 - 0,625*22 = -1,75.

Пример решения задачи №5: найдите сумму n элементов

Как можно было заметить, до этого момента для решения использовалась всего одна формула арифметической прогрессии (9 класс). Теперь приведем задачу, для решений которой понадобиться знание второй формулы, то есть для суммы S n .

Имеется следующая упорядоченный ряд чисел -1,1, -2,1, -3,1,..., нужно вычислить сумму ее 11 первых элементов.

Из данного ряда видно, что он является убывающим, и a 1 = -1,1. Его разность равна: d = -2,1 - (-1,1) = -1. Теперь определим 11-й член: a 11 = 10*d + a 1 = -10 + (-1,1) = -11,1. Выполнив подготовительные вычисления, можно воспользоваться отмеченной выше формулой для суммы, имеем: S 11 =11*(-1,1 +(-11,1))/2 = -67,1. Поскольку все слагаемые являлись отрицательными числами, то и их сумма имеет соответствующий знак.

Пример решения задачи №6: найдите сумму элементов от n до m

Пожалуй, этот тип задач является самым сложным для большинства школьников. Приведем типичный пример: дан ряд чисел 2, 4, 6, 8 ..., необходимо найти сумму с 7-го по 13-й членов.

Формулы арифметической прогрессии (9 класс) используются точно такие же, как и во всех задачах ранее. Эту задачу рекомендуется решать поэтапно:

  1. Сначала найти сумму 13 членов по стандартной формуле.
  2. Затем рассчитать эту сумму для 6 первых элементов.
  3. После этого вычесть из 1-й суммы 2-ю.

Приступим к решению. Так же как и в предыдущем случае, проведем подготовительные вычисления: a 6 = 5*d+a 1 = 10+2 = 12, a 13 = 12*d+a 1 = 24+2 = 26.

Вычислим две суммы: S 13 = 13*(2+26)/2 = 182, S 6 = 6*(2+12)/2 = 42. Берем разницу и получаем искомый ответ: S 7-13 = S 13 - S 6 = 182-42 = 140. Отметим, что при получении этого значения использовалась в качестве вычитаемого именно сумма 6 элементов прогрессии, поскольку 7-й член входит в сумму S 7-13 .

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ.

Урок в 9 классе.

Учитель математики- Приходько Галина Владимировна

Цели урока:

Образовательные: совершенствовать умения по использованию формул арифметической и геометрической прогрессий для решения задач прикладного содержания, показать использование формул прогрессий для задач физики, биологии, экономики, проверка усвоения знаний путем проведения самостоятельной работы в тестовой форме.

Воспитательные: воспитывать чувство ответственности, взаимоуважения, умения работать в группах.

Развивающие: развивать интерес к предмету, потребность к получению новых знаний.

Тип урока: круглый стол.

Ход урока:

1.) Организационный момент. Учащиеся образовали группы: кафедра теории, кафедра истории, биологии, физики, экономики.

2.)Опрос. Кафедра теории.

План опроса: Определение, свойства, формула n -ого члена, формула суммы.

Арифметическая прогрессия. Геометрическая прогрессия.

1. 1.

2.
2.

3.
3.

4.
4.

5.
5.

3.) Кафедра истории.

С понятием последовательностей связаны имена следующих математиков. Члены последовательности 1,1,2,3,5,8,13,21,34,55,89,… называют числами Фибоначчи. Это объясняется тем, что итальянский математик и купец Леонардо Пизанский (Фибоначчи) первым установил связь между этой последовательностью и известной задачей о размножении кроликов. В этой задаче исследуется численность потомства одной пары кроликов, которая ежемесячно приносит пару крольчат, а те через месяц также начинают производить потомство.

С тех пор как Фибоначчи открыл свою последовательность, были найдены явления природы, в которых эта последовательность играет немаловажную роль. Одно из них филлотаксис (листорасположение)- правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, одна из которых идёт по часовой стрелке, другая против. И количество семян в каждом случае 34 и 55, однако встречаются и гиганты с 89 и 144 семечками. Подобное свойство можно обнаружить в структуре сосновых шишек. То же наблюдается и на плодах ананаса.

Выдающийся немецкий математик К.Гаусс нашел сумму арифметической прогрессии

1, 2, 3, …, 98,99,100 в возрасте 5 лет.

С геометрической последовательностью 1, 2,
связана старинная легенда. Индийский мудрец, придумавший шахматную игру, попросил у раджи за своё изобретение, на первый взгляд, скромное вознаграждение: за первую клетку шахматной доски 1 пшеничное зёрнышко, за вторую – 2, за третью – 4 и т. д. – за каждую следующую клетку вдвое больше, чем за предыдущую. Общее количество зерен, которое попросил изобретатель, равно

Богатый раджа был потрясен, когда узнал, что он не в состоянии удовлетворить «скромное желание» мудреца. Значение этого выражения равно 18 446 744 073 709 551 615 т.е. 18 квинтильонов 446 квадрильонов 744 триллиона 73 миллиарда 709 миллионов 551 тысяча 615.

Для того, чтобы осознать, насколько велико это число, представим, что зерно хранят в амбаре площадью 12 га. Его высота была бы больше расстояния от Земли до Солнца.

4.) Кафедра биологии.

В биологии тоже есть явления, которые можно охарактеризовать с помощью прогрессий. В частности размножение живых организмов. Зная такие характеристики организма, как периодичность размножения и численность потомства, можно с помощью прогрессий спрогнозировать количество популяции за определённый промежуток времени. Такой процесс рассматривается в следующей задаче.

ЗАДАЧА.

Бактерия, попав в организм, до конца 20 минуты делится на две, каждая из которых до конца 20 минуты снова делится на две и т.д. Сколько бактерий будет в организме через сутки?

Решение:

Количество бактерий каждые 20 минут увеличивается в 2 раза, поэтому имеем:

1,2,4,8,… геометрическая прогрессия, в которой

по формуле
найдём

бактерий.

Ответ:
бактерий.

5.) Кафедра физики.

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII века, с помощью ряда чисел Фибоначчи нашёл закономерность и порядок в расстояниях между планетами солнечной системы. Однако один случай, который казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов, произошло это после смерти Тициуса в начале XIX века.

Прогрессии выражают законы некоторых физических явлений. Например, по закону геометрической прогрессии происходит ударная ионизация. При ударной ионизации положительный ион достигая поверхности отрицательного электрода выбивает электрон. Этот электрон, обладая большой энергией выбивает электрон из внешней оболочки атома, который встречает на своём пути. Образовавшиеся уже 2 электрона выбивают ещё 2, полученные 4 ещё 4 и т. д. Образуется электронная лавина, растущая в геометрической прогрессии.

В физике есть понятие равноускоренного движения. Если тело движется равноускоренно, то расстояние, которое оно проходит за каждую следующую единицу времени, увеличивается на одну и ту же величину. Т.е. отрезки пути, которые проходит тело за 1,2,3,4,…единицы времени образуют арифметическую прогрессию.

ЗАДАЧА.

Шар, который катится в желобе, за первую секунду проходит 0,6 м. а за каждую следующую на 0,6м больше. За какое время он пройдёт 6м?

Решение:
м,
м,
м.

5 не удовлетворяет условию задачи

Шар пройдёт 6м за 4сек.

Ответ:4сек.

6.)Кафедра экономики.

Первый банк был основан в Венеции в 1171 году. С тех пор банковская система развивается и усовершенствуется.

В случае размещения в банке денежного вклада вкладчик получает определённый процент за использование своих средств.

ЗАДАЧА.

Банк выплачивает 2% годовых. Какой будет сумма вклада в 800р в конце каждого года? За первый или за второй год прирост вклада больше? Каким будет вклад через 3 года?

Решение:

Пусть A – начальный вклад, на который насчитывается p % годовых, тогда A ·
-прирост вклада, через год имеем

где
- стала величиной постоянной для любой суммы. Через 2 года имеем:

т.е. прирост вклада возрастает по закону геометрической прогрессии.

Если вкладчик положил в банк 800р, под 2% годовых, то прирост образует

800·0,02=16 р

За первый год сумма вклада равна 800+16 =816р

За второй год 816·(1+0.02)² = 832,32р

За каждый год начальный вклад увеличивается на 2% , поэтому через 3года он равен

800·(1,02)³= 800·1,06=848(р)

Ответ: 848р.

ЗАДАЧА.

Работники получили задание выкопать колодец. За первый выкопанный в глубину метр колодца им платят 50 р, а за каждый следующий на 20 р больше, чем за предыдущий. Сколько денег (в рублях) заплатят работникам за выкопанный колодец глубиной 12м?

Решение:

Из условия задачи имеем арифметическую прогрессию

необходимо найти

Ответ: 1920р.

7) Решение тестовых заданий.

1 вариант.

1. Найдите разность арифметической прогрессии, если

А) 0,9 ; Б) -0,9; В) 9; Г) -9.

2. Чему равна сумма первых четырёх членов геометрической прогрессии, первый член которой

а знаменатель

А) 70; Б) 85; В) 80; Г) 75.

3. Чему равна сумма шести первых членов арифметической прогрессии, если

А)85; Б) 95; В) 105; Г) 115.

4. Среди данных последовательностей укажите арифметическую прогрессию.

А) 5;8;13;18; В) 0,1;0,2;0,3;0,4;

Б) 45;40;33;27; Г) 7;9;12;14.

5. Из последовательности чисел -9,-8,-6,4,5,6 выбрали два числа и нашли их произведение. Какое наименьшее значение может принимать это произведение?

А)-40; Б) -54; В) -72; Г) -36.

6. Укажите среди данных последовательностей геометрическую прогрессию.

А)6;18;54;162; Б)1;2;3;5; В)3;8;13;18; Г)21;19;17;15.

7. Чему равен третий член геометрической прогрессии, первый член которой
а знаменатель

А) 15; Б) 45; В) 135; Г) 75.

8. Найдите знаменатель геометрической прогрессии,если

А)
Б) В)
Г)

9. Найдите седьмой член арифметической пргрессии, первый член которой равен 8, а разность равна 0,5.

А) 11; Б) 10; В) 10,5; Г) 9,5.

10. Найдите первый член арифметической прогрессии, если второй член равен 2,1, а разность равна 0,7.

А) 1,4; Б)2,8; В) 0,3; Г) 14,7.

2 вариант.

1. Какая из последовательностей является арифметической прогрессией?

А) 1;2;4;8; Б)8;10;13;17; В)2;4;6;8; Г) -8;8;-8;8. а знаменатель

А) -2; Б) -6; В) 2; Г)6.

Кафедра биологии.

Задача. Бактерия, попав в организм, до конца 20 минуты делится на 2 , каждая из которых до конца 20 минуты снова делится на 2 и т. д. Сколько бактерий будет в организме через сутки?

Кафедра физики.

Задача. Шар, который катится в желобе, за первую секунду проходит 0,6 м, а за каждую следующую на 0,6 м больше. За какое время он пройдет 6 м.

Кафедра экономики.

Задача. Банк выплачивает 2% годовых. Какой будет сумма вклада в 800 гривен в конце каждого года? За первый или за второй год прирост вклада больше? Каким будет вклад через 3 года?

Кафедры истории и теории.

Задача. Работники получили задание выкопать колодец. За первый выкопанный в глубину метр колодца им платят 50 р, а за каждый следующий – на 20 р больше, чем за предыдущий. Сколько денег (в рублях) заплатят работникам за выкопанный колодец глубиной

12 м.

Литература:

1.Открытые уроки. Математика. 5,6,7,9,11кл. Выпуск 2. Авторы –составители: Ляшова Н.М.и другие. Волгоград: Учитель,2007-84с.

2. Предметные недели в школе. Математика. Составитель:Гончарова Л.В.

Волгоград: Учитель.2007-133с.

3. Сухарева Л.С. Дидактические игры на уроках математики.7-9кл. Харьков: Основа.2006-144с.