Формула колебания математического маятника. Уравнение энергии для математического маятника. Уравнение движения маятника в конечной форме

Период колебания математического маятника зависит от длины нити: с уменьшением длины нити период колебания уменьшается

Для математического маятника выполняются некоторые законы:

1 закон. Если, сохраняя одну и ту же длину маятника, подвешивать разные грузы (например 5кг и 100 кг), то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2 закон. Если маятник отклонять на разные, но маленькие углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока амплитуда маятника будут малы, колебания и по своей форме будут похожи на гармонические, и тогда период математического маятника не зависит от амплитуды колебаний. Это свойство приняло название изохронизмом..

Давайте выведем формулу периода математического маятника.

На груз m математического маятника действуют сила тяжести mg и сила упругости нити Fynp. Ось 0Х направим вдоль касательной к траектории движения вверх. Запишем второй закон Ньютона для данного случая:

С проецируем все на ось ОХ:

При малых углах

Сделав замены и маленькие преобразования у нас получается, что уравнение имеет вид:

Сравнивая полученное выражение с уравнением гармонических колебаний у нас получается:

Из уравнения видно, что циклическая частота пружинного маятника будет иметь вид:

Тогда период математического маятника будет равен:

Период математического маятника зависит только от ускорения свободного падения g и от длины маятника l. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Так же мы установили количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен 2p

Так же есть:

Период пружинного маятника

Период физического маятника

Период крутильного маятника

Математическим маятником называют материальную точку, подвешенную на невесомой и нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести (или иной силы).

Исследуем колебания математического маятника в инерциальной системе отсчета, относительно которой точка его подвеса находится в покое или движется равномерно прямолинейно. Силой сопротивления воздуха будем пренебрегать (идеальный математический маятник). Первоначально маятник покоится в положении равновесия С. При этом действующие на него сила тяжести и сила упругости F?ynp нити взаимно компенсируются.

Выведем маятник из положения равновесия (отклонив его, например, в положение А) и отпустим без начальной скорости (рис. 1). В этом случае силы и не уравновешивают друг друга. Тангенциальная составляющая силы тяжести , действуя на маятник, сообщает ему тангенциальное ускорение a?? (составляющая полного ускорения, направленная вдоль касательной к траектории движения математического маятника), и маятник начинает двигаться к положению равновесия с возрастающей по модулю скоростью. Тангенциальная составляющая силы тяжести является, таким образом, возвращающей силой. Нормальная составляющая силы тяжести направлена вдоль нити против силы упругости . Равнодействующая сил и сообщает маятнику нормальное ускорение , которое изменяет при этом направление вектора скорости, и маятник движется по дуге ABCD.

Чем ближе подходит маятник к положению равновесия С, тем меньше становится значение тангенциальной составляющей . В положении равновесия она равна нулю, а скорость достигает максимального значения, и маятник движется по инерции дальше, поднимаясь по дуге вверх. При этом составляющая направлена против скорости. С увеличением угла отклонения а модуль силы увеличивается, а модуль скорости уменьшается, и в точке D скорость маятника становится равной нулю. Маятник на мгновение останавливается, а затем начинает двигаться в обратном направлении к положению равновесия. Вновь пройдя его по инерции, маятник, замедляя движение, дойдет до точки А (трение отсутствует), т.е. совершит полное колебание. После этого движение маятника будет повторяться в уже описанной последовательности.

Получим уравнение, описывающее свободные колебания математического маятника.

Пусть маятник в данный момент времени находится в точке В. Его смещение S от положения равновесия в этот момент равно длине дуги СВ (т.е. S = |СВ|). Обозначим длину нити подвеса l, а массу маятника - m.

Из рисунка 1 видно, что , где . При малых углах () отклонения маятника , поэтому

Знак минус в этой формуле ставят потому, что тангенциальная составляющая силы тяжести направлена к положению равновесия, а смещение отсчитывают от положения равновесия.

Согласно второму закону Ньютона . Спроецируем векторные величины этого уравнения на направление касательной к траектории движения математического маятника

Из этих уравнений получим

Динамическое уравнение движения математического маятника. Тангенциальное ускорение математического маятника пропорционально его смещению и направлено к положению равновесия. Это уравнение можно записать в видеa

Сравнивая его с уравнением гармонических колебаний , можно сделать вывод, что математический маятник совершает гармонические колебания. А так как рассмотренные колебания маятника происходили под действием только внутренних сил, то это были свободные колебания маятника. Следовательно, свободные колебания математического маятника при малых отклонениях являются гармоническими.

Обозначим

Циклическая частота колебаний маятника.

Период колебаний маятника . Следовательно,

Это выражение называют формулой Гюйгенса. Оно определяет период свободных колебаний математического маятника. Из формулы следует, что при малых углах отклонения от положения равновесия период колебаний математического маятника:

  1. не зависит от его массы и амплитуды колебаний;
  2. пропорционален корню квадратному из длины маятника и обратно пропорционален корню квадратному из ускорения свободного падения.

Это согласуется с экспериментальными законами малых колебаний математического маятника, которые были открыты Г. Галилеем.

Подчеркнем, что эту формулу можно использовать для расчета периода при одновременном выполнении двух условий:

  1. колебания маятника должны быть малыми;
  2. точка подвеса маятника должна покоиться или двигаться равномерно прямолинейно относительно инерциальной системы отсчета, в которой он находится.

Если точка подвеса математического маятника движется с ускорением то при этом изменяется сила натяжения нити, что приводит к изменению и возвращающей силы, а следовательно, частоты и периода колебаний. Как показывают расчеты, период колебаний маятника в этом случае можно рассчитать по формуле

где - "эффективное" ускорение маятника в неинерциальной системе отсчета. Оно равно геометрической сумме ускорения свободного падения и вектора, противоположного вектору , т.е. его можно рассчитать по формуле

Что собой представляет математический маятник?

Из предыдущих уроков вы уже должны знать, что под маятником, как правило, подразумевают тело, которое совершает колебания под действием гравитационного взаимодействия. То есть, можно сказать, что в физике, под этим понятием, принято считать твердое тело, которое под действием силы тяжести совершает колебательные движения, которые происходят вокруг неподвижной точки или оси.

Принцип действия математического маятника

А теперь давайте рассмотрим принцип действия математического маятника и узнаем, в чем он заключается.

Принципом действия математического маятника является то, что при отклонении от положения равновесия материальной точки на незначительный угол a, то есть такой угол, при котором бы выполнялось условие sina=a, то на тело будет действовать сила F = -mgsina = -mga.

Мы с вами видим, что сила F имеет отрицательный показатель, а из этого следует, что знак минус говорит нам о том, что данная сила направлена в ту сторону, которая является противоположной смещению. А так как сила F пропорциональна смещению S, то из этого следует, что под действием такой силы материальная точка будет совершать гармонические колебания.

Свойства маятника

Если взять любой другой маятник, то у него период колебаний зависит от очень многих факторов. К таким факторам можно отнести:

Во-первых, размер и форму тела;
Во-вторых, расстояние, которое существует между точкой подвеса и центром тяжести;
В-третьих, также и распределение массы тела относительно данной точки.

Вот в связи с этими различными обстоятельствами маятников, определить период висящего тела, довольно таки сложно.


А если брать математический маятник, то он обладает всеми теми свойствами, которые можно доказать с помощью известных физических законов и его период можно легко рассчитать с помощью формулы.

Проведя много различных наблюдений над такими механическими системами, физикам удалось определить такие закономерности, как:

Во-первых, период маятника не зависит от массы груза. То есть, если при одинаковой длине маятника, мы будем к нему подвешивать грузы, которые имеют разную массу, то период их колебаний все равно получится одинаковым, даже если их массы будут иметь довольно таки разительные отличия.

Во-вторых, если мы будем при запуске системы отклонять маятник на небольшие, но при этом разные углы, то его колебания будут иметь одинаковый период, но амплитуды будут разными. При небольших отклонениях от центра равновесия, колебания по своей форме будут иметь почти гармонический характер. То есть, можно сказать, что период такого маятника не зависит от амплитуды колебаний. В переводе с греческого языка такое свойство этой механической системы носит название изохронизма, где «изос» обозначает равный, ну, а «хронос» - это время.

Практическое использование колебаний маятника

Математический маятник для различных исследований используют физики, астрономы, геодезисты и другие научные работники. С помощью такого маятника занимаются поиском полезных ископаемых. Наблюдая за ускорением математического маятника и подсчитав число его колебаний можно найти залежи каменного угля и руды в недрах нашей Земли.

К. Фламмарион, знаменитый французский астроном и естествоиспытатель, утверждал, что с помощью математического маятника ему удалось совершить много важных открытий, среди которых появление Тунгусского метеорита и открытие новой планеты.

В наше время многие экстрасенсы и оккультисты используют такую механическую систему для поиска пропавших людей и пророческих предсказаний.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными . Колебаниями называют изменения физической величины, происходящие по определенному закону во времени. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник. Для существования в системе гармонических колебаний необходимо, чтобы у нее было положение устойчивого равновесия, то есть такое положение, при выведении из которого на систему начала бы действовать возвращающая сила.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными . Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными .

Простейшим видом колебательного процесса являются колебания, происходящие по закону синуса или косинуса, называемые гармоническими колебаниями . Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω 0 задаётся следующим образом:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний , которое имеет вид:

где: x – смещение тела от положение равновесия, A – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний (ω = 2Π /T ), t – время. Величина, стоящая под знаком косинуса: φ = ωt + φ 0 , называется фазой гармонического процесса. Смысл фазы колебаний: стадия, в которой колебание находится в данный момент времени. При t = 0 получаем, что φ = φ 0 , поэтому φ 0 называют начальной фазой (то есть той стадией, из которой начиналось колебание).

Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T . Если же количество колебаний N , а их время t , то период находится как:

Физическая величина, обратная периоду колебаний, называется частотой колебаний :

Частота колебаний ν показывает, сколько колебаний совершается за 1 с. Единица частоты – Герц (Гц). Частота колебаний связана с циклической частотой ω и периодом колебаний T соотношениями:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Максимальные по модулю значения скорости υ m = ωA достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = a x тела при гармонических колебаниях. Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Знак минус в предыдущем выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, возвращает тело в начальное положение (x = 0), т.е. заставляет тело совершать гармонические колебания.

Следует обратить внимание на то, что:

  • физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T .
  • Такие параметры процесса колебаний, как амплитуда A = x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени, т.е. начальными условиями.
  • При колебательном движении тело за время, равное периоду, проходит путь, равный 4 амплитудам. При этом тело возвращается в исходную точку, то есть перемещение тела будет равно нулю. Следовательно, путь равный амплитуде тело пройдет за время равное четверти периода.

Чтобы определить, когда в уравнение колебаний подставлять синус, а когда косинус, нужно обратить внимание на следующие факторы:

  • Проще всего, если в условии задачи колебания названы синусоидальными или косинусоидальными.
  • Если сказано, что тело толкнули из положения равновесия – берем синус с начальной фазой, равной нулю.
  • Если сказано, что тело отклонили и отпустили – косинус с начальной фазой, равной нулю.
  • Если тело толкнули из отклоненного от положения равновесия состояния, то начальная фаза не равна нолю, а брать можно и синус и косинус.

Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой, длинной и нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Только в случае малых колебаний математический маятник является гармоническим осциллятором , то есть системой, способной совершать гармонические (по закону sin или cos) колебания. Практически такое приближение справедливо для углов порядка 5–10°. Колебания маятника при больших амплитудах не являются гармоническими.

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Полученная формула называется формулой Гюйгенса и выполняется, когда точка подвеса маятника неподвижна . Важно запомнить, что период малых колебаний математического маятника не зависит от амплитуды колебаний. Такое свойство маятника называется изохронностью . Как и для любой другой системы, совершающей механические гармонические колебания, для математического маятника выполняются следующие соотношения:

  1. Путь от положения равновесия до крайней точки (или обратно) проходится за четверть периода.
  2. Путь от крайней точки до половины амплитуды (или обратно) проходится за одну шестую периода.
  3. Путь от положения равновесия до половины амплитуды (или обратно) проходится за одну двенадцатую долю периода.

Пружинный маятник

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению. Таким свойством обладает сила упругости.

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно, составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют пружинным маятником .

Циклическая частота колебаний пружинного маятника рассчитывается по формуле:

Период колебаний пружинного маятника:

При малых амплитудах период колебаний пружинного маятника не зависит от амплитуды (как и у математического маятника). При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную:

А колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω 0 и периода колебаний T справедливы и в этом случае. Таким образом, полученная формула для периода колебаний груза на пружине остается справедливой во всех случаях, независимо от направления колебаний, движения опоры, действия внешних постоянных сил.

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а, следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругой деформации пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией (как правило, потенциальную энергию в положении равновесия полагают равной нулю). Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и так далее.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. При этом, максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса (полная механическая энергия равна максимальным значениям кинетической и потенциальной энергий, а также сумме кинетической и потенциальной энергий в произвольный момент времени):

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной . Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной .

Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют немеханические волны, которые способны распространяться и в пустоте (например, световые, т.е. электромагнитные волны могут распространяться в вакууме).

  • Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.
  • Поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой ν и длиной волны λ . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ .

Длиной волны λ называют расстояние между двумя соседними точками, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ , волна пробегает за время равное периоду T , следовательно, длина волны может быть рассчитана по формуле:

где: υ – скорость распространения волны. При переходе волны из одной среды в другую длина волны и скорость ее распространения меняются. Неизменными остаются только частота и период волны.

Разность фаз колебаний двух точек волны, расстояние между которыми l рассчитывается по формуле:

Электрический контур

В электрических цепях, так же, как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный LC-контур . В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими. Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Все реальные контура содержат электрическое сопротивление R . Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в теплоту, выделяющуюся на резисторе, и колебания становятся затухающими.

Переменный ток. Трансформатор

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими синусоидальное напряжение. Они позволяют наиболее просто и экономно осуществлять передачу, распределение и использование электрической энергии.

Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока . Он характеризуется переменным напряжением U (t ) (индуцированной ЭДС) на его клеммах. В основу работы генератора переменного тока положено явление электромагнитной индукции.

Переменным током называется электрический ток, который изменяется с течением времени по гармоническому закону. Величины U 0 , I 0 = U 0 /R называются амплитудными значениями напряжения и силы тока. Значения напряжения U (t ) и силы тока I (t ), зависящие от времени, называют мгновенными .

Переменный ток характеризуется действующими значениями силы тока и напряжения. Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы в единицу времени такое же количество теплоты, что и данный переменный ток. Для переменного тока действующее значение силы тока может быть рассчитано по формуле:

Аналогично можно ввести действующее (эффективное) значение и для напряжения , рассчитываемое по формуле:

Таким образом, выражения для мощности постоянного тока остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Обратите внимание, что если идет речь о напряжении или силе переменного тока, то (если не сказано иного) имеется в виду именно действующее значение. Так, 220В – это действующее напряжение в домашней электросети.

Конденсатор в цепи переменного тока

Строго говоря, конденсатор ток не проводит (в том смысле, что носители заряда через него не протекают). Поэтому, если конденсатор подключен в цепь постоянного тока, то сила тока в любой момент времени в любой точке цепи равна нулю. При подключении в цепь переменного тока из-за постоянного изменения ЭДС конденсатор перезаряжается. Ток через него по-прежнему не течет, но ток в цепи существует. Поэтому условно говорят, что конденсатор проводит переменный ток. В этом случае вводится понятие сопротивления конденсатора в цепи переменного тока (или емкостного сопротивления

Обратите внимание, что емкостное сопротивление зависит от частоты переменного тока. Оно в корне отличается от привычного нам сопротивления R. Так, на сопротивлении R выделяется теплота (поэтому его часто называют активным), а на емкостном сопротивлении теплота не выделяется. Активное сопротивление связано со взаимодействием носителей заряда при протекании тока, а емкостное – с процессами перезарядки конденсатора.

Катушка индуктивности в цепи переменного тока

При протекании переменного тока в катушке возникает явление самоиндукции, и, следовательно, ЭДС. Из-за этого напряжение и сила тока в катушке не совпадают по фазе (когда сила тока равна нулю, напряжение имеет максимальное значение и наоборот). Из-за такого несовпадения средняя тепловая мощность, выделяющаяся в катушке, равна нулю. В этом случае вводится понятие сопротивления катушки в цепи переменного тока (или индуктивного сопротивления ). Это сопротивление определяется выражением:

Обратите внимание, что индуктивное сопротивление зависит от частоты переменного тока. Как и емкостное сопротивление, оно отличается от сопротивления R. Как и на емкостном сопротивлении, на индуктивном сопротивлении теплота не выделяется. Индуктивное сопротивление связано с явлением самоиндукции в катушке.

Трансформаторы

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы . Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная . Первичная обмотка подсоединяется к источнику переменного тока с некоторым напряжением U 1 , а вторичная обмотка подключается к нагрузке, на которой появляется напряжение U 2 . При этом, если число витков в первичной обмотке равно n 1 , а во вторичной n 2 , то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Электромагнитные волны

Электромагнитные волны – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Электромагнитные волны распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м. Скорость электромагнитных волн в вакууме (где ε = μ = 1) постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Если электромагнитная волна распространяется в какой-либо среде, то скорость ее распространения также выражается следующим соотношением:

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

  • Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.
  • Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. А вот цепи, в которых протекает переменный ток, т.е. такие цепи в которых носители заряда постоянно меняют направление своего движения, т.е. двигаются с ускорением – являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Колебательное движение - периодическое или почти периодическое движение тела, координата, скорость и ускорение которого через равные промежутки времени принимают примерно одинаковые значения.

Механические колебания возникают тогда, когда при выводе тела из положения равновесия появляется сила, стремящаяся вернуть тело обратно.

Смещение х - отклонение тела от положения равновесия.

Амплитуда А - модуль максимального смещения тела.

Период колебания Т - время одного колебания:

Частота колебания

Число колебаний, совершаемых телом за единицу времени: При колебаниях скорость и ускорение периодически изменяются. В положении равновесия скорость максимальна, ускорение равно нулю. В точках максимального смещения ускорение достигает максимума, скорость обращается в нуль.

ГРАФИК ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Гармоническими называются колебания, происходящие по закону синуса или косинуса:

где x(t) - смещение системы в момент t, A - амплитуда, ω - циклическая частота колебаний.

Если по вертикальной оси откладывать отклонение тела от положения равновесия, а по горизонтальной - время, то получится график колебания х = x(t) - зависимость смещения тела от времени. При свободных гармонических колебаниях - это синусоида или косинусоида. На рисунке представлены графики зависимости смещения х, проекций скорости V х и ускорения а х от времени.

Как видно из графиков, при максимальном смещении х скорость V колеблющегося тела равна нулю, ускорение а, а значит и действующая на тело сила, максимальны и направлены противоположно смещению. В положении равновесия смещение и ускорение обращаются в нуль, скорость максимальна. Проекция ускорения всегда имеет знак, противоположный смещению.

ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Полная механическая энергия колеблющегося тела равна сумме его кинетической и потенциальной энергий и при отсутствии трения остается постоянной:

В момент, когда смещение достигает максимума х = А, скорость, а вместе с ней и кинетическая энергия, обращаются в нуль.

При этом полная энергия равна потенциальной энергии:

Полная механическая энергия колеблющегося тела пропорциональна квадрату амплитуды его колебаний.

Когда система проходит положение равновесия, смещение и потенциальная энергия равны нулю: х = 0, Е п = 0. Поэтому полная энергия равна кинетической:

Полная механическая энергия колеблющегося тела пропорциональна квадрату его скорости в положении равновесия. Следовательно:

МАТЕМАТИЧЕСКИЙ МАЯТНИК

1. Математический маятник - это материальная точка, подвешенная на невесомой нерастяжимой нити.

В положении равновесия сила тяжести компенсируется силой натяжения нити. Если маятник отклонить и отпустить, то силы и перестанут компенсировать друг друга, и возникнет результирующая сила , направленная к положению равновесия. Второй закон Ньютона:

При малых колебаниях, когда смещение х много меньше l, материальная точка будет двигаться практически вдоль горизонтальной оси х. Тогда из треугольника МАВ получаем:

Так как sin a = х/l , то проекция результирующей силы R на ось х равна

Знак "минус" показывает, что сила R всегда направлена против смещения х.

2. Итак, при колебаниях математического маятника, так же как и при колебаниях пружинного маятника, возвращающая сила пропорциональна смещению и направлена в противоположную сторону.

Сравним выражения для возвращающей силы математического и пружинного маятников:

Видно, что mg/l является аналогом k. Заменяя, k на mg/l в формуле для периода пружинного маятника

получаем формулу для периода математического маятника:

Период малых колебаний математического маятника не зависит от амплитуды.

Математический маятник используют для измерения времени, определения ускорения свободного падения в данном месте земной поверхности.

Свободные колебания математического маятника при малых углах отклонения являются гармоническими. Они происходят благодаря равнодействующей силы тяжести и силы натяжения нити, а также инерции груза. Равнодействующая этих сил является возвращающей силой.

Пример. Определите ускорение свободного падения на планете, где маятник длиной 6,25 м имеет период свободных колебаний 3,14 с.

Период колебаний математического маятника зависит от длины нити и ускорения свободного падения:

Возведя обе части равенства в квадрат, получаем:

Ответ: ускорение свободного падения равно 25 м/с 2 .

Задачи и тесты по теме "Тема 4. "Механика. Колебания и волны"."

  • Поперечные и продольные волны. Длина волны

    Уроков: 3 Заданий: 9 Тестов: 1

  • Звуковые волны. Скорость звука - Механические колебания и волны. Звук 9 класс