Где применяют гальванический элемент. Батареи гальванические

Гальванический элемент - это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, названный в честь итальянского учёного Луиджи Гальвани.

Позднее учёный собрал батарею из медно-цинковых элементов, которая впоследствии была названа Вольтовым столбом (см. рисунок). Он представлял собой несколько десяткой цинковых и медных кружков, сложенных попарно и разделённых сукном, пропитанным кислотой. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал гигантскую батарею из 2100 элементов, которая создавала напряжение около 2500 вольт и использовалась для получения мощной электрической дуги, которая создавала столь высокую температуру, что могла плавить металлы.

Существуют гальванические элементы и других конструкций. Рассмотрим ещё один медно-цинковый гальванический элемент, но работающий за счет энергии химической реакции между цинком и раствором сульфата меди (элемент Якоби-Даниэля). Этот элемент состоит из медной пластины, погруженной в раствор сульфата меди, и цинковой пластины, погруженной в раствор сульфата цинка (см. рисунок). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой-мембраной, изготовленной из пористого материала.

Ещё одна разновидность гальванических элементов - так называемые «сухие» марганец-цинковые элементы Лекланше (см. рисунок). Вместо жидкого электролита в таком элементе используется гелеобразная паста из нашатыря и крахмала. Чтобы влага испарялась как можно меньше, верх такого элемента заливается воском или смолой с небольшим отверстием для выхода газов. Обычно элементы Лекланше изготавливаются в цилиндрических стаканчиках, которые одновременно служат и отрицательным электродом и сосудом.
Все химические источники тока (гальванические элементы и батареи из них) делятся на две группы - первичные (одноразовые) и вторичные (многоразовые или обратимые). В первичных источниках тока (в просторечии - батарейках) химические процессы протекают необратимо, поэтому их заряд нельзя восстановить. К вторичным химическим источникам тока относят аккумуляторы, их заряд можно восстановить. Для широко распространённых аккумуляторов цикл заряд-разряд можно повторять около 1000 раз.

Батарейки имеют различное напряжение и ёмкость. К примеру, традиционные щелочные батарейки имеют номинальное напряжение около 1,5 В, а более современные литиевые - около 3 В. Электрическая ёмкость зависит от множества факторов: количества элементов в батарее, уровня зарядки, температуры окружающей среды, тока отсечки (при котором устройство не работает даже при имеющемся заряде). Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления.
Количество электричества (заряд) в батарейках измеряется в ампер-часах. Например, если заряд батарейки равен 1 ампер-часу, а электрический прибор, который она питает, требует тока 200 мА, то срок действия батарейки вычислится так: 1 А·ч / 0,2 А = 5 часов.
Благодаря техническому прогрессу увеличилось разнообразие миниатюрных устройств, работающих от батареек. Для многих из них потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур. На сегодняшний день самыми передовыми являются литий-ионные источники тока. Потенциал данной технологии ещё не раскрыт полностью, но ближайшие перспективы связаны с ними.

Особую ценность в технике представляют никель-кадмиевые аккумуляторы, изобретённые еще в 1899 году шведским учёным В.Юнгнером. Но только к середине XX века инженеры пришли к почти современной схеме таких герметичных аккумуляторов. Благодаря компактности и автономности, аккумуляторные батареи используются в автомобилях, поездах, компьютерах, телефонах, фотоаппаратах, видеокамерах, калькуляторах и др.
Основными характеристиками аккумулятора являются ёмкость и предельная сила тока. Ёмкость батареи в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 80 мА в течение 10 часов, то ёмкость: 80 мА · 10 ч = 800 мА·ч (или, в международных обозначениях 800 mAh, см. рисунок).

Кузнецова Алла Викторовна (г. Самара)

Гальванические элементы. Гальванические элементы являются первичными химическими источниками тока (ХИТ), в которых используются необратимые процессы преобразования химической энергии в электрическую. Они широко применяются в качестве источников питания постоянным током малогабаритной и переносной радиоаппаратуры.

При параллельном соединении элементов емкость батареи равна сумме емкостей элементов, входящих в нее, а при последовательном соединении – наименьшей емкости элемента, входящего в нее.

Емкость элемент а – количество электричества, отдаваемое элементом при разряде и определяемое в ампер-часах.

Широко применяются марганцово-цинковые элементы и ртутно-цинковые.

Аккумуляторы. Аккумуляторы, как и гальванические элементы, относятся к устройствам непосредственного преобразования химической энергии в электрическую. В отличие от гальванических элементов аккумуляторы способны восстанавливать свою работоспособность по отдаче электрической энергии приемникам путем их заряда от постороннего источника электрической энергии. Поэтому аккумулятором называют прибор многократного действия, способный накапливать и сохранять в течение некоторого времени электрическую энергию. Он является вторичным химическим источником тока. Запас химической энергии в нем создается во время заряда от постороннего источника. Во время заряда аккумулятора материалы, входящие в его состав, преобразуются в такое состояние, при котором они могут вступать между собой в химическую реакцию с выделением электрической энергии. Таким образом, аккумуляторы накапливают электрическую энергию при их заряде и расходуют ее при разряде.

Аккумуляторы характеризуются следующими основными параметрами.

ЭДС аккумулятора Е, которая зависит от состава активной массы пластин, от температуры и концентрации (плотности) электролита. Измерение ЭДС аккумулятора производится вольтметром с большим входным сопротивлением (больше 1000 Ом/В). Поскольку ЭДС заряженного и частично разряженного аккумулятора может быть одинаковой, то по значению ЭДС судить о степени разряженности аккумулятора нельзя.

Напряжение аккумулятора – разность потенциалов между положительной и отрицательной пластинами при включенной нагрузке. Напряжение при заряде U З = Е + I З r 0 , а при разряде U Р = Е - I Р r 0 ,

где I З, I Р – токи заряда, разряда в А; r 0 – внутреннее сопротивление аккумулятора, Ом (оно определяется конструкцией электродов, плотностью электролита, степенью разряженности аккумулятора, окружающей температурой).

Номинальная емкость аккумулятора – это количество электричества в Ач, которое он может отдать при десятичасовом режиме разряда, неизменном токе и температуре электролита +25 о С. Величина тока 10-часового режима разряда равна частному от деления номинальной емкости (С 10) на 10.

Аккумуляторы способны саморазряжаться , т.е. уменьшать свою емкость при разомкнутой цепи нагрузки. Интенсивность саморазряда зависит от температуры окружающей среды, состава электролита и материала электродов.

В зависимости от состава электролита аккумуляторы бывают кислотными и щелочными.

Кислотные аккумуляторы . В корпусе (из эбонита или пластмассы) помещаются положительные и отрицательные электроды, смонтированные в блоки. Активной массой положительной пластины является двуокись свинца (РвО 2), а отрицательной – свинец (Рв). Электролитом является водный раствор серной кислоты. Номинальное напряжение кислотного аккумулятора равно 2,0 В. При заряде напряжение доводится до 2,6 – 2,8 В. В начале разряда напряжение быстро снижается до 2,2 В. Следует помнить, что разряжать кислотный аккумулятор ниже 1,8 В нельзя, так как в этом случае на отрицательных пластинах образуется трудно растворимый белый налет (происходит сульфатация аккумулятора). Для предохранения аккумулятора от сульфатации его рекомендуется заряжать каждые 30 дней, независимо от оставшейся емкости.

Недостатки кислотных аккумуляторов: сложность ухода и небольшая прочность, повышенная чувствительность к коротким замыканиям и перегрузкам, нельзя их помещать внутри РЭУ (испарения портят детали).

Промышленностью выпускаются кислотные аккумуляторы типа СК с номинальной емкостью от 36 до 5328 Ач, например СК-148 (если это число 148 умножить на 36, то получится номинальная емкость 5328 Ач).

Щелочные аккумуляторы . Они просты в обслуживании, их можно быстрее зарядить (4 – 7 ч вместо 10 – 12 ч для кислотных), можно располагать внутри РЭУ без вреда для них. Наиболее часто применяются щелочные аккумуляторы никель-кадмиевые (НК), никель-железные (НЖ) и серебряно-цинковые (СЦ). В качестве электролита применяют водный раствор едкого калия.

У щелочных аккумуляторов ЭДС равна 1,5 В (в разряженном аккумуляторе Е = 1,3 В). Средняя плотность электролита у щелочных аккумуляторов в процессе заряда и разряда примерно постоянная. Поэтому их состояние характеризуется в основном значением ЭДС.

Щелочные аккумуляторы выпускаются заводом без электролита. При приготовлении электролита необходимо соблюдать особую осторожность, так как при смешении едкого калия с водой выделяется большое количество тепла. Твердую щелочь разбивают на небольшие куски, накрыв при этом ее материалом, чтобы осколки не попали в глаза и на кожу. Щелочь опускают в воду кусочками, непрерывно помешивая раствор стеклянной или стальной палочкой.

Для того чтобы составить схему гальванического элемента, необходимо понять принцип его действий, особенности строения.

Потребители редко обращают внимание на аккумуляторы и батарейки, при этом именно эти источники тока являются самыми востребованными.

Химические источники тока

Что собой представляет гальванический элемент? Схема его основывается на электролите. В устройство входит небольшой контейнер, где располагается электролит, адсорбируемый материалом сепаратора. Кроме того, схема двух гальванических элементов предполагает наличие Как называется такой гальванический элемент? Схема, связывающая между собой два металла, предполагает наличие окислительно-восстановительной реакции.

Простейший гальванический элемент

Он подразумевает наличие двух пластин либо стержней, выполненных из разных металлов, которые погружены в раствор сильного электролита. В процессе работы данного гальванического элемента, на аноде осуществляется процесс окисления, связанный с отдачей электронов.

На катоде - восстановление, сопровождающееся принятием отрицательных частиц. Происходит передача электронов по внешней цепи к окислителю от восстановителя.

Пример гальванического элемента

Для того чтобы составить электронные схемы гальванических элементов, необходимо знать величину их стандартного электродного потенциала. Проанализируем вариант медно-цинкового гальванического элемента, функционирующего на основе энергии, выделяющейся при взаимодействии сульфата меди с цинком.

Этот гальванический элемент, схема которого будет приведена ниже, называют элементом Якоби-Даниэля. Он включает в себя которая погружена в раствор медного купороса (медный электрод), а также он состоит из цинковой пластины, находящейся в растворе его сульфата (цинковый электрод). Растворы соприкасаются между собой, но для того, чтобы не допускать их смешивания, в элементе используется перегородка, выполненная из пористого материала.

Принцип действия

Как функционирует гальванический элемент, схема которого имеет вид Zn ½ ZnSO4 ½½ CuSO4 ½ Cu? Во время его работы, когда замкнута электрическая цепь, происходит процесс окисления металлического цинка.

На его поверхности соприкосновения с раствором соли наблюдается превращение атомов в катионы Zn2+. Процесс сопровождается выделением «свободных» электронов, которые передвигаются по внешней цепи.

Реакцию, протекающую на цинковом электроде, можно представить в следующем виде:

Восстановление катионов металла осуществляется на медном электроде. Отрицательные частицы, которые попадают сюда с цинкового электрода, объединяются с катионами меди, осаждая их в виде металла. Данный процесс имеет следующий вид:

Если сложить две реакции, рассмотренные выше, получается суммарное уравнение, описывающее работы цинково-медного гальванического элемента.

В качестве анода выступает цинковый электрод, катодом служит медь. Современные гальванические элементы и аккумуляторы предполагают применение одного раствора электролита, что расширяет сферы их применения, делает их эксплуатацию более комфортной и удобной.

Разновидности гальванических элементов

Самыми распространенными считают угольно-цинковые элементы. В них применяется пассивный угольный коллектор тока, контактирующий с анодом, в качестве которого выступает оксид марганца (4). Электролитом является хлорид аммония, применяемый в пастообразном виде.

Он не растекается, поэтому сам гальванический элемент называют сухим. Его особенностью является возможность «восстанавливаться» на протяжении работы, что позитивно отражается на продолжительности их эксплуатационного периода. Такие гальванические элементы имеют невысокую стоимость, но невысокую мощность. При понижении температуры они снижают свою эффективность, а при ее повышении происходит постепенное высыхание электролита.

Щелочные элементы предполагают использование раствора щелочи, поэтому имеют довольно много областей применения.

В литиевых элементах в качестве анода выступает активный металл, что позитивно отражается на сроке эксплуатации. Литий имеет отрицательный поэтому при небольших габаритах подобные элементы имеют максимальное номинальное напряжение. Среди недостатков подобных систем можно выделить высокую цену. Вскрытие литиевых источников тока является взрывоопасным.

Заключение

Принцип работы любого гальванического элемента основывается на окислительно-восстановительных процессах, протекающих на катоде и аноде. В зависимости от используемого металла, выбранного раствора электролита, меняется срок службы элемента, а также величина номинального напряжения. В настоящее время востребованы литиевые, кадмиевые гальванические элементы, имеющие достаточно продолжительный срок своей службы.

БАТАРЕИ ГАЛЬВАНИЧЕСКИЕ - группы электрически соединенных между собой гальванических элементов, которые вырабатывают электроэнергию за счет хим. реакции, происходящей между активными материалами электродов. В батареи гальванической чаще всего используются гальванические элементы, у которых положительный электрод изготовлен из смеси двуокиси марганца и графита, а отрицательный - из цинка. В качестве электролита обычно используется раствор хлористого аммония (нашатыря) и других хлористых солей. Такие элементы называются марганцево-цинковыми.

Рис. 1. Сухой элемент стаканчикового типа: 1 - отрицательный электрод (цинк), 2 - картонный футляр, 3 -токоотводы, 4 - колпачок, 5 - положительный электрод, 6 - слой электролита (пасты), 7 - смола, 8 - картонная шайба, 9 - изоляционная прокладка, 10 - стеклянная трубка (газоотвод)

Иногда в состав положительного электрода, кроме двуокиси марганца и графита, добавляется активированный уголь, который поглощает кислород из окружающей атмосферы, чем позволяет использовать его в хим. реакции. Такие элементы называются марганцево - воздушно - цинковыми. Они отличаются большей емкостью и меньшей себестоимостью. Для специальных целей применяются угольно - цинковые и железо - угольные наливные элементы, обладающие большим постоянством напряжения. Ввиду неудобства эксплуатации наливных элементов с жидким электролитом последний при помощи муки, крахмала, картона или других наполнителей переводится в вязкое состояние, благодаря чему он теряет свою текучесть и не выливается из элемента при любом положении. Такие элементы получили название сухих.

Различают два основных типа сухих элементов: стаканчиковый и галетный. У стаканчикового элемента (рис. 1) отрицательный электрод (цинковый полюс) выполнен в виде цилиндрического цельнотянутого или имеющего продольный шов (паяный, сварной, вальцованный) прямоугольного стакана. Положительный электрод представляет собой цилиндр или призму, напрессованную на угольный стержень, служащий токоотводом. Положительный электрод помещается внутри отрицательного, а пространство между ними заполняется сгущенным электролитом. У галетного элемента (рис.2) электроды имеют вид пластинок, которые разделены пропитанной электролитом картонной диафрагмой. Все детали стянуты упругим винилхлоридным ободом (кольцом). Токоотводом служит непроницаемый для электролита слой электропроводной массы, нанесенный на внешнюю сторону цинкового электрода. Марганцево - воздушно - цинковые элементы выпускаются только стаканчикового типа.

Рис. 2. Сухой элемент галетного типа: 1 - отрицательный электрод (цинк) с электропроводным слоем, 2 - положительный электрод, 3 - картонные диафрагмы, пропитанные электролитом, 4 - бумага обертки положительного электрода, 5 - хлорвиниловое кольцо

Основными показателями элемента являются его электродвижущая сила (э. д. с.) и напряжение, величина которых измеряется вольтметром (см.), в первом случае - при отсутствии нагрузочного сопротивления, во втором - при подключении обусловленного стандартом нагрузочного сопротивления. Э. д. с. марганцево - цинковых элементов колеблется от 1,5 до 1,8 В, э. д. с. марганцево - воздушно - цинковых элементов равна 1,4 В. Величина напряжения элемента всегда меньше э. д. с., разница между ними возрастает с уменьшением нагрузочного сопротивления. Важнейшими параметрами батарей гальванических являются также количество отдаваемой ими электроэнергии и способность сохранять ее на протяжении длительного времени (сохранность). Количество отдаваемой энергии измеряется либо продолжительностью работы элемента в часах, либо его электрической емкостью в а - час. Поскольку напряжение элемента при разряде падает, то в техн. документации всегда оговаривается нижний предел напряжения (конечное напряжение), определяющий нижнюю границу его работоспособности. При заданном конечном напряжении электрическая емкость элемента, а значит и продолжительность его работы зависят также от темп-ры и величины нагрузочного сопротивления (см. табл. 1), а также периодичности разряда.

Емкость батарей гальванических увеличивается с увеличением нагрузочного сопротивления и повышением темп-ры. Наиболее низкая темп-ра, при которой возможна работа элементов: для марганцево-цинковых -20°, для марганцево - воздушно - цинковых -5°. Периодичность разряда характеризуется чередованием и длительностью периодов разряда и отдыха элемента. Как правило, марганцево - цинковые элементы при прерывистом разряде отдают большую емкость, чем при непрерывном, а марганцево - воздушно - цинковые элементы, наоборот, меньшую.

Сохранностью батарей гальванических (элемента) называется срок от момента изготовления до начала эксплуатации, в продолжении которого изделие сохраняет свою работоспособность. Величина остающейся емкости (или продолжительности работы) оговаривается стандартом и обычно составляет 60-75% первоначальной.

Срок сохранности, указываемый на этикетке, является минимальным и почти всегда батареи гальванические и элементы могут быть использованы еще в течение некоторого времени. Годность их в этом случае определяется по напряжению.

Соединение элементов в батареи гальванические может быть последовательное, параллельное и смешанное. При последовательном соединении положительный полюс одного элемента присоединяется к отрицательному полюсу последующего элемента и т. д. (рис.3).

Рис. 3. Схема последовательного соединения элементов

Рис. 4. Схема параллельного соединения элементов батареи

Рис. 5. Смешанное соединение элементов батареи

Такое соединение элементов применяется для создания более высокого напряжения батареи гальванической, которое в этом случае прямо пропорционально числу последовательно соединенных элементов. Емкость батареи гальванической при этом не изменяется и равна емкости отдельного элемента. Параллельное соединение осуществляется путем соединения между собой, с одной стороны, всех положительных полюсов элементов, с другой - отрицательных (рис. 4). При этом возрастает емкость батареи гальванической, а напряжение ее остается равным напряжению отдельного элемента. При смешанном соединении применяются оба указанных выше способа: собирается несколько одинаковых групп с последовательным соединением элементов, которые соединяются между собой параллельно (рис. 5). При этом возрастают соответственно и напряжение и емкость.

В зависимости от назначения батареи гальванической подразделяются на анодные, сеточные, накальные и фонарные.

Анодные батареи гальванические (рис. 6) предназначаются для питания анодных цепей радиоприемников.

Рис. 6. Батарея БС-Г-70

Их напряжение сравнительно высоко - от 60 до 120 В. Используются они для небольшого тока - от 3 до 12 ма. Обычно эти батареи гальванические имеют дополнительные токоотводы в виде гнезда в панели или мягких проводов, которые позволяют использовать сначала часть батареи гальванической и подключать остальную ее часть по мере падения напряжения. Этот режим носит название секционного разряда и позволяет в известных пределах увеличить продолжительность службы батареи гальванической.

Сеточные батареи гальванические предназначаются для создания напряжения смещения на сетках радиоламп.

Рис. 7. Батарея БСГ-60-С-8

В них применяется последовательное соединение. Напряжение от 4,5 до 12,0 В. Расход тока не превышает 3 ма. Монтируются в одном футляре с батареями гальваническими анодными (рис. 7) и составляются из одинаковых с ними элементов.

Накальные батареи гальванические (рис. 8) предназначены для питания накальных нитей радиоламп.

Рис. 8. Батарея БНС-МВД-500

Для стационарных батарейных радиоприемников ("Родина", "Искра" и т. п.) накальные батареи гальванические с целью создания большей емкости составляются из четырех параллельно соединенных марганцево - воздушно - цинковых элементов большого размера. Напряжение их равно напряжению одного элемента, а расход тока от 0,3 до 0,5 а. В накальных батареях гальванических переносных батарейных радиоприемников применяется параллельное и смешанное соединение небольших элементов. Для батарейного радиоприемника "Тула" пром-стью выпускается комплект питания, в специальном футляре, состоящий из анодной и накальной батареи гальванической (рис. 9).

Рис. 9. Комплект - питания для радиоприемника "Тула"

Фонарные батареи гальванические предназначаются для питания лампочек карманных фонарей. Они характеризуются большим расходом тока (от 150 до 280 а) при небольшом напряжении (3,0- 4,5 в) и малыми габаритами. Наибольшее распространение получили батареи гальванические типа КБС-Л-0,50 (рис. 10), состоящие из трех последовательно соединенных элементов. Для фонарей круглого сечения и измерительных приборов (омметров, авометров и т. п.) пром-стью выпускаются элементы цилиндрической формы типа ФБС, последовательное соединение между которыми при необходимости осуществляется непосредственно при вложении их в корпус фонаря (прибора).

Рис. 10. Батарея для карманного фонаря КБС-Л-0,50

Условные обозначения элементов обычно состоят из четырех частей. Начальная цифра указывает габариты (в мм): №2 - 40х40х100, №3-55x55x130, № 6 - 80x80x175; буквы - С - сухой, Л - летний, X - хладостойкий; следующие затем цифры указывают емкость элемента. Так, 3С-Л-30 означает: элемент № 3, сухой, летний, емкостью 30 а-час. Наименование батарей гальванических, начинающееся с буквенных обозначений, состоит из 4-5 частей, имеющих следующие значения: Б - батарея, А - анодная, Н - накальная, С - сухая, Г - галетная, Ф - фонарная, К - карманная. Число после букв у анодных батарей гальванических показывает напряжение, у накальных - емкость. Однако иногда в обозначении батарей гальванических анодных буква А опускается, а в конце обозначения добавляется второй численный показатель - емкость батареи гальванической. Наименования батарей гальванических, начинающиеся с цифр, имеют следующие значения: начальная цифра обозначает напряжение, конечная - емкость, буквы: МЦ - марганцевоцинковая система, В - указывает на использование кислорода воздуха, Н - накальная, А - анодная, Т - телефонная, С - для слуховых аппаратов, П - панель. Батареям гальваническим, предназначенным для питания радиоприемников, кроме того, даны товарные наименования. Маркируются батареи гальванические путем наклейки этикетки с указанием: наименования или товарного знака предприятия - изготовителя, условного обозначения батарей гальванических, номинального напряжения, начальной емкости, гарантийного срока хранения и емкости в конце срока хранения.

Годность батарей гальванических и элементов определяется внешним осмотром и замерением напряжения на токоотводах. При осмотре следует убедиться в целости токоотводов и отсутствии наружных дефектов: поломок, разрушения заливочной смолки (мастики), повреждений и промокания футляра. Напряжение проверяется вольтметром; оно не должно быть ниже величин, указанных в табл. 2. Батареи гальванические упаковываются в деревянные ящики весом брутто 65-80 кг, выложенные внутри влагонепроницаемой бумагой, и отделяются от их стенок слоем сухой стружки или другого упаковочного материала. Батареи гальванические необходимо хранить в сухом и прохладном месте. Повышенная влажность в помещении для хранения, как и повышенная темп-ра, резко снижают срок их сохранности. Низкая темп-ра не опасна для батарей гальванических: после отогревания они полностью восстанавливают свои свойства. Батареи гальванические изготовляются предприятиями Главаккумуляторпрома Министерства электротехнической промышленности СССР.

Лит.: Сочеванов В.Г., Гальванические элементы, М., 1951; Морозов ГГ. и Гантмав С.А., Химические источники тока для питания средств связи, М., 1949; Сводный каталог на химические источники тока, М., 1950.

Гальванический элемент

Схема гальванического элемента Даниэля-Якоби

Гальвани́ческий элеме́нт - , основанный на взаимодействии двух металлов и (или) их оксидов в электролите , приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани .

Явление возникновения электрического тока при контакте разных металлов было открыто итальянским физиологом , профессором медицины Болонского университета Луиджи Гальвани в 1786 году. Гальвани описал сокращения мышц задних лапок свежепрепарированной лягушки, закрепленных на медных крючках, при прикосновении стального скальпеля . Наблюдения были истолкованы первооткрывателем как проявление «животного электричества».

Электрохимические генераторы (топливные элементы) - это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента электродые не расходуются. Восстановителем является водород (H 2), метанол (CH 3 OH), метан (CH 4) в жидком или газообразном состоянии. Окислителем обычно является кислород воздуха или чистый. В кислородно-водородном топливном элементе со щелочным электролитом происходит превращение химической энергии в электрическую. Энергоустановки применяются на космических кораблях, они обеспечивают энергией космический корабль и космонавтов.

Применение

  • Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.
  • Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.
  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

См. также

Литература

  • Ахметов Н.С. Общая и неорганическая химия
  • Аксенович Л. А. Физика в средней школе: Теория. Задания.

Ссылки