Излучение цезия. Применение цезия в энергетике и космосе. Распространение цезия в природе

Цезий входит в группу химических элементов с ограниченными запасамивместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены. Сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом и настоящем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы цезиевых руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу, и положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения). Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Месторождения

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Ежегодное производство цезия в мире составляет около 20 тонн.

Геохимия и минералогия

Среднее содержание цезия в земной коре 3,7 г/т. Наблюдается некоторое увеличение содержание цезия от ультраосновных пород (0,1 г/т) к кислым (5 г/т). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах. Постоянно повышенные количества цезия наблюдаются в воробьевите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 400 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связанны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т. Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет ок. 0,5 мкг/л. Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)·nH2O (22 — 36 % Cs2O), цезиевый берилл (воробьевит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия.

Получение цезия

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.
При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.
В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская компания. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:
нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
разложением азида цезия в вакууме;
нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Химические свойства

Цезий является наиболее химически активным металлом, полученным в макроскопических количествах (так как активность щелочных металлов растёт с порядковым номером, то франций, вероятно, ещё более активен, но в макроскопических количествах не получен, так как все его изотопы имеют малый период полураспада). Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, иодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Если бы писателю-беллетристу пришлось заняться «биографией» цезия, то он, может быть, начал так: «Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь - от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к трудовой семье щелочных металлов, но в жилах его течет голубая кровь последнего в роде... Впрочем, это нисколько не мешает ему общаться с другими элементами и даже, если они не столь знамениты, он охотно вступает с ними в контакты и завязывает прочные связи.

В настоящее время работает одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях...».
Не принимая всерьез шутливого тона и некоторых явно литературных преувеличений, это жизнеописание можно смело принять за «роман без вранья». Не беспредметен разговор о «голубой крови» цезия - впервые он был обнаружен по двум ярким линиям в синей области спектра и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов . Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды. Наконец, правда и то, что цезий применяется в некоторых важнейших областях современной техники и науки.

Распространенность цезия в природе

В литературе нет точных данных о том, сколько цезия имеется на земном шаре. Известно лишь, что он относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем рубидия, и не превышает 7 10~4%.
Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы - поллуцит , авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (R20 ^АЬОз-ЗВЮз, где R20- сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (К, Cs) тоже редок, да и поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют поллуциты CHIA (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.).

Поллуциты - это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) -гаН20, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами - плавиковой или соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия - щелочных металлов: калия, натрия и Рубидия.
Современные методы извлечения цезия из поллуцитов основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавиколого шпата. Если вести процесс при 1200° С, то почти весь цезий возгоняется в виде окиси Cs20. Этот возгон, конечно, загрязнен примесью других щелочных металлов, но он растворим в минеральных кислотах, что упрощает дальнейшие операции.


Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекадэт) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения - их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция - отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия - хлорид, сульфат или карбонат. Но это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия - крупнейшему немецкому химику Бунзену - так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более рациональный способ найден в 1890 г. известным русским химиком Н. Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.
Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме,
причем реакция 2CsCl + Са -> СаС12 + 2Cs идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях - из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675° С. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления СаС12 равна 773° С, т. е. на 100° С выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.
В литературе описаны еще многие другие способы по-лучения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800° С, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.
Мировое производство цезия сравнительно невелико, но в последнее время оно постоянно растет. О масштабах этого роста можно только догадываться - цифры не публикуются.
Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это - один из самых легкоплавких металлов: он плавится при 28,5° С, кипит при 705° С в обычных условиях и при 330° С в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20° С всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло - ионный радиус цезия очень велик-1,65А. Ионный радиус лантана, например, равен всего 1,22А, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов.
Самое замечательное свойство цезия - его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.
Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного ir;3Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже - несколькими часами или днями. Однако три из них распадаготся не столь быстро - это 134Cs, 137Cs и 135Cs, живу-щие 2,07; 26,6 и 3 106 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.
Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, по способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при-116° С. Его хранение требует большой предосторожности.
Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода - алмаз - в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит , внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C8Cs5. Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.
Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором - взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300° С разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.
Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.
У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон
легче, чем любой другой металл; для этого необходима очень незначительная энергия - всего 3,89 эв. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

Где применяется цезий

Неудивительно, что замечательные свойства цезия давно открыли ему доступ в различные сферы человеческой деятельности.
Прежде всего он нашел применение в радиотехнике. Вакуумные фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к не-видимым инфракрасным лучам и, в отличие, например, от селеновых, работают без инерции. В телевидении и звуковом кино широко распространены вакуумные сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5-6%, они надежно работают в интервале температур от - 30° до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия - электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также в цезиевых фотоэлементах, заполненных инертным газом (аргоном или неоном) .
В оптике и электротехнике широко используются бромиды, иодиды и некоторые другие соли цезия. Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сернистого цинка примерно 20% йодистого цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.


На проходившей в 1965 г. в Москве Международной выставке «Химия-65» в павильоне СССР демонстрировались сцинтилляционные приборы с монокристаллами иодида цезия, активированного таллием . Эти приборы, предназначенные для регистрации тяжелых заряженных частиц, обладают наиболышей чувствительностью из всех приборов подобного назначения.
Кристаллы бромистого и йодистого цезия прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (Csl). Обычные призмы из хлористого натрия пропускают только лучи с длиной волны 14 мкм, а из хлористого калия - 25 мкм. Поэтому применение бромистого и йодистого цезия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.
Весьма чувствительны к свету соединения цезия с оловянной кислотой (ортостаннаты) и с окисыо циркония (метацирконаты). Изготовленные на их основе люминесцентные трубки при облучении ультрафиолетовыми лучами или электронами дают зеленую люминесценцию.
Активность многих соединений цезия проявляется в их каталитической способности. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества окиси цезия (вместо окиси калия) повышает выход конечного продукта и улучшает условия процесса. Гидроокись цезия служит превосходным катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик - 91,5%- Металлический цезий лучше, чем другие щелочные металлы, ускоряет реакцию гидрогенизации ароматических углеводородов.
В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на цезий имеется настоятельный спрос в ряде Других весьма важных областей. К числу последних относится, в частности, медицина. Изотопом 137Cs, образующимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер 137Cs), заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей и имеет определенные преимущества перед радиоактивным кобальтом-60: более Длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В связи с этим приборы на основе 137Cs долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолютной радиохимической чистоты 137Cs, отсутствия в нем примеси 134Cs, имеющего более короткий период полураспада и более жесткое гамма-излучение.

Не только радиоактивный, но и стабильный металлический цезий приобретает все большее значение. Он служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. В военном и военно-морском деле вакуумные лампы с парами цезия применяются для инфракрасной сигнализации и контроля. В США такого рода прибор, способный обнаружить в темноте всевозможные объекты, называют «снайпер- скопом».
Но особенно большое внимание уделяется в последнее время цезиевой плазме, всестороннему изучению ее свойств и условий образования. Возможно, она стапет «топливом» плазменных двигателей будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие ученые считают, что целесообразно создавать цезиевую плазму, используя высокотемпературную тепловую энергию атомных реакторов, то есть непосредственно превращать эту тепловую энергию в электрическую.
Таков далеко не полный перечень возможностей цезия.
ВСКОРЕ ПОСЛЕ ОТКРЫТИЯ. Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в поллуците и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

Цезий и давление

Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в
100 тыс. атм его объем уменьшается почти втрое - сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.
АТОМНЫЕ ЧАСЫ. Ядро атома цезия и его валентный электрон обладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко - параллельно или антипараллельно. Разница между энергиями обоих состояний постоянна, и, естественно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые «атомные часы»- едва ли не самые точные в мире.

Молярная теплоёмкость 32,21 Дж /( ·моль) Теплопроводность 35,9 Вт /( ·) Температура плавления 301,6 Теплота плавления 2,09 кДж /моль Температура кипения 951,6 Теплота испарения 68,3 кДж /моль Молярный объём 70,0 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая
объёмноцентрированная Параметры решётки 6,140 Отношение c/a n/a Температура Дебая 39,2
Cs 55
132,90545
6s 1
Цезий

Получение

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов : лепидолит , флогопит, биотит , амазонит , петалит , берилл , циннвальдит , лейцит , карналлит . В качестве промышленного сырья используются поллуцит и лепидолит.

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой , добавление хлорида сурьмы SbCl 3 для осаждения соединения Cs 3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором - минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO 4) 2 · 12H 2 O.

Физические свойства

Цезий - мягкий металл, из-за низкой температуры плавления (T пл =28,6 °C) при комнатной температуре находится в полужидком состоянии. Металлический цезий представляет собой вещество золотисто-белого цвета, по внешнему виду похожее на золото , но светлее. Расплав представляет подвижную жидкость , при этом его цвет становится более серебристым. Жидкий цезий хорошо отражает свет. Кристаллизуется цезий в объёмно-центрированную кубическую решётку (тип α-железа), при высоком давлении может переходить в другие полиморфные модификации . Цезий - парамагнетик .

Химические свойства

Цезий является наиболее химически активным металлом . На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO 2 . При ограниченном доступе кислорода окисляется до оксида Cs 2 O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H 2 . Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами , галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами , сухим льдом (взаимодействие протекает с сильным взрывом). Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом , но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции).Все образуемые цезием соли - нитраты , хлориды , бромиды , фториды , йодиды , хроматы , манганаты , перхлораты , хлораты , азиды , цианиды , карбонаты и т. д - чрезвычайно легко растворимы в воде и ряде органических растворителей , наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития , не вступает в реакцию с азотом при обычных условиях и, в отличие от бария , кальция , магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия - сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо , кобальт , никель , а также платину , корунд и диоксид циркония , и даже постепенно разрушает серебро и золото (в присутствии кислорода - очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и его некоторые сплавы.

Применение

Цезий нашёл применение только в начале XX века, когда были обнаружены его минералы и разработана технология получения в чистом виде. В настоящее время цезий и его соединения используются в электронике , радио- , электро- , рентгенотехнике , химической промышленности , оптике, медицине , ядерной энергетике . В основном применяется стабильный природный цезий-133, и ограниченно - его радиоактивный изотоп цезий-137, выделяемый из суммы осколков деления урана , плутония , тория в реакторах атомных электростанций .

Фотоэлементы, фотоумножители

Медицина

На основе соединений цезия созданы эффективные лекарственные препараты для лечения язвенных заболеваний, дифтерии, шоков, шизофрении.

Применение цезия в энергетике и космосе

Значительной сферой применения металлического цезия являются новейшие и стремительно развивающиеся работы и производство энергетических агрегатов. Цезиевая плазма является важнейшей и неотъемлемой компонентой МГД-генераторов с повышенным КПД до 65-70 %. Ионизированые пары цезия являются лучшим рабочим телом для ионных двигателей в космосе. [источник не указан 416 дней ]

Сплав цезия с барием является лучшим [источник не указан 416 дней ] из известных материалов для выпрямления сверхмощных потоков электроэнергии (превосходя в этом отношении ртутные и полупроводниковые вентили) и в будущем займёт важнейшее положение в большой энергетике и космических электроракетных установках. Одним из его отличительных особенностей является возможность выпрямления и коммутирования чудовищных мощностей в импульсном режиме.В виду того что цезий имеет большую теплоёмкость, теплопроводность и ряд собственных сплавов с очень низкой температурой плавления (цезий 94,5 и натрий 5,5 %) −30 °C, то используется в качестве теплоносителя в атомных реакторах и высокотемпературных турбоэнергетических установках, а сплав состава натрий 12 %, калий 47 %, цезий 41 % обладает рекордно низкой температурой плавления −78 °C.

В течение последних 25 лет цезий исследуется в мире как Материя Ридберга (конденсат возбуждённых состояний цезия КВС), по предварительным оценкам сделанным экспериментально в Швеции и России, КВС цезия при температуре менее 700 K имеет весьма высокую электропроводность и работу выхода менее 1эВ и вплоть до 0,2 эВ, что позволяет применить металлический цезий для производства высокоэффективных источников тока, электростанций, утилизации тепла (например тепла продуктов сгорания автомобилей). Конденсат возбуждённых состояний цезия образуется при прокачке его паров сквозь перфорированный (губчатый) материал коллектора имеющий на своей поверхности тончайший слой углерода или окислов (например карбид гафния, ниобия или тантала). Для исследования КВС цезия применяется растровое лазерное сканирование, оптическая спектроскопия и съёмка видеокамерой, и уже в ходе первых исследований были обнаружены аномальные явления проявившие себя в образовании кластеров капельной плазменной фракции окрашенной в зеленые тона и резком уменьшении работы выхода коллектора.

Металлургия

Металлический цезий на заре поисков его ассимиляции в промышленности обнаружил свойство резко повышать жаропрочность магния и алюминия, так например добавка 0,3-0,4 % цезия к магнию в 3 раза повышает [источник не указан 416 дней ] его прочность на разрыв и резко улучшает его коррозионную стойкость, но ввиду весьма высокой цены, и наличия других более дешёвых металлов для легирования он не применяется для этой цели.

Высокотемпературная сверхпроводимость

Недавно найдено что продукты внедрения цезия в графит (фуллериды) обладают свойством высокотемпературной сверхпроводимости и интенсивно изучаются.

Производство лазеров

В последние годы цезий так же весьма интенсивно изучается как рабочее тело и излучательная среда для создания лазеров имеющих рекордные значения пиковых мощностей как в непрерывном так и в импульсном режиме работы, и в значительной степени этот интерес и огромные капиталовложения направлены на разработку лазеров для вооружения и в области получения термоядерной энергии, но… в равной степени интересу и капиталовложениям противопоставлена закрытость и минимум информации для печати (обусловленных некоторой соревновательностью развитых в технологическом отношении стран, заинтересованных в этом направлении).

Производство электродов

Совершенно особое место и очень большую область применения и расхода металлического цезия в последние годы представляет его использование в качестве добавки к вольфраму для производства электродов мощных осветительных дуговых ламп и электродов применяемых для сварки алюминия, магния, титана, церия, нержавеющей стали и целого ряда активных сплавов в среде аргона, гелия и водорода. Применение этой добавки (около 0,1-0,35 %) в значительной степени облегчает зажигание и горение дуги при низком напряжении.

Термоэлектрические материалы

Совсем недавно цезий приобрёл новое направление своей ассимиляции (освоение практикой), и это направление является революционным прорывом для разработки новейшей компьютерной техники, генераторов энергии, холодильников глубокого холода (криогенных) и так далее. Оказалось что сплав сверхчистого висмута , сверхчистого теллура , и сверхчистого цезия обладает поистине фантастическими возможностями для создания охладителей основанных на эффекте Пельтье [источник не указан 416 дней ] . Как показывает практический опыт эксплуатации этого нового полупроводникового материала, его использование наиболее эффективно именно в новейших суперпроцессорах на основе нитрида бора и монокристаллического алмаза в качестве теплоотвода и основы схемы. Применение этого материала открывает широкие возможности для повышения быстродействия - то есть «ускорения холодом». Так в опытах с этим новым полупроводниковым материалом удалось на сегодняшний день получить охлаждение вплоть до −237 °C, и это в свою очередь позволяет создавать микрохолодильники для охлаждения мощных процессоров (в том числе нанопроцессоров), холодильники для глубокой заморозки тканей и клеточного материала, сжижения газов, охлаждения боевых ультрафиолетовых и инфракрасных лазерных систем, тепловизоров , а в перспективе для охлаждения высокотемпературных сверхпроводников для высокоскоростного транспорта на «магнитной подушке». Очень важным направлением использования данного полупроводника ряд специалистов рассматривает создание лазеров на монокристаллах алмаза с очень высоким КПД , и возможностью работы в пикосекундном диапазоне, что очень важно для конструирования оптоэлектронных систем для обработки информации. Ведущей страной в этой новой области использования является Япония .

Оптические материалы микроэлектроники

Триборат цезия и триборат цезия-лития, а так же фосфат цезия-галлия используются как специальные оптические материалы в новейших областях радиоэлектроники.

Пьезоэлектрические материалы

Дигидрофосфат цезия в 7 раз более эффективный пьезоэлектрик , чем кварц [источник не указан 416 дней ] , и, несмотря на то, что несколько уступает по эффективности сегнетовой соли , тем не менее более устойчив к влаге чем последняя.

Атомно-водородная энергетика

Совершенно исключительное значение металлический цезий играет [источник не указан 416 дней ] в атомно-водородной энергетике при разложении воды термохимическим способом (цикл «Аэроджет Дженерал»).

Защита воздушных судов

Очень важной областью применения цезия является производство специальных ламп [источник не указан 416 дней ] с электронным управлением, для создания тепловых помех для ракет противника. Такие цезиевые лампы устанавливаются на современных боевых самолётах и в значительной степени повышают живучесть самолетов в бою.

Прочие области ассимиляции цезия

Фторид цезия применяют для получения фторорганических соединений [источник не указан 416 дней ] , пьезоэлектрической керамики, специальных стекол. Хлорид цезия - электролит в топливных элементах, флюс при сварке молибдена.

Биологическая роль

[источник не указан 416 дней ]

Цезий и рубидий относят к малоизученным микроэлементам. Эти элементы находятся в окружающей среде и поступают в организм различными путями, в основном с пищей. Установлено их постоянное наличие в организме. Однако до сих пор эти элементы не считаются биотическими.

Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3-2,7 мг/л, причём его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причём, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.

Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. Исходя из выраженного гипертензивного и сосудосуживающего действия, соли цезия ещё в 1888 г. впервые были применены С. С. Боткиным при нарушениях функции сердечно-сосудистой системы. В лаборатории И. П. Павлова С. С. Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.

Установлено адреноблокирующее и симпатомиметическое действие солей цезия и рубидия на центральные и периферические адренореактивные структуры, которое особенно ярко выражено при подавлении тонуса симпатического отдела центральной нервной системы и дефиците катехоламинов. Солям этих металлов свойственен, главным образом, β-адреностимулирующий эффект.

Соли рубидия и цезия оказывают влияние на неспецифические показатели иммунобиологической резистентности - они вызывают значительное увеличение титра комплемента, активности лизоцима, фагоцитарной активности лейкоцитов. Есть указание на стимулирующее влияние солей рубидия и цезия на функции кроветворных органов. В микродозах они вызывают стимуляцию эритро- и лейкопоэза (на 20-25 %), заметно повышают резистентность эритроцитов, увеличивают содержание гемоглобина в них.

Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.

Цезий в живых организмах

Цезий в живых организмах - постоянный химический микроэлемент организма растений и животных. Морские водоросли например содержат от 0,01-0,1 мкг цезия в 1 г сухого вещества, наземные растения - 0,05-0,2. Животные получают цезий с водой и пищей. В организме членистоногих около 0,067-0,503 мкг/г цезия, пресмыкающихся - 0,04, млекопитающих - 0,05. Главное депо цезия в организме млекопитающих - мышцы, сердце, печень; в крови - до 2,8 мкг/л цезий относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 - радиоактивный изотоп цезия, испускающий бета излучение и гамма-кванты, и один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления Cs-137 наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных Cs-137 накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, поль­ский гриб) считается «аккумуляторами» радиоцезия

ЦЕЗИЙ, Cs (от лат. caesius — голубой; лат. Caesium * а. caesium; н. Zasium; ф. cesium; и. cesio), — химический элемент I группы периодической системы Менделеева , относится к щелочным металлам, атомный номер 55, атомная масса 132,9054. В природе встречается в виде стабильного изотопа 133 Cs; известно также 18 искусственных изотопов цезия с массовыми числами от 123 до 142. Цезий открыт в 1860 немецким учёными Р. В. Бунзеном и Г. Р. Кирхгофом.

Цезий типично редкий и рассеянный элемент; среднее содержание в земной коре (по массе) 3,7. 10 -4 %, в магматических горных породах ( 1.10 -5 , основных 1.10 -4 , кислых — 5.10 -4) и осадочных 1,2.10 -3 %. Цезий геохимически тесно связан с гранитным расплавом; концентрируется в пегматитах вместе с Li, Be, Ta и Nb. Известно несколько собственных минералов цезия, из них поллуцит и авогадрит имеют промышленное значение.

Получение цезия

Цезий получают из рудных концентратов методом вакуумного термического восстановления кальцием , магнием или алюминием . Соли цезия получают кристаллизацией из растворов. Перспективный промышленный цезия — содовая рапа , остающаяся при переработке нефелина в глинозём, а также природные минерализованные воды.

Применение цезия

Цезий применяют для изготовления эмиттеров в термоэмиссионных и электронно-оптических преобразователях, фотокатодов, фотоэлементов и фотоэлектронных умножителей. Пары цезия — рабочее тело в МГД-генераторах, газовых лазерах. Иодид цезия используется в производстве сцинтилляционных детекторов g-излучения. Изотоп 137 Cs применяется в медицине.

Тает в руках, но не снег – загадка из раздела «химия». Отгадка – цезий . Температура плавления этого металла равна 24,5 градусам Цельсия. Вещество, буквально утекающее сквозь пальцы, открыто в 1860-ом году. Цезий стал первым элементом, обнаруженным с помощью спектрального анализа.

Провели его Роберт Бунзен и Густав Киргоф. Химики изучали воды минеральных источников в Дюркхейме. Обнаружили магний, литий, кальций, . Напоследок, поместили каплю воды в спектроскоп и увидели две линии синего цвета – свидетельство присутствия неизвестного вещества.

Для начала выделили его хлороплатинат. Ради 50 граммов переработали 300 тонн минеральной воды. С названием нового металла мудрить не стали. С латинского «цезий» переводится как «голубой».

Химические и физические свойства цезия

В спектроскопе металл лучится ярко-синий. В реальности же элемент схож с , немного светлее его. В жидком состоянии желтизна цезия уходит, расплав становится серебристым. Добыть сырье для опытов непросто.

Из металлов элемент самый редкий и рассеянный в земной коре. В природе встречается лишь один изотоп – цезий 133 . Он полностью устойчив, то есть не подвержен радиоактивному распаду.

Радиоактивные изотопы металла получены искусственно. 135-ый цезий – долгожитель. Период его полураспада приближается к 3 000 000 лет. Цезий 137 наполовину распадается за 33,5 года. Изотоп признан одним из основных источников загрязнения биосферы.

В нее нуклид попадает из сбросов заводов, атомных станций. Период полураспада цезия позволяет ему проникать в воды, почву, растения, накапливаться в них. Особенно много 137-го изотопа в пресноводных водорослях и лишайниках.

Будучи самым редким из металлов, цезий является еще и самым активным. Элемент щелочной, расположен в главной подгруппе 1-ой группы периодической системы, что уже обязывает вещество легко вступать в химические реакции. Их течение усиливает присутствие воды. Так, на воздухе атом цезия взрывается из-за нахождения ее паров в атмосфере.

Взаимодействие с водой сопровождается взрывом, даже если она замерзшая. Реакция со льдом возможна при -120-ти градусах Цельсия. Сухой лед – не исключение. Взрыв неизбежен и при контакте цезия с кислотами, простыми спиртами, галогенидами тяжелых металлов галогенами органического типа.

Взаимодействия легко запускаются по 2-м причинам. Первая – сильный отрицательный электрохимический потенциал. То есть, атом заряжен отрицательно, стремится притянуть к себе иные частицы.

Вторая причина – площадь поверхности цезия при реакциях с другими веществами. Тая в комнатных условиях, элемент растекается. Получается, что для взаимодействия открыто большее число атомов.

Активность элемента привела к отсутствии его чистой формы в природе. Встречаются лишь соединения, к примеру, . В их числе: хлорид цезия , фторид, йодит, азит, цианит, бромид и карбонат цезия . Все соли 55-го элемента легко растворяются в воде.

Если же работа ведется с гидроксидом цезия , бояться нужно не его растворения, а того, что он сам способен разрушить, к примеру, стекло. Его структура нарушается реагентом уже при комнатной температуре. Стоит повысить градус, гидроксид не пощадит и кобальт, , корунд, и железо.

Реакции проходят особенно быстро в кислородной среде. Противостоять гидроксиду цезия способен только . Во взаимодействие с 55-ым элементом не вступает и азот. Азит цезия получают только косвенным путем.

Применение цезия

Цезий, формула которого обеспечивает низкую работу выхода электрона, пригождается при изготовлении фотоэлементов. В приборах на основе 55-го вещества затраты на получение тока минимальны. Чувствительность же к излучению, напротив, максимальна.

Чтобы фотоэлектрическое оборудование не стоило запредельно из-за редкости цезия, его сплавляют с , , , . Как источник тока цезий применяется в топливных элементах. Твердый электролит на основе 55-го металла – часть автомобилей и высокоэнергоемких аккумуляторов.

Применяют 55-ый металл и в счетчиках заряженных частиц. Для них закупают йодит цезия. Активированный таллием, он регистрирует почти любые излучения. Цезиевые детекторы приобретают для атомных предприятий, геологической разведки, медицинских клиник.

Пользуются приборами и космической отрасли. В частности, «Марс-5» изучил элементарный состав поверхности красной планеты именно благодаря гамма-спектрометру на основе цезия.

Способность улавливать инфракрасные лучи – причина для применения в оптике. В нее добавляют бромид цезия и оксид цезия . Он есть в биноклях и очках ночного видения, оружейных прицелах. Последние, срабатывают даже из космоса.

137-ой изотоп элемента тоже нашел достойное применение. Радиоактивный нуклид не только загрязняет атмосферу, но и стерилизует продукты, точнее, тару для них. Полураспад цезия долог. Можно обработать миллионы консервов. Порой, стерилизуют и мясо – туши птиц и .

Обрабатывать 137-ым изотопом можно и медицинские инструменты, лекарства. Нуклид нужен и в самом лечении, если дело касается опухолей. Метод называется радиотерапией. Препараты с цезием дают и при шизофрении, дифтерии, язвенных заболеваниях, некоторых видах шока.

Металлурги нуждаются в чистом элементе. Его примешивают к сплавам и . Добавка повышает их жаропрочность. У , к примеру, она увеличивается втрое при цезия всего в 0,3%.

Растет и прочность на разрыв, стойкость к коррозии. Правда, промышленники ищут альтернативу 55-му элементу. Слишком уж он дефицитен, не выгоден в цене.

Добыча цезия

Металл выделяют из поллуцита. Это водный алюмосиликат и цезия. Минералов, содержащих 55-ый элемент единицы. В поллуците процентовка цезия делает добычу экономически обоснованной. Немало металла и в авогардите. Однако, этот камень сам столь же редок, как и цезий.

Промышленники вскрывают поллуцит хлоридами или сульфатами . Цезий из камня выделяют, погружая его в подогретую соляную кислоту. Туда же засыпают хлорид сурьмы. Образуется осадок.

Его промывают горячей водой. Итог операций – хлорид цезия. При работе с сульфатом, поллуцит погружают в серную кислоту. На выходе образуются алюмоцезиевые квасцы.

В лабораториях применяют другие методы получения 55-го элемента. Их 3, все трудоемки. Можно нагреть дихромат и хромат цезия с цирконием. Но, для этого требуется вакуум. Он нужен и для разложения азида цезия. Без вакуума обходятся лишь при нагреве специально подготовленного кальция и хлорида 55-го металла.

Цена цезия

В России добычей и переработкой поллуцита занимается Завод редких металлов в Новосибирске. Продукцию предлагает и Горно-обогатительный комбинат Ловозерска. Последний предлагает цезий в ампулах по 10 и 15 миллиграммов.

Они идут в пачках по 1000 штук. Минимальная цена – 6000 рублей. Севредмет тоже торгует ампулами, но готов осуществлять поставки меньших объемов, — от 250-ти граммов.

Если чистота металла 99,9%, за один грамм, как правило, просят в районе 15-20-ти долларов США. Речь идет об устойчивом 133-ем изотопе 55-го элемента периодической системы .