Краткое сообщение на тему физика вокруг нас. Проектная работа по физике на тему "Физика вокруг нас: глаженье вещей". Гремит и искрами сверкает

Муниципальное казенное общеобразовательное учреждение

«Богатыревская средняя общеобразовательная школа»

Горшеченского района Курской области

Реферат по физике на тему «Физика вокруг нас: глаженье вещей»

Для участия в научно-практической конференции «Меня оценят в 21 веке», посвященное 220-летию со дня рождения Ф.А.Семенова



Работу выполнила

учащаяся 10 класса

Волкова Анастасия

Руководитель: учитель физики Семененкова М.В.

2014г.

Современный окружающий нас мир – предметы домашнего обихода, техника, телефоны, компьютеры – мы привыкли к этому миру, пользуемся им и не можем просто представить нашу жизнь без него. Просто, удобно и комфортно нам в этом современном мире. Но не стоит порой забывать, что простые и доступные нам предметы являются результатом достижений и изобретений науки физики.

Если представить себе на миг, что в нашем доме отсутствует такой всем привычный электрический прибор как утюг. Это просто катастрофа. Как же можно погладить школьные брюки без него? Без физики нам не обойтись.

В данной работе я хочу раскрыть - какие физические явления происходят при глаженье вещей, историю создания этого изобретения и используемые для этого приспособления и приборы.

Итак, если у меня не будет утюга, как мне погладить школьные брюки. Этот вопрос я задала своей бабушке. Вот что она мне ответила. Не всегда для глаженья вещей у неё была возможность воспользоваться утюгом. Иногда она брала брюки и на ночь клала их под матрас, утром брюки имели прекрасный вид.

Стрелки на брюках были изобретены европейцами. Во время одного из первых путешествий в Америку европейцы складывали брюки в тюки. Там они спрессовались и на брюках появились складки. Американцы решили, что это новая мода…

Согласно дошедшим до нас из глубины веков сведениям уже около 2500 лет человечество пытается разными способами гладить свою одежду!

Историческое прошлое утюга – это длинный путь от тяжелого камня до современного электрического устройства с функцией отпаривания и регулируемым нагревом.
Известно, что древние ацтеки расстилали одежду на ровной поверхности, придавливали сверху камнем и оставляли под этим прессом. В 4 веке до н.э. древние греки использовали горячие металлические пруты для плиссировки своих полотняных одеяний. Римляне придумали для глажения специальные тяжелые металлические молотки. В 8 веке в Европе использовали специальные гладильные камни в виде грибов. На них раскладывали ткань и отбивали ее палками.

А на Руси испокон веков гладили с помощью скалки и рубеля. Белье наматывали на скалку(валек) и прокатывали его ребристым рубелем. Рубель- это рифленая доска с ручкой.

Прикладывая значительные усилия, валек прокатывали по столу при помощи рубеля

Настоящим прообразом утюга была сковорода с углями. А вот первые утюги появились лишь в 14 веке. В середине 18 века появился угольный паровой утюг, который разогревался за счет горячих углей, положенных в него. Сверху, для лучшей тяги, устанавливали трубу, из которой выходил дым. По бокам утюга делали специальные отверстия, чтобы обеспечить доступ воздуха для горения.

Иногда приходилось помахать утюгом взад-вперед, чтобы усилить вентиляцию. Некоторые русские утюги делались с двойным дном: и золу легко вытащить, и подошва разогревается более равномерно. Были утюги с несколькими вставными плашками, которые можно менять, попеременно нагревая.

Угли постоянно высыпались из отверстий, пачкали и прожигали одежду.
Существовал и спиртовой утюг, внутрь которого заливали спирт и поджигали.
Но самым простым утюгом всегда был чугунный утюг, который просто разогревали, поставив на огонь.Такие утюги могли весить от 10 грамм до 25 кг!
В 19 веке, в то время, как на улицах распространялось газовое освещение, изобретателями не были забыты и утюги. Среди богатого населения самым модным стал газовый утюг, которые нагревался газом. На крышке такого утюга располагался насос, по нему газ из баллона попадал в горелку.

К сожалению, эти газовые утюги был небезопасны: загорались и часто взрывались.
И вот свершилось! В начале 20 века (1903 год) изобретатель Эрл Ричардсон демонстрировал свое новое изобретение - облегченный утюг с электрическим нагревом. Нагревателем в нем стала электрическая спираль, размещенная внутри. Так началась современная эра усовершенствования электрического утюга!

Недавно на свет появился утюг без шнура! На специальной подставке он очень быстро разогревается токами высокой частоты.
Устройство электроутюга.

Современные электроутюги обычно оснащены терморегулятором, пароувлажнителем и разбрызгивателем. Вода для парообразования заливается в бачок утюга. Электроутюги с терморегулятором и пароувлажнителем нагреваются при помощи трубчатого электронагревательного элемента (ТЭН), залитого в металлическую подошву утюга. Утюг снабжен терморегулятором, который соединен с диском. На циферблате дискатерморегулятора нанесено пять наименований тканей или символы. На ручке электроутюга расположено два шильдика с указателями, определяющими положение парорегулятора при глажении. При установке парорегулятора в положение "Пар" вода, залитая через водоналивное отверстие в бачок, каплями поступает в испарительную камеру, испаряясь, выходит из отверстий подошвы, насыщая паром разглаживаемый материал.
При включенном нагревательном элементе загорается сигнальная лампа.



1 - трубчатый электронагреватель
2 - терморегулятор
3- резистор
4 - сигнальная лампа
5 – вилка

Какие же физические явления происходят в ткани при проглаживании утюгом? Это обычная деформация, в результате которой смещение нитей волокон, а также их растяжение. Ткань становится более мягкой, эластичной, гладкой. Хорошие хозяйки стараются ткань увлажнить. Это делается для того, чтобы нити ткани не подгорали, а из воды образовывался пар, под воздействием пара и высокой температурой утюга деформация нитей происходит быстрее.

Обычно у утюга нижняя часть, называемая «подошвой», сделана массивной и металлической. Массивная подошва обладает большой теплоемкостью. Она способна «принять» от нагревательного элемента много тепла и передать его проглаживаемой вещи. Метал же обладает хорошей теплопроводностью. Ручка у утюга сделана из пластмассы или дерева, т.к. дерево и пластмасса – плохие проводники тепла, поэтому при сильном нагревании металлической части утюга ручка всегда остается холодной. Перед процессом глаженья раньше на стол обязательно стелили мягкую ткань, например сложенное в несколько раз байковое одеяло. Это делалось для того, чтобы ткань при глажении прогибалась в наиболее толстых местах и не подгорала. Подкладываемый материал имеет плохую теплопроводность и при глажении изделие будет прогреваться сверху утюгом, а нижняя ткань будет сохранять тепло, не выпуская его. К тому же она предохраняет крышку стола от действия высокой температуры. По такому принципу сейчас производят гладильные доски, который заменили нам процесс глажки белья на столе.

После окончания глаженья белья необходимо отключать электрический утюг от питания. Опасно оставлять без присмотра включенный утюг. Утюг нагревается не только сам, но и передает тепло подставке, на которой стоит. Подставка путем теплопередачи нагревает стол, а путем теплоизлучения – окружающие предметы. Это может стать причиной пожара. Современные утюги имеют терморегуляторы, которые периодически при нагревании утюга до определенной температуры отключают его.

Сейчас утюг – абсолютно незаменимая вещь в хозяйстве - такой прибор необходим в каждом доме. Без него невозможно представить свою жизнь, потому как, даже покупая вещи, которые не мнутся, все равно, рано или поздно, что-нибудь погладить вам будет надо обязательно. Теперь, зная устройство, принцип действия утюга, а так же физические явление, происходящие при обычном для нашей повседневной жизни процессе – глаженье вещей, мы будем делать это лучше и грамотнее. Физика - это не только формулы, задачи и законы. Физика всегда есть вокруг нас в нашей жизни.

ВНЕКЛАССНОЕ МЕРОПРИЯТИЕ ПО ФИЗИКЕ

«ФИЗИКА ВОКРУГ НАС»

7 класс

Учитель физики

Ёременко Т.П.

Цели:

-Развитие интереса к изучению физики, как предмета научно-технического цикла

-развитие мыслительной деятельности и творческих способностей при решении практических заданий

Формирование умений работать в группах, пользоваться физическими приборами и измерять физические величины, воспитание коммуникатив-

ных качеств, умений вести диалог, культуры речи.

Оборудование: Приборы- весы, линейка, секундомер, компас, колба, мензурка, термометр.

1 этап: представление команд

- название, эмблема, девиз, газета (формат А-3)

2 этап «Защита науки» (какое значение имеет физика и её законы для нас)

3 этап: Конкурсы

- Лабораторное оборудование

- Взвешивание тел

- измерение объёма тел

-«тело-вещество»

-физические явления

- «капитанский»

Вступительное слово учителя о значение науки и условиях проведения мероприятия

На доске слова

Легко нам с физикой жить и трудиться

Она все сделает быстро за нас

Она нам в жизни не раз пригодится

Поэтому с физикой дружим сейчас!

Она нам строить дома помогает,

Она стирает, гладит, и шьёт.

Дороги к звёздным мирам пролагает

С ней никогда и никто не пропадет

Представление команд

-Название

-девиз

-эмблема

-защита науки

Жюри оценивает выступление команд

Команды приступают к первому конкурсу.

1-й конкурс «Лабораторное оборудование»

Представители каждой команды по очереди называют оборудование и объясняют для чего оно служит (каждый правильный ответ 1 балл)

2-ой «Взвешивание тел»

Ученики взвешивают предложенные тела и полученный результат записывают в кг

Жюри оценивает скорость выполнения работы, соблюдение всех правил взвешивания, красоту действий и точность результата

Зрителям можно показать опыт «горящий платок»

Слово жюри

3-й «Тело- вещество»

Командам предлагается набор различных тел по 5 шт, нужно назвать эти тела и указать вещество.(по очереди, друг за другом)

4-й Физические явления,величины, единицы измерения

В колонки записать

Явления

Величины

Единицы измерения

Загадки болельщикам (пока выполняются задания)

1.Была твердым телом,

Стояла с красным носом в стужу.

А после превратилась в лужу (снеговик)

2.Гремит и искрами сверкает

А после плакать начинает.(Гроза)

3.Его никто не встречал ни разу

Но что не скажешь повторяет сразу (эхо)

4.Не за землю а за крышу ловко

Ухватилась хрупкая морковка. (сосулька)

Судьи подводят итоги

Показывается опыт «плавающая свеча»

Слово судьям

«капитанский»

1. жидкость самая распространенная на земле (вода)

2.газ необходимый для дыхания (кислород)

3.что находится в пустой бутылке (воздух)

4Прибор для определения сторон света (компас)

5.Белый сладкий порошок(сахар)

6.Пробирка без донышка (трубка)

7.Температура при которой вода начинает замерзать (0 0 С)

8.Из чего делают бензин?

9.Когда солнце светит, да не греет?

10.Какая вода в море?

11.Сколько дней в году?(365 или 366)

12.Прибор для измерения времени(часы)

13.Сколько граммов в килограмме(1000)

Второму капитану

1.Стеклянный сосуд круглой формы(колба)

2.Замёрзшая вода(лёд)

3.Продолжительность суток(24 часа)

4.Прибор для измерения массы тел(весы)

5.Вещество из которого сделаны гвозди(железо)

6.Прибор для измерения объёма жидкости(мензурка)

7. Температура при которой вода кипит(100 0 С)

8.Что к нам ближе Луна или Солнце?(Луна)

9.Какого цвета вода? (бесцветная)

10.Сколько в километре метров(1000)

11.Какую величину измеряет спидометр автомобиля?(спидометр)

12.Когда ночи короче зимой или летом?(летом)

13.Сколько в часе секунд(3600)

Явления

Величины

Единицы измерения

Тает снег, вращается колесо, стоит автобус, ручка, дерево, высота, окружность, угол, м 3 .инертность, масса, вода, скорость, тонна, метр, градус, мензурка, объем, сила, м/с,

Физика - школьный предмет, при изучении которого многие сталкиваются с проблемами. Из курса физических знаний многие почерпнули лишь цитату Архимеда: «Дайте мне точку опоры, и я переверну мир!». На самом деле физика окружает нас на каждом шагу, а физические лайфхаки делают жизнь проще и удобнее. Знакомьтесь, очередная десятка лайфхаков, которая расширит ваш горизонт знаний об окружающем мире.

1. Лужа, исчезни!

Если вы пролили воду, не торопитесь вытирать лужу. Просто разотрите ее по полу, увеличив площадь поверхности жидкости. Чем больше поверхность жидкости, тем быстрее она испарится. Понятное дело, «сладкие» лужи высыхать не оставляют: вода испарится, а сахар останется.

2. Теневой загар


Прямые солнечные лучи и чувствительная кожа – тандем сомнительный. Чтобы «озолотить» тело и не получить ожог, загорайте в тени. Ультрафиолетовое излучение рассеяно везде и «достанет» вас даже под пальмами. Не отказывайтесь от свиданий с солнцем, но оградите себя от его обжигающих поцелуев.

3. Автополив растений


Отправляетесь в отпуск? Позаботьтесь о горшочных растениях. Организуйте автополив: поставьте рядом с горшком банку с водой, опустите в нее до дна хлопчатобумажный шнур, другой конец которого положите в горшок. Работает капиллярный эффект. Вода заполняет пустоты тканевых волокон и перемещается по ткани. Система работает сама – по мере подсыхания земли движение воды по ткани увеличивается и, наоборот, при достаточной увлажненности – прекращается.

4. Быстро охладить напиток


Чтобы быстро охладить бутылку с напитком, оберните ее влажным бумажным полотенцем и поставьте в морозильную камеру. Известно, вода с влажной поверхности испаряется, а температура оставшейся жидкости понижается. Эффект охлаждения от испарения усилит эффект охлаждения морозильной камеры, и влажная бутылка охладится гораздо быстрее.

5. Правильно охладить продукты


Другой физический лайфхак на тему правильного охлаждения посвящен продуктам. Холодный воздух всегда опускается вниз, теплый – поднимается вверх. И именно поэтому хладагенты в сумку-морозильник следует класть сверху! В противном случае холодный воздух так и остается снизу, а верхние продукты окажутся испорченными.

6. Солнечный светильник из бутылки


Чердачные помещения тоже нуждаются в освещении. Если возможности провести ламповый свет нет, пользуйтесь солнечной энергией. Проделайте на крыше чердака дырку и закрепите в ней пластиковую бутылку с водой. Солнечный свет, отражаясь и рассеиваясь, равномерно осветит помещение. Увы, такой «светильник» работает только днем.

7. Молоко не убежит


Как вскипятить молоко, чтобы оно не убежало, а плиту не пришлось нудно драить? Положите на дно кастрюли блюдце в перевернутом виде, залейте молоко. Блюдце сдержит образование пены и бурное кипение, вынуждая молоко кипеть аки вода.

8. Быстро сварить картофель


Если положить в воду при варке картофеля сливочное масло, теплоемкость воды повысится, а картофель сварится в 2 раза быстрее! К тому же, сливочное масло самым положительным образом скажется на вкусе картофеля.

9. «Лекарство» от запотевшего зеркала


Запотевшее в ванной зеркало нарушает гармоничный ритм сборов. Как избавиться от конденсата? При приеме душа воздух нагревается, а поверхность зеркала остается холодной. Для решения проблемы достаточно сгладить разницу температур – например, прогреть зеркало феном.

10. Ненагревающаяся ручка


Некоторые материалы нагреваются быстро – железо, медь, серебро и другие металлы. Другие принимают и передают тепло медленно – пробка, древесина или керамика. Так сделайте апгрейд своих нагревающихся ручек, продев в ушки древесные пробки от винных бутылок.

Физика – это одна из основных наук об устройстве окружающей нас природы. Зачем нужно изучать физику? Она сложна и в ней много формул. Зато ее изучение дает понятие о том, как устроен наш мир.

Иногда школьники говорят, что физика, ее законы и формулы слишком далеки от повседневной жизни. Это неправда, потому что наука физика не выдумана из головы. Она просто описывает явления природы. Физика рассказывает о законах движения, равновесия, притяжения земли, электричества и других. Физика описывает поведение тел, когда они движутся и когда находятся в неподвижности, когда они нагреты, когда охлаждены. Энергию нашего мира тоже описывает физика.

С помощью физики люди узнали, что такое молния, гром, свет, дождь. Почему реки замерзают зимой, почему созревшие плоды падают с деревьев. Даже полет птицы – это описание физического процесса. Физика – это сама жизнь, сама природа.

На физике, а также на математике, основана наука и техника, почти вся современная цивилизация. С учетом законов физики планируется строительство зданий, мостов, кораблей, проведение сетей связи. Если бы люди не знали физику, не открыли бы физических законов и формул, то не было бы автомобилей, ракет, самолетов, мобильных телефонов и так далее. Да что там говорить, даже водопровод нельзя правильно починить, если не учитывать законов физики.

Физика – точная,занимательная наука. Особенно интересно ставить физические опыты и эксперименты.

Королев Илья

физика во всем, физика везде, физика во всем.

Скачать:

Предварительный просмотр:

«Физика вокруг нас»

Выполнил ученик 10 «Б» класса МОУ СОШ №3 им.В.Н. Щёголева

Королёв Илья

План работы:

  1. Физика. Понятие.
  2. История.
  3. Физика в природе.
  4. Физика в медицине.
  5. Физика и литература.
  6. Физика и искусство.
  7. Вывод.

Физика. Понятие.

Фи́зика (от др.-греч. φύσις «природа») - область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый русский учебник под названием «Краткое начертание физики» был написан первым русским академиком Страховым.

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

История

Одна из главных особенностей человека - способность (в определённой мере) предсказывать будущие события. Для этого человек строит мысленные модели реальных явлений (теории); в случае плохой предсказательной силы модель уточняется или заменяется на новую. Если создать практически полезную модель явления природы не удавалось, её заменяли религиозные мифы («молния есть гнев богов»).

Средств для проверки теорий и выяснения вопроса, какая из них верна, в древности было крайне мало, даже если речь шла о земных каждодневных явлениях. Единственная физическая величина, которую умели тогда достаточно точно измерять - длина; позже к ней добавился угол. Эталоном времени служили сутки, которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12 ночных, так что было два разных часа, и в разные сезоны продолжительность часа была разной. Но даже когда установили привычные нам единицы времени, из-за отсутствия точных часов большинство физических экспериментов были просто невозможно провести. Поэтому естественно, что вместо научных школ возникали полурелигиозные учения.

Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня. Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.

Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Позже аналогичный тезис высказывали Демокрит, Аристотель и другие.

Термин «Физика» возник как название одного из сочинений Аристотеля. Предметом этой науки, по мнению автора, было выяснение первопричин явлений:

Так как научное знание возникает при всех исследованиях, которые простираются на начала, причины или элементы путём их познания (ведь мы тогда уверены в познании всякой вещи, когда узнаём её первые причины, первые начала и разлагаем её впредь до элементов), то ясно, что и в науке о природе надо определить прежде всего то, что относится к началам.

Такой подход долго (фактически до Ньютона) отдавал приоритет метафизическим фантазиям перед опытным исследованием. В частности, Аристотель и его последователи утверждали, что движение тела поддерживается приложенной к нему силой, и при её отсутствии тело остановится (по Ньютону, тело сохраняет свою скорость, а действующая сила меняет её значение и/или направление).

Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.

Кроме математики, эллины успешно развивали оптику. У Герона Александрийского встречается первый вариационный принцип «наименьшего времени» для отражения света. Тем не менее в оптике древних были и грубые ошибки. Например, угол преломления считался пропорциональным углу падения (эту ошибку разделял даже Кеплер). Гипотезы о природе света и цветности были многочисленны и довольны нелепы.

Физика в природе

Конечно, ядерные взрывы, источники энергии, "беспредел" компьютеров и лазеров, создание новых материалов показывают, что круг интересов учёных простирается далеко за рамки "осколков позапрошлого века". Однако шаржированный образ учёного, да и всей науки - живуч. Хотя мало что может быть столь далеко от истины, как картина, созданная впечатлительным и горячим поэтом. Даже когда Маяковский писал свой стих, в науке и вокруг неё разыгрывались драмы вполне шекспировского масштаба. Чтобы меня правильно поняли, отмечу, что вопрос "Быть иль не быть" в применении к человечеству а не отдельному человеку, пусть и весьма значительному, был впервые поставлен именно в благодаря физикам и на основе достижений физики.

Это совсем не случайно, что уже примерно три века прошли под знаком этой науки. Люди, занятые ею, открывали и открывают фундаментальные законы природы, определяющие строение и движение материальных объектов в огромном диапазоне расстояний, времёни и масс. Диапазоны эти грандиозны - от малых, атомных и субатомных, до космических и Вселенских.

Конечно, это не физики сказали "Да будет свет", но именно они выяснили его природу и свойства, установив отличие от тьмы, и научились ими управлять.

В процессе своей работы физики, в решающей мере крупнейшие из них, выработали определённый стиль мышления, главными элементами которого является готовность полагаться на хорошо проверенные фундаментальные законы и способность в сложном природном, да и общественном, явлении выделить основной элемент, по возможности наиболее простой, что позволяет понять само рассматриваемое сложное явление.

Эти особенности подхода позволяют физикам весьма успешно заниматься проблемами, нередко лежащими далеко за рамками их узкой специализации.

Уверенность в единстве законов природы, основанная на обширном опытном материале, уверенность в их справедливости в сочетании с ясным пониманием ограниченной области применимости уже открытых законов, толкает физику вперёд, за границу неизвестного сегодня.

Физика - наука сложная. Она требует огромных интеллектуальных усилий от людей, которые ею занимаются. Она абсолютно несовместима с любительством. Помню, как по окончании Университета и Кораблестроительного института в 1958 г., я стоял на распутье - куда идти дальше. И мой отец, очень далёкий от науки, спросил меня, смогу ли я вернуться к инженерии после десятка лет занятий физикой. Мой ответ был безоговорочное "да". "А в физику после десяти лет инженерии?", - спросил он. Моё "нет" и определило дальнейший выбор, о котором не жалел и не жалею ни секунды.

Сложность физики и важность полученных ею результатов, позволяющих создать картину мира и стимулирующей распространение её идей далеко за рамки самой этой науки, определяют общественный интерес к ней. Приведу некоторые из таких идей, в порядке поступления. Это научный (не умозрительный!) атомизм, открытие электромагнитного поля, механическая теория теплоты, установление относительности пространства и времени, понятие расширяющейся Вселенной, квантовые скачки и принципиально, не из-за погрешности, вероятностная природа физических процессов, в первую очередь, на микро-уровне, великое объединение всех взаимодействий, установление существования непосредственно не наблюдаемых субатомных частиц - кварков.

Тут то и появляются популярные книги, которые призваны не учить физике начинающих, а пояснить её интересующимся. Есть и другая цель популярных книг, особо известной среди которых для людей моего поколения является "Занимательная физика" Якова Перельмана, не родственника М. Е. Перельмана. Я имею в виду демонстрацию того, сколь многое в повседневной жизни, привычной для нас технике и технологии, можно качественно понять, основываясь лишь на уже хорошо известных фундаментальных законах физики, в первую очередь - законах сохранения энергии и импульса, и уверенности, что они универсально применимы.

Объектов применения законов физики великое множество. Почему не стоит лить воду в кипящее масло, почему мерцают звёзды на небе, почему закручивается вода, вытекая из ванной, почему щёлкает кнут и зачем возница раскручивает его над головой, чтоб усилить звук щелчка, почему когда-то норовили спрыгнуть с рельсов паровозы, но никогда не делают этого электровозы? А почему грозно ревёт приближающийся самолёт, а, удаляясь, он переходит на фальцет, и почему танцовщики или фигуристы начинают вращение, широко распахнув "объятия", но затем стремительно прижимают руки к телу? Таких "почему" встречает каждого в повседневной, не говоря уже о не повседневной, жизни великое множество. Их полезно учиться видеть, тренировать себя на поиск непонятного.

Книги М. Е. Перельмана содержат рекордное количество подобных вопросов "почему?" (более пятисот), дают им ответы, в большинстве случаев - однозначно правильные, иногда - зовущие к дискуссии, изредка - скорее всего неверные, провоцирующие несогласие. Есть и вопросы, на которые у науки на сегодняшний день простого и общепринятого ответа нет. Значит, у читателя есть простор для интенсивной интеллектуальной работы.

Попутно автор объясняет общеизвестное для профессионалов, но вызывающее столь сильное недоумение у посторонних. Именно, автор подчёркивает операционный характер многих определений в такой общепризнано точной науке, как физика. Профессионалам известно, что даже наиболее фундаментальные из понятий, которыми оперирует физика, такие как время и энергия, пространство и импульс уточняются по мере развития самой науки.

Даже вакуум, когда-то бывший аналогом абсолютной пустоты, отсутствия чего бы то ни было в самоочевидном "пустом" пространстве, со временем "оброс" отнюдь нетривиальными чертами, из примитивного став сложнейшим объектом изучения. Универсальность физического подхода диктует сходное отношение к определениям нетривиальных понятий и в других областях, весьма далёких от физики.

Читать упомянутые книги М. Е. Перельмана интересно и профессионалам - чтобы спорить, находить другие, допускающие простое, иногда наглядное, объяснение вопроса. Ну а неспециалист сможет расширить свой кругозор, не обязательно торопясь дать своё, отличное от авторского, объяснение. Стоит помнить, что написанное - словесный слепок, нередко сильно упрощенный, с иногда очень сложного физического построения, основанного на далёкой от простоты в обиходном смысле этого слова физической теории. Не надо следовать примеру того реального персонажа, директора одного московского НИИ который отрицал частную теорию относительности Эйнштейна (общую он не читывал!) потому, что в формулы входит скорость света! "А что будет, если свет выключить?", - писал в отдел науки ЦК КПСС маститый оружейник.

Изучая физику, начиная понимать её законы, приобщаешься к особой красоте, возникает реально дополнительное измерение в восприятии окружающего мира. Об этом писал когда - то великий физик Р. Фейнман, отмечая, что понимание природы свечения звёзд, механизма их рождения и смерти делает картину ночного звёздного неба ещё более прекрасной и романтичной.

Хочу, в заключение, отметить один, несколько неожиданный, аспект пользы знания физики, притом отнюдь не поверхностного. О нём как-то рассказал академик А. Б. Мигдал. Он загорал в горах, а рядом расположилась парочка. Молодой человек объяснял своей приятнейшей спутнице, почему дневное небо синее. Он рассказывал ей про рассеяние света, упомянул лорда - теоретика Рэлея. Девушка сидела с открытым ртом, восхищённо глядя на эрудита. А того несло, и он, проявив неосторожность и невнимание к старшим, сказал, что вероятность рассеяния излучения пропорционально кубу частоты.

Но Мигдал уже был начеку. Припоминая классика, здесь уместного лишь в весьма ослабленной форме, сказать: возможно, академик "в мыслях, под ночною тьмою, уста невесты целовал". "Молодой человек, вероятность рассеяния не может быть пропорциональна кубу частоты - это бы очевидным образом противоречило инвариантности теории относительно изменения знака времени. У Релея, как и должно быть, вероятность пропорционально не кубу, а четвёртой степени частоты!",- своим обычным тоном, не допускающим возражений, заявил Мигдал. Нет нужды говорить, что треугольник изменил свою форму, и толстопузая гипотенуза стала катетом, достигнув вершины.

Словом, читайте про физику, а кому не поздно - учите её. Это окупится.

Физика в медицине

Медицинская физика – это наука о системе, которая состоит из физических приборов и излучений, лечебно-диагностических аппаратов и технологий.

Цель медицинской физики – изучение этих систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение.

Медицинские физики непосредственно участвуют в лечебно-диагностическом процессе, совмещая физико-медицинские знания, разделяя с врачом ответственность за пациента.

Развитие медицины и физики всегда были тесно переплетены между собой. Еще в глубокой древности медицина использовала в лечебных целях физические факторы, такие как тепло, холод, звук, свет, различные механические воздействия (Гиппократ, Авиценна и др.).

Первым медицинским физиком был Леонардо да Винчи (пять столетий назад), который проводил исследования механики передвижения человеческого тела. Наиболее плодотворно медицина и физика стали взаимодействовать с конца XVIII – начала XIX вв., когда были открыты электричество и электромагнитные волны, т. е. с наступлением эры электричества.

Назовем несколько имен великих ученых, сделавших важнейшие открытия в разные эпохи.

Конец XIX – середина ХХ вв. связаны с открытием рентгеновских лучей, радиоактивности, теорий строения атома, электромагнитных излучений. Эти открытия связаны с именами В. К. Рентгена, А. Беккереля,

М. Складовской-Кюри, Д. Томсона, М. Планка, Н. Бора, А. Эйнштейна, Э. Резерфорда. Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в. – с наступлением атомной эры. В медицине стали широко применяться радиодиагностические гамма-аппараты, электронные и протоновые ускорители, радиодиагностические гамма-камеры, рентгеновские компьютерные томографы и другие, гипертермия и магнитотерапия, лазерные, ультразвуковые и другие медико-физические технологии и приборы. Медицинская физика имеет много разделов и названий: медицинская радиационная физика, клиническая физика, онкологическая физика, терапевтическая и диагностическая физика.

Самым важным событием в области медицинского обследования можно считать создание компьютерных томографов, которые расширили исследования практически всех органов и систем человеческого организма. ОКТ были установлены в клиниках всего мира, и большое количество физиков, инженеров и врачей работало в области совершенствования техники и методов доведения ее практически до пределов возможного. Развитие радионуклидной диагностики представляет собой сочетание методов радиофармацевтики и физических методов регистрации ионизирующих излучений. Позитронная эмиссионная томография-визуализация была изобретена в 1951 г. и опубликована в работе Л. Ренна.

Физика и литература

В жизни, порой, не замечая этого, физика и литература тесно переплетаются. Ещё с древности люди для того, чтобы донести до потомков литературное слово, использовали изобретения, основываясь на знаниях физики. О жизни немецкого изобретателя Иоганна Гуттенберга известно мало. Однако, великий изобретатель, чтобы донести до нас литературные шедевры, изучал законы физики и механики. В организованной им типографии, он напечатал первые в Европе книги, что сыграло огромную роль в развитии человечества.

Первый русский печатник – Иван Фёдоров, современникам был известен, как учёный и изобретатель. Он, например, умел отливать пушки, изобрёл многоствольную мортиру. А первые замечательные образы литературного и полиграфического искусства - «Апостол» (1564 г.) и «Часовник» (1565 г.) навеки останутся в народной памяти.
Имя Михаила Васильевича Ломоносова мы называем одним из первых в ряду самых замечательных представителей отечественной науки и культуры. Великий физик, он оставил ряд трудов, имеющих важное значение для промышленного развития России. Большое место в его научных трудах занимала оптика. Он сам изготовлял оптические приборы и оригинальные зеркальные телескопы. Исследуя небо с помощью своих приборов, вдохновлённый бесконечностью Вселенной, Ломоносов писал прекрасные стихи:
Открылась бездна звезд полна.
Звездам числа нет, бездне – дна…

Без такой науки, как физика не было бы такого литературного жанра, как научно – фантастический роман. Одним из создателей этого жанра стал французский писатель Жюль Верн (1828 – 1905 гг.) Вдохновлённый великими открытиями XIX века, знаменитый писатель окружил физику романтическим ореолом. Все его книги «С Земли на Луну» (1865 г.), «Дети капитана Гранта» (1867-68 гг.), «20 000 лье под водой» (1869-70 гг.), «Таинственный остров» (1875 г.) проникнуты романтикой этой науки.

В свою очередь, многих изобретателей и конструкторов вдохновляли невероятные приключения героев Жюля Верна. Так, например, швейцарский учёный – физик Огюст Пиккар, словно повторяя пути фантастических героев, поднимался на изобретённом им стратостате в стратосферу, делая первый шаг на пути к раскрытию тайны космических лучей. Следующим увлечением О. Пиккара была идея покорения морских глубин. Изобретатель сам погружался на морское дно, на построенном им батискафе (1948 год).

Ещё около 160 лет назад в журнале «Отечественные записки» были опубликованы «Письма об изучении природы» (1844 – 1845 гг.) А. И. Герцена – одно из самых значительных и оригинальных произведений в истории как философской, так и естественно-научной русской мысли. Революционера, философа, автора одного из шедевров русской классической литературы сочинения «Былое и думы» - Герцена, тем не менее, живо интересовали естественные науки, в том числе физика, что он неоднократно подчёркивал в своих сочинениях.

Теперь необходимо обратиться к литературному наследию Л. Н. Толстого. Во-первых, потому что великий писатель был педагогом – практиком, а во-вторых, что многие его произведения касаются естественных наук. Наиболее известна комедия «Плоды просвещения». Писатель крайне негативно относился «ко всяким суевериям», он считал, что они «препятствуют истинному учению и мешают ему проникать в душу людей». Толстой так понимал роль науки в жизни общества: во-первых, он являлся сторонником организации жизни общества на строгой научной основе; во-вторых, он делает мощный акцент на нравственно – этические нормы, и в силу этого естественные науки в трактовке Толстого оказываются науками второстепенными. Именно поэтому Толстой осмеивает в «Плодах просвещения» московское барство, в головах которого перемешаны наука и антинаука.

Надо сказать, что во времена Толстого с одной стороны тогдашняя физика переживала тяжёлый кризис в связи с опытной проверками основных положений теории электромагнитного поля, которые опровергли гипотезу Максвелла о существовании мирового эфира, то есть той физической среды, которая передаёт электромагнитное взаимодействие; а с другой стороны было повальное увлечение спиритизмом. В своей комедии Толстой описывает сцену спиритического сеанса, где отчётливо просматривается естественнонаучный аспект. Особенно показательна лекция профессора Кругосветлова, где делается попытка дать медиумическим явлениям естественнонаучное толкование.

Если же говорить о современном значении комедии Толстого, то, пожалуй, следует отметить следующее:

1. Когда по каким – либо причинам, то или иное явление природы не получает своевременного объяснения, то его псевдонаучное, а порой и антинаучная интерпретация является весьма распространённым делом.

2. Знаменателен сам факт рассмотрения писателем научной тематики в художественном произведении.

Позже, в заключительной главе трактата «Что такое искусство?» (1897 год) Лев Николаевич подчёркивает взаимосвязь науки и искусства, как двух форм познания окружающего мира с учётом, разумеется, специфики каждой из этих форм. Познание через разум в одном случае и через чувства в другом.

Видимо не случайно великий известный американский изобретатель Томас Алва Эдисон (1847 – 1931 гг.) один из своих первых фонографов послал Л. Н. Толстому, и благодаря этому для потомков сохранён голос великого русского писателя.

Русскому учёному Павлу Львовичу Шиллингу суждено было войти в историю благодаря его работам в области электричества. Однако одно из главных увлечений Шиллинга – востоковедение – сделало его имя широко известным. Учёный собрал огромную коллекцию тибетско-монгольских литературных памятников, ценность которой трудно преувеличить. За что в 1828 году П. Л. Шиллинг был избран членом – корреспондентом Петербургской академии наук по разряду литературы и древностей Востока.

Невозможно себе представить мировую литературу без поэзии. Физика в поэзии занимает отведённую ей достойную роль. Поэтические образы, навеянные физическими явлениями, придают зримость и предметность миру мыслей и чувств поэтов. Какие только писатели не обращались к физическим явлениям, возможно даже сами, не ведая того, описывали их. У любого физика фраза «Люблю грозу в начале мая…» вызовет ассоциации с электричеством.

Передачу звука многие поэты описывали по-разному, но всегда гениально. Так, например, А. С. Пушкин в своём стихотворении «Эхо» прекрасно описывает это явление:
Ревёт ли зверь в лесу глухом,
Трубит ли рог, гремит ли гром,
Поёт ли дева за холмом -
На всякий звук
Свой отклик в воздухе пустом
Родишь ты вдруг.

У Г. Р. Державина «Эхо» выглядит немного по-другому:
Но, вдруг, отдавшись от холма
Возвратным грохотанием грома,
Гремит и удивляет мир:
Так ввек бессмертно эхо лир.

Также обращались к теме звука почти все поэты, воспевая и неизменно восхищаясь передачей его на расстояние.

Кроме того, почти все физические явления вызывали у творческих людей вдохновение. Трудно найти такого поэта в мировой литературе, который бы хоть раз не написал произведения о земле и небе, о солнце и звёздах, о грозе и молнии, о кометах и затмениях:
И, как и всякая комета,
Смущая блеском новизны,
Ты мчишься мёртвым комом света,
Путём, лишённым прямизны!
(К. К. Случевский)
У неба учишься и следуешь за ним:
Сама в движении, а полюс недвижим.
(Ибн Хамдис)

Ещё наши родители помнят спор, который разгорелся на рубеже 60–ых – 70–ых между «физиками» и «лириками». Каждый старался найти приоритеты именно в своей науке. Не победителей, не проигравших в том споре не было, и не могло быть, так как невозможно сравнивать две формы познания окружающего мира.

Хотелось бы закончить отрывком из произведения Роберта Рождественского (знаменитого шестидесятника), посвященным физикам – атомщикам. Произведение называется «Людям, чьих фамилий я не знаю»:
Сколько вы б напридумали разного!
Очень нужного и удивительного!
Вы – то знаете, что для разума
Никаких границ не предвидено.
Как бы людям легко дышалось!
Как бы людям светло любилось!
И какие бы мысли бились
В полушарьях земного шара!..
Но пока что над миром веет
Чуть смягчающее недоверье.
Но пока дипломаты высокие
Сочиняют послания мягкие,-
До поры и до времени всё-таки
Остаётесь вы безымянными.
Безымянными. Нелюдимыми.
Гениальными невидимками…
Каждый школьник в грядущем мире
Вашей жизнью хвастаться будет…
Низкий – низкий поклон вам, люди.
Вам, Великие.

Без фамилий.

Физика и искусство

Изобразительное искусство хранит богатейшие возможности для эстетического воспитания в процессе преподавании физики. Часто способные к живописи ученики тяготятся уроками, на которых точные науки преподаются им в виде свода законов и формул. Задача учителя - показать, что людям творческих профессий знания по физике просто необходимы профессионально, поскольку «…художнику, не обладающему определенным мировоззрением, в искусстве ныне делать нечего – его произведения, блуждающие вокруг частностей жизни, никого не заинтересуют и умрут, не успев родиться». Кроме того, очень часто интерес к предмету начинается именно с интереса к учителю, и учитель обязан знать хотя бы основы живописи и быть художественно образованным человеком, чтобы между ним и его учениками зародились живые связи.

Использовать эти сведения можно по-разному: иллюстрировать художественными произведениями физические явления и события из жизни физиков или, наоборот, рассматривать физические явления в технике живописи и технологии живописных материалов, подчеркивать использование науки в искусствах или описывать роль цвета на производстве. Но при этом необходимо помнить, что живопись на уроке физики не цель, а лишь помощница, что любой пример должен быть подчинен внутренней логике урока, ни в коем случае не следует сбиваться на художественно-искусствоведческий анализ.

Ученик встречается с искусством уже на первых уроках физики. Вот он открывает учебник, видит портрет М.В.Ломоносова и вспоминает знакомые по урокам литературы слова А.С.Пушкина, что Ломоносов «сам был нашим первым университетом». Здесь можно рассказать об экспериментах ученого с цветным стеклом, показать его мозаичное панно «Полтавская битва» и зарисовки полярных сияний, прочитать его поэтические строки о науке, о радости, которая приходит с приобретением новых знаний, очертить сферу интересов ученого как физика, химика, художника, литератора, привести слова академика И.Артоболевского: «Искусство для ученого – не отдых от напряженных занятий наукой, не только способ подняться к вершинам культуры, а совершенно необходимая составляющая его профессиональной деятельности».

Особенно выигрышным в этом отношении является раздел «Оптика»: линейная перспектива (геометрическая оптика), эффекты воздушной перспективы (дифракция и диффузное рассеяние света в воздухе), цвет (дисперсия, физиологическое восприятие, смешение, дополнительные цвета). Полезно заглянуть и в учебники живописи. Там раскрыто значение таких характеристик света, как сила света, освещенность, угол падения лучей. Рассказывая о развитии взглядов на природу света, учитель говорит о представлениях ученых древности, о том, что они объясняли свет как истечение с величайшей скоростью тончайших слоев атомов от тел: «Эти атомы сдавливают воздух и образуют отпечатки образов предметов, отражаемых во влажной части глаза. Вода является посредником видения, и потому влажный глаз видит лучше сухого. Но воздух есть причина, почему неясно видны удаленные предметы».

Различные ощущения света и цвета можно описать при изучении глаза, рассмотреть физическую основу оптических иллюзий, самой распространенной из которых является радуга.

Первым понял «устройство» радуги И.Ньютон, он показал, что «солнечный зайчик» состоит из различных цветов. Очень впечатляющим является повторение в классе опытов великого ученого, при этом хорошо процитировать его трактат «Оптика»: «Зрелище живых и ярких красок, получившихся при этом, доставляло мне приятное удовольствие».

Позднее физик и талантливый музыкант Томас Юнг покажет, что различия в цвете объясняются различными длинами волн. Юнг является одним из авторов современной теории цветов наряду с Г.Гельмгольцем и Дж.Максвеллом. Приоритет же в создании трехкомпонентной теории цветов (красный, синий, зеленый – основные) принадлежит М.В.Ломоносову, хотя гениальную догадку высказывал и знаменитый архитектор эпохи Возрождения Леон Батиста Альберти.

В подтверждение огромного влияния на впечатление силы цвета можно привести слова известного специалиста по технической эстетике Жака Вьено: «Цвет способен на все: он может родить свет, успокоение или возбуждение. Он может создать гармонию или вызвать потрясение: от него можно ждать чудес, но он может вызвать и катастрофу». Необходимо упомянуть, что свойствам цвета можно дать «физические» характеристики: теплые (красный, оранжевый) - холодные (голубой, синий); легкие (светлые тона) - тяжелые (темные). Цвет можно «уравновесить».

Хорошей иллюстрацией физиологического восприятия смешения цветов может послужить картина В.И.Сурикова «Боярыня Морозова»: снег на ней не просто белый, он небесный. При близком рассмотрении можно увидеть множество цветных мазков, которые издали, сливаясь воедино, и создают нужное впечатление. Этот эффект увлекал и художников-импрессионистов, создавших новый стиль – пуантилизм - живопись точками или мазками в форме запятых. «Оптическая смесь» – решающий фактор в технике исполнения, например, Ж.П.Сера, позволяла ему добиваться необыкновенной прозрачности и «вибрации» воздуха. Ученики знают результат механического смешения желтый + синий = зеленый, но неизменно удивляются эффекту, возникающему при наложении рядом на холст мазков дополнительных цветов, например зеленого и оранжевого, – каждый из цветов становится ярче, что объясняется сложнейшей работой сетчатки глаза.

Много иллюстраций можно подобрать на законы отражения и преломления света. Например, изображение опрокинутого пейзажа на спокойной поверхности воды, зеркала с заменой правого на левое и сохранением размеров, формы, цвета. Иногда художник вводит зеркало в картину с двойной целью. Так, И.Голицын в гравюре с изображением В.А.Фаворского, во-первых, показывает лицо старого мастера, вся фигура которого обращена к нам спиной, а во-вторых, подчеркивает, что зеркало здесь - еще и инструмент для работы. Дело в том, что офорт или гравюру на дереве или линолеуме режут в зеркальном отражении, чтобы оттиск получился нормально. В процессе работы мастер проверяет изображение на доске по отражению в зеркале.

Известный популяризатор науки физик М.Гарднер в своей книге «Живопись, музыка и поэзия» заметил: «Симметрия отражения – один из древнейших и самых простых способов создавать изображения, радующие глаз».

Вывод

Итак, мы убедились, что физика окружает нас везде и всюду.

Список используемой литературы:

  1. Большая советская энциклопедия.
  2. Интернет энциклопедия «Википедия»