Основоположником генетики как науки является. У каждой хромосомы есть гомологичная ей

Рождение генетики на рубеже двух веков (1900) было подготовлено всем предшествующим развитием биологической науки. XIX в. вошел в историю биологии благодаря двум великим открытиям: клеточной теории, сформулированной М. Шлейденом и Т. Шванном (1838), и эволюционному учению Ч. Дарвина (1859). Оба открытия сыграли определяющую роль в становлении генетики. Клеточная теория, объявившая клетку основной структурной и функциональной единицей всех живых существ, вызвала повышенный интерес к изучению ее строения, что в дальнейшем привело к открытию хромосом и описанию процесса клеточного деления. В свою очередь, теория Ч. Дарвина касалась важнейших свойств живых организмов, которые стали впоследствии предметом изучения генетики — наследственности и изменчивости. Обе теории в конце XIX в. объединила идея о необходимости существования материальных носителей этих свойств, которые должны находиться в клетках.

До начала ХХ в. все гипотезы о механизмах наследственности носили чисто умозрительный характер. Так, согласно теории пангенезиса Ч. Дарвина (1868) от всех клеток организма отделяются мельчайшие частицы — геммулы, которые циркулируют по кровяному руслу и попадают в половые клетки. После слияния половых клеток, в ходе развития нового организма, из каждой геммулы образуется клетка того же типа, от которого она произошла, обладающая всеми свойствами, в том числе и приобретенными родителями в течение жизни. Корни воззрения Дарвина относительно механизма передачи признаков от родителей к потомству через кровь лежат еще в натурфилософии древнегреческих философов, в том числе в учении Гиппократа (V в. до н.э.).

Еще одна умозрительная гипотеза наследственности была выдвинута в 1884 г. К. Негели (нем.). Он предположил, что в передаче наследственных задатков потомству принимает участие особое вещество наследственности — идиоплазма, состоящая из молекул, собранных в клетках в крупные нитевидные структуры — мицеллы. Мицеллы соединяются в пучки и образуют сеть, которая пронизывает все клетки. Идиоплазмой обладают как половые, так и соматические клетки. Остальная часть цитоплазмы в передаче наследственных свойств участия не принимает. Не будучи подкреплена фактами, гипотеза К. Негели, тем не менее, предвосхитила данные о существовании и структурированности материальных носителей наследственности.

Впервые на хромосомы как материальные носители наследственности указал А. Вейсман. В своей теории он исходил из выводов немецкого цитолога Вильгельма Ру (1883) о линейном расположении в хромосомах наследственных факторов (хроматиновых зерен) и продольном расщеплении хромосом во время деления как возможном способе распределения наследственного материала. Теория “зародышевой плазмы” А. Вейсмана получила окончательное оформление в 1892 г. Он считал, что в организмах существует особое вещество наследственности — “зародышевая плазма”. Материальным субстратом зародышевой плазмы являются хроматиновые структуры ядер половых клеток. Зародышевая плазма бессмертна, через половые клетки она передается потомкам, тогда как тело организма — сома — является смертным. Зародышевая плазма состоит из дискретных частиц — биофор, каждая из которых определяет отдельное свойство клеток. Биофоры группируются в детерминанты — частицы, определяющие специализацию клеток. Они, в свою очередь, объединяются в структуры более высокого порядка (иды), из которых формируются хромосомы (по терминологии А. Вейсмана —).

А. Вейсман отрицал возможность наследования приобретенных свойств. Источником наследственных изменений, согласно его учению, служат события, которые происходят в ходе процесса оплодотворения: потеря части информации (редукция) во время созревания половых клеток и смешение детерминантов отца и матери, приводящее к появлению новых свойств. Теория А. Вейсмана оказала огромное влияние на развитие генетики, определив дальнейшее направление генетических исследований.

К началу ХХ в. были созданы реальные предпосылки для развития генетической науки. Решающую роль сыграло переоткрытие в 1900 г. законов Г. Менделя. Чешский исследователь-любитель, монах Брюннского монастыря Грегор Мендель еще в 1865 г. сформулировал основные законы наследственности. Это стало возможным благодаря разработке им первого научного генетического метода, который получил название “гибридологического”. В его основу была положена система скрещиваний, позволяющая вскрывать закономерности наследования признаков. Менделем были сформулированы три закона и правило “чистоты гамет”, которые будут подробно рассмотрены в следующей лекции. Не менее (а, может быть, более) важным было то, что Мендель ввел понятие о наследственных задатках (прообразах генов), которые служат материальной основой развития признаков, и высказал гениальную догадку об их парности как результате слияния “чистых” гамет.

Исследования Менделя и его взгляды на механизм наследования опередили развитие науки на несколько десятилетий. Даже умозрительные гипотезы о природе наследственности, о которых говорилось выше, были сформулированы позже. Еще не были открыты хромосомы и не был описан процесс клеточного деления, который лежит в основе передачи наследственной информации от родителей к потомкам. В связи с этим современники, даже те, кто подобно Ч. Дарвину был знаком с работами Г. Менделя, не сумели по достоинству оценить его открытие. На протяжении 35 лет оно не было востребовано биологической наукой.

Справедливость восторжествовала в 1900 г., когда последовало вторичное переоткрытие законов Менделя одновременно и независимо тремя учеными: Г. де Фризом (голл.), К. Корренсом (нем.) и Э. Чермаком (австр.). Повторив эксперименты Менделя, они подтвердили универсальный характер открытых им закономерностей. Менделя стали считать основателем генетики, и с 1900 г. начался отсчет развития этой науки.

В истории генетики обычно выделяют два периода: первый — период классической, или формальной, генетики (1900-1944) и второй — период молекулярной генетики, который продолжается до настоящего времени. Основная особенность первого периода заключается в том, что природа материальных носителей наследственности оставалась неизвестной. Введенное датским генетиком В. Иогансеном понятие “ген” — аналог менделевского наследственного фактора — было абстрактным. Вот цитата из его работы 1909 г.: “Свойства организма обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами. В настоящее время нельзя составить никакого определенного представления о природе генов, мы можем лишь довольствоваться тем, что подобные элементы действительно существуют. Но являются ли они химическими образованиями? Об этом мы пока не знаем решительно ничего”. Несмотря на отсутствие знаний о физико-химической природе гена, именно в этот период были вскрыты основные законы генетики и разработаны генетические теории, составившие фундамент этой науки.

Переоткрытие законов Менделя в 1900 г. привело к быстрому распространению его учения и многочисленным, чаще всего успешным, попыткам исследователей в разных странах на разных объектах (куры, бабочки, грызуны и др.) подтвердить универсальный характер его законов. В ходе этих экспериментов были вскрыты новые закономерности наследования. В 1906 г. английские ученые У. Бэтсон и Р. Пеннет описали первый случай отклонения от законов Менделя, названный позже сцеплением генов. В этом же году английский генетик Л. Донкастер в опытах с бабочкой обнаружил явление сцепления признака с полом. Одновременно в начале ХХ в. начинается изучение стойких наследственных изменений мутаций (Г. де Фриз, С. Коржинский), а также появляются первые работы по генетике популяций. В 1908 г. Г. Харди и В. Вайнберг сформулировали основной закон генетики популяций о постоянстве частот генов.

Но наиболее важными исследованиями периода классической генетики были работы выдающегося американского генетика Т. Моргана и его учеников. Т. Морган является основателем и руководителем крупнейшей в мире генетической школы, из которой вышла целая плеяда талантливых генетиков. В своих исследованиях Морган впервые использовал плодовую мушку дрозофилу, которая стала излюбленным генетическим объектом и продолжает им оставаться и сейчас. Изучение явления сцепления генов, открытого У. Бетсоном и Р. Пеннетом, позволило Моргану сформулировать основные положения хромосомной теории наследственности, с которыми мы подробно познакомимся ниже. Главный тезис этой базовой генетической теории заключался в том, что гены в линейном порядке располагаются в хромосоме, подобно бусинкам на ниточке. Однако даже в 1937 г. Морган писал о том, что среди генетиков нет согласия в точке зрения на природу гена — являются ли они реальными или абстракцией. Но отмечал, что в любом случае ген ассоциирован со специфической хромосомой и может быть локализован там путем чистого генетического анализа.

Морганом и его коллегами (Т. Пайнтер, К. Бриджес, А. Стертевант и др.) выполнен ряд других выдающихся исследований: разработан принцип генетического картирования, создана хромосомная теория определения пола, изучена структура политенных хромосом.

Важным событием периода классической генетики было развитие работ по искусственному мутагенезу, первые данные о котором были получены в 1925 г. в СССР Г.А. Надсоном и Т.С. Филипповым в опытах по облучению дрожжевых клеток радием. Решающее значение для развертывания работ в этом направлении имели эксперименты американского генетика Г. Меллера по воздействию рентгеновских лучей на дрозофилу и разработка им методов количественного учета мутаций. Работа Г. Меллера вызвала огромное число экспериментальных исследований с использованием рентгеновских лучей на разных объектах. В результате был установлен их универсальный мутагенный эффект. Позже было обнаружено, что мутагенным действием обладают и другие типы излучения, например УФ, а также высокая температура и некоторые химические вещества. Первые химические мутагены были открыты в 30-х гг. в СССР в экспериментах В.В. Сахарова, М.Е. Лобашева и С.М. Гершензона и их сотрудников. Через несколько лет это направление приобрело широкий размах, особенно благодаря исследованиям А.И. Рапопорта в СССР и Ш. Ауэрбаха в Англии.

Исследования в области экспериментального мутагенеза привели к быстрому прогрессу в познании мутационного процесса и к выяснению ряда вопросов, касающихся тонкой структуры гена.

Еще одно важное направление генетических исследований в период классической генетики касалось изучения роли генетических процессов в эволюции. Основополагающие работы в этой области принадлежат С. Райту, Р. Фишеру, Дж. Холдейну и С.С. Четверикову. Своими трудами они подтвердили правильность основных положений дарвинизма и способствовали созданию новой современной синтетической теории эволюции, которая представляет собой результат синтеза теории Дарвина и генетики популяций.

С 1940 г. начался второй период в развитии мировой генетики, который получил название молекулярного, в соответствии с лидирующим положением этого направления генетической науки. Основную роль в бурном подъеме молекулярной генетики сыграл тесный альянс биологов с учеными других областей естествознания (физики, математики, кибернетики, химии), на волне которого был сделан ряд важнейших открытий. В течение этого периода ученые установили химическую природу гена, определили механизмы его действия и контроля и сделали еще много важнейших открытий, которые превратили генетику в одну из основных биологических дисциплин, определяющих прогресс современного естествознания. Открытия молекулярной генетики не опровергли, а лишь вскрыли глубинные механизмы тех генетических закономерностей, которые были вскрыты формальными генетиками.

Работами Дж. Бидла и Э. Тетума (США) было установлено, что мутации у хлебной плесени Neurospora crassa блокируют различные этапы клеточного метаболизма. Авторы высказали предположение, что гены контролируют биосинтез ферментов. Появился тезис: “один ген — один фермент”. В 1944 г. исследование по генетической трансформации у бактерий, выполненное американскими учеными (О. Эйвери, К. Маклеод и М. Маккарти), показало, что носителем генетической информации является ДНК. Этот вывод позже был подтвержден при изучении явления трансдукции (Дж. Ледерберг и М. Зиндер, 1952) — переноса информации от одной бактериальной клетки к другой с помощью фаговой ДНК.

Перечисленные исследования определили повышенный интерес к изучению структуры ДНК, следствием которого явилось создание в 1953 г. модели молекулы ДНК Дж. Уотсоном (амер. биолог) и Ф. Криком (англ. химик). Она была названа двойной спиралью, так как согласно модели построена из двух закрученных в спираль полинуклеотидных цепей. ДНК — полимер, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из пятиуглеродного сахара дезоксирибозы, остатка фосфорной кислоты, и одного из четырех азотистых оснований (аденин, гуанин, цитозин и тимин). Эта работа сыграла основную роль в дальнейшем развитии генетики и молекулярной биологии.

На основании этой модели был вначале постулирован (Ф. Крик), а затем и доказан экспериментально (М. Месельсон и Ф. Сталь, 1957 г.) полуконсервативный механизм синтеза ДНК, при котором молекула ДНК разделяется на две одиночные цепи, каждая из которых служит матрицей для синтеза дочерней цепи. В основе синтеза лежит принцип комплементарности, определенный ранее Э. Чаргаффом (1945), согласно которому азотистые основания двух цепей ДНК располагаются друг против друга парами, причем аденин соединяется только с тимином (А-Т), а гуанин с цитозином (G-C). Одним из следствий создания модели стала расшифровка генетического кода — принципа записи генетической информации. Над этой проблемой трудились многие научные коллективы в разных странах. Успех пришел к амер. генетику М. Ниренбергу (нобелевский лауреат), в лаборатории которого было расшифровано первое кодовое слово — кодон. Этим словом стал триплет YYY, последовательность из трех нуклеотидов с одним и тем же азотистым основанием — урацилом. В присутствии молекулы иРНК, состоящей из цепочки таких нуклеотидов, синтезировался монотонный белок, содержащий последовательно соединенные остатки одной и той же аминокислоты — фенилаланина. Дальнейшая расшифровка кода была делом техники: используя матрицы с разными сочетаниями оснований в кодонах, ученые составили кодовую таблицу. Были определены все особенности генетического кода: универсальность, триплетность, вырожденность и неперекрываемость. Расшифровку генетического кода по значению для развития науки и практики сравнивают с открытием ядерной энергии в физике.

После расшифровки генетического кода и определения принципа записи генетической информации ученые задумались над тем, каким образом осуществляется перенос информации с ДНК на белок. Исследования этой проблемы закончились полным описанием механизма реализации генетической информации, включающего два этапа: транскрипцию и трансляцию.

После определения химической природы гена и принципа его действия встал вопрос о том, как регулируется работа генов. Впервые он прозвучал в исследованиях французских биохимиков Ф. Жакоба и Ж. Моно (1960), которые разработали схему регуляции группы генов, контролирующих процесс сбраживания лактозы в клетке кишечной палочки. Они ввели понятие бактериального оперона как комплекса, который объединяет все гены (как структурные, так и гены-регуляторы), обслуживающие какое-либо звено метаболизма. Позже правильность их схемы была доказана экспериментально при изучении разнообразных мутаций, затрагивающих различные структурные единицы оперона.

Постепенно вырабатывалась схема механизма регуляции генов эукариот. Этому способствовало установление прерывистой структуры некоторых генов и описание механизма сплайсинга.

Под влиянием прогресса в изучении структуры и функции генов в начале 70-х гг. ХХ в. у генетиков возникла идея манипуляции ими, в первую очередь, путем переноса их из клетки в клетку. Так появилось новое направление генетических исследований — генная инженерия.

Базу для развития этого направления составили эксперименты, в ходе которых были разработаны методы получения отдельных генов. В 1969 г. в лаборатории Дж. Бэквита из хромосомы кишечной палочки с использованием явления трансдукции был выделен лактозный оперон. В 1970 г. коллективом под руководством Г. Корано был впервые осуществлен химический синтез гена. В 1973 г. разработан метод получения фрагментов ДНК — доноров генов — с использованием ферментов рестриктаз, разрезающих молекулу ДНК. И, наконец, был разработан метод получения генов на основе явления обратной транскрипции, открытый в 1975 г. Д. Балтимором и Г. Теминым. Для введения чужеродных генов в клетки на основе плазмид, вирусов, бактериофагов и транспозонов (мобильных генетических элементов) конструировались различные векторы — молекулы-переносчики, которые осуществляли процесс переноса. Комплекс вектора с геном был назван рекомбинантной молекулой. Первая рекомбинантная молекула на основе ДНК фага была сконструирована в 1974 г. (Р. Маррей и Д. Маррей). В 1975 г. были разработаны методы клонирования клеток и фагов со встроенными генами.

Уже в начале 70-х гг. были получены первые результаты экспериментов в области генной инженерии. Так, в клетку кишечной палочки была введена рекомбинантная молекула, содержащая два разных гена устойчивости к антибиотикам (тетрациклину и стрептомицину), после чего клетка приобрела резистентность к обоим препаратам.

Постепенно расширялся набор векторов и вводимых генов и совершенствовалась технология переноса. Это позволило широко использовать методы генной инженерии в промышленных целях (биотехнология), в первую очередь в интересах медицины и сельского хозяйства. Были сконструированы бактерии — продуценты биологически активных веществ. Это позволило наладить в нужных масштабах синтез таких необходимых человеку препаратов, как инсулин, соматостатин, интерферон, триптофан и др. Создано большое количество трансгенных растений, которые стали обладателями ценных свойств (устойчивость к вредителям, засухе, высокое содержание белка и пр.) в результате введения в их геном чужеродных генов.

В 70-х гг. были начаты работы по секвенированию геномов разных объектов, начиная с бактериофагов и кончая человеком.

Особого внимания заслуживает международная генетическая программа “Геном человека”, целью которой являются полная расшифровка генетического кода человека и картирование его хромосом. В перспективе намечается интенсивное развитие новой области медицинской генетики — генотерапии, которое должно способствовать снижению риска проявления вредных генов и тем самым максимальному ограничению генетического груза.

История развития генетики в России

Становление генетики в России произошло во втором десятилетии ХХ в. Создателем первой отечественной школы генетиков был Юрий Александрович Филипченко. В 1916 г. он начал читать в Санкт-Петербургском университете курс лекций “Учение о наследственности и эволюции”, в котором центральное место отвел законам Менделя и исследованиям Т. Моргана. Им был сделан авторизированный перевод книги Моргана “Теория гена”. Научные интересы Ю.А. Филипченко лежали в области наследственности и изменчивости качественных и количественных признаков. Особое внимание он уделял статистическим закономерностям изменчивости. Ю.А. Филипченко написал ряд превосходных книг, среди них учебник “Генетика”, по которому в нашей стране училось несколько поколений биологов.

В этот же период сформировались еще две научные генетические школы: одна в Институте экспериментальной биологии (г. Москва) под руководством Николая Константиновича Кольцова, другая под руководством Николая Ивановича Вавилова начала создаваться в Саратове, где он был избран профессором университета, а окончательно сформировалась в Ленинграде на базе Всесоюзного Института растениеводства (ВИР).

Н.К. Кольцов возглавлял крупный Научно-исследовательский институт экспериментальной биологии в Москве. Он первым высказал идею о макромолекулярной организации носителей наследственности (хромосом) и их самоудвоении как механизме передачи генетической информации. Идеи Н.К. Кольцова оказали сильное влияние на известных ученых того периода, не только биологов, но и физиков, чьи исследования структуры гена привели к развитию молекулярной генетики. Из научной школы Н.К. Кольцова вышли такие крупные генетики, как А.С. Серебровский, Б.Л. Астауров, Н.П. Дубинин, Н.В. Тимофеев-Ресовский, В.В. Сахаров и другие.

Выдающийся генетик и селекционер Н.И. Вавилов завоевал широкое признание своими трудами в области изучения мирового земледелия и растительных ресурсов. Он является автором учения о центрах происхождения и разнообразия культурных растений и учения об иммунитете, а также закона гомологических рядов в наследственной изменчивости. Кроме того, им создана мировая коллекция сельскохозяйственных и технических растений, в том числе знаменитая коллекция сортов пшеницы. Н.И. Вавилов пользовался большим авторитетом не только среди отечественных, но и среди зарубежных ученых. В созданный им в Ленинграде Всесоюзный институт растениеводства (ВИР) съезжались работать ученые со всех стран мира. Признанием заслуг Н.И. Вавилова стало избрание его президентом Международного генетического конгресса, который состоялся в 1937 г. в Эдинбурге. Однако обстоятельства не позволили Н.И. Вавилову присутствовать на этом съезде.

Серьезный вклад в развитие теоретической генетики внесли исследования профессора Московского университета Александра Сергеевича Серебровского и его молодых коллег Н.П. Дубинина, Б.Н. Сидорова, И.И. Агола и других. В 1929 г. ими было сделано открытие явления ступенчатого аллелизма у дрозофилы, которое стало первым шагом к отказу от утвердившегося среди генетиков представления о неделимости гена. Была сформулирована центровая теория строения гена, согласно которой ген состоит из более мелких субъединиц — центров, которые могут мутировать независимо друг от друга. Эти исследования послужили стимулом для развертывания работ по изучению структуры и функции гена, результатом которых стала выработка современной концепции сложной внутренней организации гена. Позже (в 1966 г.) за цикл работ в области теории мутаций Н.П. Дубинин был удостоен Ленинской премии.

К началу 40-х гг. ХХ в. в СССР генетика находилась в состоянии расцвета. Помимо указанных выше, следует отметить работы Б.Л. Астаурова по регулированию пола у тутового шелкопряда генетическими методами; цитогенетические исследования Г.А. Левитского, работы А.А. Сапегина, К.К. Мейстера, А.Р. Жебрака, Н.В. Цицина по генетике и селекции растений; М.Ф. Иванова по генетике и селекции животных; В.В. Сахарова, М.Е. Лобашева, С.М. Гершензона, И.А. Рапопорта по химическому мутагенезу; С.Г. Левита и С.Н. Давиденкова по генетике человека и работы многих других талантливых ученых.

Однако сложившаяся в СССР к началу Второй мировой войны политическая ситуация противостояния капиталистическому миру привела к гонениям на ученых, работавших в области генетики, которая была объявлена идеалистической буржуазной наукой, а ее приверженцы — агентами мирового империализма. Репрессии обрушились на головы многих известных ученых, в том числе Н.И. Вавилова, М.Е. Лобашева, Г.Д. Карпеченко, С.М. Гершензона и многих, многих других. Генетика была отброшена на несколько десятилетий назад. Немалую роль в развале генетической науки сыграл Т.Д. Лысенко. Будучи простым агрономом, он не смог подняться до уровня классической генетики с ее абстрактными представлениями о гене и поэтому просто отрицал законы Менделя, хромосомную теорию наследственности Моргана, учение о мутациях. Свою научную несостоятельность Лысенко прикрывал щедрыми обещаниями быстрого подъема сельского хозяйства с помощью пропагандируемых им методов переделки растений под влиянием условий выращивания, чем заслужил поддержку лично И.В. Сталина. В качестве щита Лысенко использовал работы выдающегося селекционера И.В. Мичурина. В отличие от мировой науки, наша генетика стала называться мичуринской. Такая “честь” привела к тому, что за Мичуриным закрепилась слава приверженца идей Лысенко, которая не покидала ученого даже после краха деятельности последнего. На самом же деле И.В. Мичурин был выдающимся селекционером-практиком, плодоводом, никогда не имевшим отношения к разработке теоретических основ генетической науки.

Отечественная наука окончательно очистилась от “лысенковщины” только к середине 60-х гг. Вышли из “подполья” многие из пострадавших от репрессий ученых, те, кому удалось выжить, в том числе Н.В. Тимофеев-Ресовский, М.Е. Лобашов, В.В. Сахаров и другие. Сохраненные ими традиции и большой потенциал, заложенный в их учениках, способствовали быстрому движению вперед, хотя отставание от мирового уровня, конечно, давало о себе знать. Тем не менее, поднималось новое поколение отечественных генетиков, которым предстояло вывести эту науку на прежний уровень. И снова ряды ученых с мировой известностью пополнились российскими именами: А.Н. Белозерского, В.А. Энгельгардта, С.И. Алиханяна, Р.Б. Хесина, А.С. Спирина, С.В. Шестакова, С.Г. Инге-Вечтомова, Ю.П. Алтухова и многих других.

Однако новые социальные потрясения, вызванные перестройкой, повлекшей отток научных кадров за границу, снова помешали нашей науке обрести соответствующий статус. Остается надеяться, что молодое поколение, опираясь на заложенный предшествующими корифеями фундамент, сможет выполнить эту благородную миссию.

Генетика -наука о закономерностях наследственности и изменчивости. Основной задачей генетики является изучение следующих проблем:

1. Хранение наследственной информации.

2. Механизм передачи генетической информации от поколения к поколению клеток или организмов.

3. Реализация генетической информации.

Изменение генетической информации (изучение типов, причин и механизмов изменчивости).

Разработка методов использования генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений, а в перспективе и внедрение этих методов в генетику растений, животных и даже человека. Методы, используемые в генетике, разнообразны, но основной из них - гибридологический анализ, то есть скрещивание с последующим генетическим анализом потомства. Он используется на молекулярном, клеточном (гибридизация соматических клеток) и организменном уровнях. Кроме того, в зависимости от уровня исследования (молекулярный, клеточный, организменный, популяционный), изучаемого объекта (бактерии, растения, животные, человек) и других факторов используются самые разнообразные методы современной биологии, химии, физики, математики. Однако каковы бы ни были методы, они всегда являются вспомогательными к основному методу - генетическому анализу. В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работаОпыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице , на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Гибридологический анализ – фундаментальный метод генетики, его основные положения.

Гибридологический метод – изучение наследования путем гибридизации (скрещивания), то есть объединения двух генетически разных организмов (гамет). Гетерозиготный организм, который получается при этом, называется гибридом, а потомство – гибридным.

Основные принципы гибридологического метода:

1) для скрещивания используются чистосортные (гомозиготные) родительские организмы, которые отличаются между собою за одной или несколькими парами альтернативных признаков;

2) проводится точный количественный учет потомства в отдельности за каждым исследуемым признаком в ряде поколений.

Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания, скрещивать homosapiens в эксперименте не представляется возможным.Поэтому для изучения генетики человека применяют косвенные методы.

Результаты были обобщены Менделем в следующих трех положениях:

  • правило единообразия первого гибридного поколения;
  • закон расщепления второго гибридного поколения;
  • гипотеза чистоты гамет.

Правило единообразия первого поколения:

при скрещивании гомазиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Правило расщепления. Второй закон .

При скрещивании однородных гибридов первого поколения между собой (самоопыление или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, т. е. наблюдается расщепление.

Согласно второму правилу Менделя можно сделать вывод, что:

1) аллельные гены, находясь в гетерозиготном состоянии, не изменяют друг друга;

2) при созревании гамет у гибридов образуется приблизительно равное число гамет с доминантными и рецессивными аллелями;

3) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.

Таким образом, второе правило Менделя формулируется так: при скрещивании двух гетерозиготных особей, т. е. гибридов, анализируемых по одной альтернативной паре признаков, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1:2:1.

Гипотеза «чистоты гамет».

Правило расщепления показывает, что хотя у гетерозигот проявляются лишь доминантные признаки, однако рецессивный ген не утрачен, более того, он не изменился. Следовательно, аллельные гены, находясь в гетерозиготном состоянии, не сливаются, не разбавляются, не изменяют друг друга. При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

1. Что изучает генетика?

Ответ. Генетика (от греч. genesis - происхождение) , наука, изучающая закономерности наследственности и изменчивости организмов.

2. Почему основателем генетики считают Г. Менделя?

Ответ. В 1866 году была опубликована работа с изложением фундаментальных открытий Г. Менделя, который установил закономерности передачи наследственных задатков, но эта работа, к сожалению, не была оценена современниками. Основной заслугой Г. Менделя было открытие дискретного характера наследования. Фактически, именно Г. Мендель является основоположником генетики, хотя летоисчисление генетики ведется с 1900 года - момента публикации работ К. Корренса, Г. Де Фриза, Э. Чермака.

3. Как называется метод исследования, созданный Г. Менделем?

Ответ. Основные закономерности наследования были открыты Г. Менделем. Мендель достиг успехов в своих исследованиях благодаря совершенно новому, разработанному им методу, получившему название гибридологического анализа. Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам (фенотипу) потомков, полученных при определенных скрещиваниях.

Метод имеет основные положения:

Учитывается не весь многообразный комплекс признаков у родителей и гибридов, а анализируется наследование по отдельным альтернативным признакам.

Проводится точный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений: прослеживается не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности. Гибридологический метод нашел широкое применение в науке и практике.

Вопросы после § 38

1. Почему Г. Мендель выбрал для исследования наследственности именно горох?

Ответ. Проводя свои классические опыты, Мендель следовал нескольким правилам. Во-первых, он использовал растения, которые отличались друг от друга малым количеством признаков. Во-вторых, ученый работал только с растениями чистых линий. Так, у растений одной линии семена всегда были зелеными, а у другой - желтыми. Чистые линии Мендель вывел предварительно, путем самоопыления растений гороха.

Мендель ставил опыты одновременно с несколькими родительскими парами гороха; растения каждой пары принадлежали к двум разным чистым линиям. Это позволило ему получить больше экспериментального материала.

При обработке полученных данных Мендель использовал количественные методы, точно подсчитывая, сколько растений с данным признаком (например, семян с желтой и зеленой окраской) появилось в потомстве.

Необходимо добавить, что Мендель очень удачно выбрал объект для своих опытов. Горох легко выращивать в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются друг от друга рядом хорошо различимых признаков, и, наконец, в природе горох самоопыляем, но в эксперименте самоопыление легко предотвратить, и исследователь может опылить растение пыльцой с другого растения.

Исследуя закономерности наследования признаков, Г. Мендель использовал в опытах 22 чистые линии садового гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые-морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные - карликовые).

2. Что такое чистая линия?

Ответ. Чистая линия - группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

3. Почему именно Г. Менделя считают основоположником генетики?

Ответ. Г. Мендель обладал важнейшими для настоящего учёного качествами. Во-первых, Г. Мендель сумел сформулировать конкретный вопрос, на который ему хотелось бы получить ответ, и, во-вторых, он умел правильно понимать и трактовать результаты опытов, т. е. был способен сделать корректные выводы из результатов своих экспериментов. Результаты многолетней работы Г. Мендель обобщил в публикации «Опыты над растительными гибридами», которая вышла в свет 8 февраля 1865 г. В этой статье были изложены основные закономерности наследования признаков, которые легли в основу современной генетики. Таким образом, генетика – одна из немногих научных дисциплин, у которых есть точная дата рождения. Однако работы Г. Менделя опередили своё время; они были оценены по достоинству только через 35 лет.

В 1900 г. три исследователя (Гуго де Фриз, Карл Эрих Корренс, Эрих Чермак) независимо друг от друга на разных объектах переоткрыли законы Менделя. Результаты работ этих исследователей доказали правильность закономерностей, установленных в своё время Г. Менделем. Они честно признали его первенство в этом вопросе и присвоили этим закономерностям имя Менделя. 1900 год считается официальной датой рождения науки генетики.

Основоположник генетики - австровенгерский естествоиспытатель Грегор Иоганн Мендель (1822-1884). В молодые годы он преподавал физику и естествознание в общеобразовательной школе, впоследствии стал послушником, а затем настоятелем Брюнненского монастыря ордена Святого Августина, расположенного в небольшом городке Брюнна в Австро-Венгрии (ныне город Брно в Чехии). В 1865 г. Г. Мендель опубликовал в трудах провинциального общества естествоиспытателей природы статью «Опыты над растительными гибридами», в которой на примере скрещивания различных линий садового гороха выделил закономерности наследования признаков. Однако эта работа долгое время оставалась неизвестной большинству современников Г. Менделя. Только в 1900 г. ботаники из разных стран - Хуго де Фриз (1848-1935) из Голландии, Карл Корренс (1864- 1933) из Германии и Эрих фон Чермак (1871-1962) из Австрии - на других биологических объектах, независимо друг от друга и почти одновременно «переоткрыли» закономерности наследования, установленные Г. Менделем.

Теперь 1900 г. считается официальным (но не фактическим) годом рождения генетики как науки, хотя сам термин «генетика» пред-

ложен только в 1906 г. англичанином Уильямом Бэтсоном (ученый перепроверил эксперименты Г. Менделя и полностью подтвердил их огромное значение).

Начало XX в. примечательно для историков генетики еще рядом событий. В 1901 г. немецкий врач Карл Ландштейнер разделил кровь человека по антигенам на 4 группы: 0, А, В и АВ, т.е. впервые привел пример наследования признаков у человека. Позже К. Ландштейнер совместно с П. Левиным и О. Винером описали Rh-фактор и группы крови системы MN (1927).

В дальнейшем в биологии и медицине произошли грандиозные перемены, связанные с возникновением и последующим торжеством идей эволюционизма, представлений о законах наследственности. Уже к 1950 г. не одни лишь прогрессивно мыслящие люди, но даже самые непримиримые ортодоксы, священники Римской католической церкви, были вынуждены согласиться с правомочностью эволюционной теории: ее признал в специальной энциклике «Происхождение человека» Папа Римский Пий XII. Однако католики настаивали: «Душа человека создана Богом!»

Следует отметить: материалистический термин «эволюция« впервые применил в начале XX в. английский врач Френсис Гальтон (1822-1911), основоположник евгеники - науки о совершенствовании человеческого рода.

Известно, что Ф. Гальтон приходился кузеном гораздо более знаменитому англичанину - Чарльзу Дарвину (1809-1882). Но тот отдавал предпочтение теории «пангенезиса«, основанной еще до н.э. древними философами Гиппократом (460-557), Платоном (429-347) и Аристотелем (384-322). Именно увлечение «пангенезисом» помешало Ч. Дарвину полностью обосновать (до рождения генетики) собственную прогрессивную теорию. Его ошибку в дальнейшем исправили последователи ученого.

Согласно современным представлениям, эволюция есть процесс происхождения биологических видов или прогрессивного развития живой материи, обусловленный внутренними (мутации) и внешними (естественный отбор, изоляция, дрейф генов) факторами.

Следует отметить: в конце XX в. дарвиновская интерпретация эволюции и даже правомерность самой постановки вопроса о том, была ли эволюция на Земле, ставились под сомнение деятелями церкви и поддерживающими их учеными-профессионалами. В частности, в противовес эволюционизму (эволюционизм - современный

дарвинизм как синтетическая теория эволюции) они выдвинули концепцию креационизма, предлагая рассматривать многообразие органического мира как результат божественного творения. Сторонники креационизма основываются на сравнении положений дарвиновской теории эволюции с данными биологических дисциплин (включая молекулярную биологию) и утверждают: теория эволюции - лишь одно из возможных объяснений существования органического мира, не имеющее фактического обоснования, а потому сходное с религиозными системами взглядов. По мнению таких исследователей, «наступает закат эпохи дарвинизма».

Существует также еще одна точка зрения на происхождение жизни на Земле: «...возможно, что это длительный эксперимент внеземных цивилизаций» на людях и других земных биологических видах, доставленных сюда из космоса в качестве «подопытных кроликов» много тысяч (если не миллионов) лет назад.

В пользу последней гипотезы свидетельствует, например, библейская легенда о Всемирном потопе: достаточно вспомнить «пассажиров» Ноева ковчега. Однако хотелось бы знать: куда столь странный, аморальный, по земным меркам, «эксперимент» заведет наш органический мир? Оставим данный вопрос без ответа и продолжим рассмотрение истории развития генетики, весьма неоднозначного в нашей стране.

В России о зарождении генетики как науки впервые сообщил в 1912 г. на лекции в Петербургском университете Николай Иванович Вавилов (1887-1943) - великий русский генетик, положивший начало пониманию эволюции мутационного процесса, создавший учение о генетических основах селекции, сформулировавший закон гомологичных рядов в наследственной изменчивости. Именно по инициативе Н.И. Вавилова в 1929 г. было принято решение об организации кафедр генетики и селекции в университетах СССР.

Большой вклад в мировую и отечественную генетику внес Николай Константинович Кольцов (1872-1940), в 1928 г. - заведующий кафедрой биологии во 2-м Московском университете (в дальнейшем - 2-й Московский медицинский институт им. Н.И. Пирогова, а затем - Российский медицинский университет). Работы Н.К. Кольцова (по изучению групп крови, активности фермента каталазы, проблем мутационной изменчивости; химического мутагенеза, трансплантации органов и тканей; их сохранения в высушенном состоянии, методов омоложения организма и культивирования клеток in vitro)

стали поистине новаторскими. Но главное его достижение - обоснование положения о наследственных молекулах - хромосомах, пророчески предугаданный принцип самоудвоения наследственных молекул (1927).

Правда, Н.К. Кольцов считал носителем наследственной информации не молекулу ДНК, а молекулу белка (в дальнейшем оказалось, что белок есть функция или проявление гена). Только в 1953 г. Джеймс Уотсон, Френсис Крик, Морис Уилкинс и Розалинда Франклин в своих работах доказали обратное, впервые описав молекулярную структуру нативной ДНК и получив ее рентгенограмму в виде двойной спирали («нечто вроде штопора»). В 1962 г. за это открытие трое из авторов получили Нобелевскую премию (Р. Франклин тогда уже скончалась от рака).

Предположение Н.К. Кольцова о наличии хромосом сыграло огромную роль в развитии генетики. Следует отметить, что биологическую функцию молекулы ДНК связали с ее химическим строением раньше 1953 г. Еще в 1944 г. О.Т. Эйвери и его коллеги установили: ДНК является носителем генетической информации.

Н.К. Кольцов был также близок к представлению, высказанному в 1941 г. Джорджем Бидлом и Эдвардом Тэйтемом в виде формулы: «один ген - один фермент». В дальнейшем она трансформировалась в формулу «один ген - один признак», а затем «один ген - одна полипептидная цепь». Последняя длительное время считалась основной в молекулярной биологии, но в конце XX в. появились и другие: «два гена или семь генов - одна полипептидная цепь; один ген или отдельные участки гена - несколько полипептидных цепей». Тем не менее, несомненно: Н.К. Кольцов, бесспорно, стоял у истоков молекулярной биологии и медицины.

Отечественную классическую школу исследований морфологии хромосом человека основал Григорий Андреевич Левитский (1878- 1942). Он заложил фундамент цитогенетики, создал первое руководство по материальным основам наследственности (1924). В его дискуссиях с С.Г. Навашиным и Л.Н. Делоне в 1931 г. впервые используются термины «кариотип« (хромосомный набор вида со всеми особенностями: числом, формой и деталями строения хромосом) и «идиограмма» (схематическое изображение хромосом).

Один из классиков русской генетики - Сергей Сергеевич Четвериков (1870-1959). Его работа «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926)

положила начало целому научному направлению - популяционной генетике, в которой как наиболее важные факторы, оказывающие влияние на формирование генетической структуры популяции, рассматриваются естественный отбор и изоляция.

Впервые термин «популяция» введен В. Иогансеном в 1903 г. для обозначения неоднородной в генетическом отношении группы особей одного биологического вида и их отличия от особей однородной (чистой) линии. Однако еще Чарльз Дарвин объяснял происхождение видов в ходе эволюции в том числе наследственной изменчивостью и конкуренцией в пределах совокупности особей, т.е. популяции.

Многие работы русского генетика Александра Сергеевича Серебровского (1892-1948), опубликованные в 1920-е годы, для своего времени уникальны. Он занимался строением гена, его дробимостью и эволюцией, генетикой и селекцией отдельных видов животных, генетикой популяций, геногеографией, антропогенетикой и закономерностями органической эволюции, генетическими методами борьбы с вредными насекомыми. А.С. Серебровский был первым заведующим кафедрой генетики Московского государственного университета им. М.В. Ломоносова.

Нельзя не отметить заслуги многих других выдающихся советских и русских генетиков. Среди них Борис Львович Астауров (1904-1974) - первый президент Всесоюзного общества генетиков и селекционеров им. Н.И. Вавилова. Работы Б.Л. Астаурова посвящены исследованиям роли ядра и цитоплазмы в наследственности и онтогенезе, экспериментальной эмбриологии, биологии развития, искусственному партеногенезу и андрогенезу.

Широко известны труды Николая Петровича Дубинина (1907- 1998) - многолетнего лидера советской генетики, организатора и директора Новосибирского института цитологии и генетики и Московского института общей генетики АН СССР, академика АН СССР, почетного члена многих иностранных академий и научных обществ. К числу исследованных им проблем относятся: сложная структура гена, эффект положения, теория мутаций, проблемы генетики популяций, радиационной и экологической генетики и генетики человека.

Среди наиболее известных имен отечественных генетиков - имя Юрия Александровича Филипченко (1882-1930), читавшего первый в России курс лекций по генетике в Петербургском университете (1913),

изучавшего генетику пшеницы, эмбриологию и сравнительную анатомию низших насекомых, а также наследственность у человека.

Как сказано в начале главы, год рождения клинической генетики - 1902, когда Арчибальд Гаррод впервые опубликовал сообщение о наследственном заболевании - алкаптонурии. В 1908 г. в другой своей статье под названием «Врожденные нарушения метаболизма» он объединил четыре наследственных заболевания (алкаптонурия, альбинизм, пентозурия и цистинурия).

Основоположник отечественной клинической генетики - Сергей Николаевич Давиденков (1880-1961), первый русский врач-генетик и выдающийся детский врач-невропатолог. В круг его научных интересов входили: наследственные болезни нервной системы и их медикогенетическое консультирование, причины клинического полиморфизма наследственных болезней, эволюционно-генетические проблемы в невропатологии. С.Н. Давиденков обосновал необходимость применения в медицине генеалогического анализа, сформулировал принцип генетической гетерогенности и показал клиническую (фенотипическую) неоднородность многих нозологических форм (штрюмпелевская параплегия, семейные атаксии, амиотрофии). Он ввел в неврологию точные методы генетики, объяснил клинический полиморфизм неврологических заболеваний как результат сходного проявления разных мутаций и разной выраженности действия патологического гена (в зависимости от генотипической среды), предложил первую классификацию наследственных болезней нервной системы, основанную на генетических закономерностях.

Неоценимый вклад в развитие отечественной медицинской и клинической генетики внесли А.П. Акифьев (1938-2007), Л.О. Бадалян (1929-1994), А.Ф. Захаров (1928-1986), С.Г. Левит (1894- 1937), М.Е. Лобашев, А.А. Прокофьева-Бельговская (1903-1984), Н.В. Тимофеев-Рессовский (1900-1981) и др. Их заслуги - внедрение достижений генетики в медицину, распространение и приумножение генетических знаний даже в тридцатилетний период гонений на советскую генетику (1930-1960). В частности, в 1930 г. в Москве был организован Медико-биологический институт, переименованный в 1932 г. в Медико-генетический институт (директор - С.Г. Левит), где до 1937 г. успешно работал центр близнецовых исследований, большое внимание уделялось изучению мультифакториальных заболеваний. Однако затем институт закрыли, его директора и многих сотрудников репрессировали.

Только в 1969 г. в Москве вновь создается Институт медицинской генетики, преобразованный в 1990 г. в Медико-генетический научный центр АМН СССР, а затем РАМН.

Возрождение клинической генетики в России началось в конце 1970-х гг. во 2-м Московском медицинском институте им. Н.И. Пирогова (ныне Российский государственный медицинский университет), на кафедре нервных болезней педиатрического факультета (возглавляемой тогда Левоном Оганесовичем Бадаляном). Именно здесь впервые стали читать лекции по клинической генетике для студентов.

Мендель был монахом и с огромным удовольствием проводил занятия по математике и физике в школе, находившейся неподалеку. Но ему не удалось пройти государственную аттестацию на должность учителя. видел его тягу к знаниям и очень высокие способности интеллекта. Он послал его в Венский университет для получений высшего образования. Там Грегор Мендель проучился два года. Он посещал занятия по естественным наукам, математике. Это помогло ему в дальнейшем сформулировать законы наследования.

Сложные учебные годы

Грегор Мендель был вторым ребенком в семье крестьян, имеющих немецкие и славянские корни. В 1840 году мальчик окончил шесть классов обучения в гимназии, а уже на следующий год поступил в философский класс. Но в те годы финансовое состояние семьи ухудшилось, и 16-летний Мендель должен был самостоятельно заботиться о собственном пропитании. Это было очень трудно. Поэтому по окончании обучения в философских классах он стал послушником в монастыре.

Кстати, имя, данное ему при рождении, - Иоганн. Уже в монастыре его стали именовать Грегором. Поступил он сюда не зря, так как получил покровительство, а также финансовую поддержку, дающую возможность продолжать обучение. В 1847-м его посвятили в сан священника. В этот период он обучался в теологической школе. Здесь имелась богатая библиотека, что оказывало положительное влияние на обучение.

Монах и преподаватель

Грегор, который еще не знал, что он - будущий основоположник генетики, вел занятия в школе и после провала аттестации попал в университет. После его окончания Мендель вернулся в город Брюнн и продолжил преподавать природоведение и физику. Он вновь попытался пройти аттестацию на должность педагога, но вторая попытка тоже оказалась провальной.

Опыты с горохом

Почему Менделя считают основоположником генетики? С 1856 года он в монастырском саду начал проводить обширные и тщательно продуманные опыты, связанные со скрещиванием растений. На примере гороха он выявлял закономерности наследования различных признаков в потомстве гибридных растений. Спустя семь лет эксперименты были закончены. А еще через пару лет, в 1865 году, на заседаниях общества естествоиспытателей Брюнна он выступил с докладом о проделанной работе. Через год вышла его статья об опытах над растительными гибридами. Именно благодаря ей были заложены как самостоятельной научной дисциплины. Благодаря этому, Мендель - основоположник генетики.

Если раньше ученые не могли все собрать воедино и сформировать принципы, то Грегору это удалось. Им были созданы научные правила исследования и описания гибридов, а также их потомков. Была разработана и применена символьная система для обозначения признаков. Менделем были сформулированы два принципа, благодаря которым можно делать предсказания о наследовании.

Позднее признание

Несмотря на публикацию его статьи, работа имела только один положительный отзыв. Благосклонно отнесся к трудам Менделя немецкий ученый Негели, который тоже изучал гибридизацию. Но и у него были сомнения насчет того, что законы, которые выявлены лишь на горохе, могут иметь всеобщий характер. Он посоветовал, чтобы Мендель, основоположник генетики, повторил опыты и на других видах растений. Грегор с этим почтительно согласился.

Он попытался повторить опыты на ястребинке, но результаты были неудачными. И только спустя много лет стало понятно, почему так произошло. Дело было в том, что у этого растения семена образуются без полового размножения. Также были и другие исключения из тех принципов, которые вывел основоположник генетики. После публикации статей известных ботаников, которые подтвердили исследования Менделя, начиная с 1900 года, произошло признание его работ. По этой причине именно 1900 год считается годом рождения этой науки.

Все, что открыл Мендель, убеждало его в том, что законы, описанные им при помощи гороха, имеют всеобщий характер. Нужно было только убедить в этом других ученых. Но задача являлась такой же трудной, как и само научное открытие. А все потому, что знание фактов и их понимание - это совершенно разные вещи. Судьба открытия генетика, то есть 35-летняя задержка между самим открытием и его общественным признанием, - это совсем не парадокс. В науке это вполне нормально. Спустя век после Менделя, когда генетика уже расцветала, такая же участь постигла и открытия Мак-Клинток, которые не признавались 25 лет.

Наследие

В 1868 году ученый, основоположник генетики Мендель, стал настоятелем в монастыре. Он почти полностью перестал заниматься наукой. В его архивах были найдены заметки по лингвистике, разведению пчел, а также метеорологии. На месте этого монастыря в настоящее время находится музей имени Грегора Менделя. Также в его честь назван специальный научный журнал.