Параметры расположение корней квадратного трехчлена. Исследовательская работа: Расположение корней квадратного трехчлена

Квадратный трехчлен - основная функция школьной математики - между прочим, не самая примитивная. Умение использовать предоставляемые им ресурсы для решения задач в большой степени характеризует уровень математического мышления изучающего школьную алгебру. В данной работе дается обоснование этого тезиса и приведены примеры конкретного применения свойств квадратичной функции. Стимулирующим фактором является то обстоятельство, что при решении какой бы то ни было задачи с параметрами рано или поздно приходится (и удается) задачу переформулировать в терминах квадратного трехчлена и решить ее с привлечением свойств этой универсальной функции.

Исследование квадратного трехчлена

Определение . Квадратным трехчленом относительно переменной x называется выражение вида f(x) = ax 2 + bx + c (1), где a, b, cR, a0.

Квадратный трехчлен - обычный многочлен степени 2. Спектр вопросов, формулируемых в терминах квадратного трехчлена, неожиданно оказывается чрезвычайно широким. Поскольку задачи, связанные с исследованием квадратного трехчлена, занимают традиционно почетное и видное место в письменных выпускных школьных и вступительных вузовских экзаменах, очень важно научить школьника (будущего абитуриента) неформальному (то есть творческому) владению разнообразными приемами и методами такого исследования. В данной методической разработке фиксируются основные утверждения о квадратном трехчлене (теорема Виета, расположение корней относительно заданных точек числовой оси, техника обращения с дискриминантом), решаются задачи различных типов и разных уровней сложности. Главный идеологический вывод заключается в том, что в школьной математике существуют насыщенные глубоким содержанием фрагменты, доступные учащемуся и не требующие привлечения средств математического анализа и иных разделов так называемой “высшей математики”.

Графиком трехчлена (1) является парабола; при a 0 - вверх. Расположение параболы относительно оси Ox зависит от значения дискриминанта D = b 2 - 4ac: при D>0 имеются две точки пересечения параболы с осью Ox (два различных действительных корня трехчлена); при D=0 - одна точка (двукратный действительный корень); при D 0 - выше оси Ox). Стандартным приемом является следующее представление трехчлена (с помощью выделения полного квадрата):

f(x) = ax 2 + bx + c = = . Это представление позволяет легко строить график посредством линейных преобразований графика функции y=x 2 ; координаты вершины параболы: .

Это же преобразование позволяет сразу решить простейшую задачу на экстремум: найти наибольшее (при a 0) значение функции (1); экстремальное значение достигается в точке и равно .

Одно из основных суждений о квадратном трехчлене –

Теорема 1 (Виета) . Если x 1 , x 2 - корни трехчлена (1), то

(формулы Виета).

С помощью теоремы Виета можно решать многие задачи, в частности, те, в которых требуется сформулировать условия, определяющие знаки корней. Две следующие теоремы являются непосредственными следствиями теоремы Виета.

Теорема 2 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели одинаковые знаки, необходимо и достаточно выполнение следующих условий:

D = b 2 - 4ac 0, x 1 x 2 = > 0,

при этом оба корня положительны при x 1 + x 2 = > 0,

и оба корня отрицательны при x 1 + x 2 =

Теорема 3 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели различные знаки, необходимо и достаточно выполнение следующих условий:

D=b 2 - 4ac > 0, x 1 x 2 =

при этом положительный корень имеет больший модуль при x 1 + x 2 = > 0,

и отрицательный корень имеет больший модуль при x 1 + x 2 =

Доказываемые ниже теоремы и следствия эффективно могут (и значит, должны) применяться при решении задач с параметрами.

Теорема 4 . Для того, чтобы оба корня квадратного трехчлена (1) были меньше, чем число M, то есть на числовой прямой корни лежат левее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 1,а и 1,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 , (x 1 - M) (x 2 - M) > 0, x 1 + x 2 0, M > (x 1 + x 2)/2. По формулам Виета , поэтому , или , ч.т.д.

Достаточность - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1

Теорема 5 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем число M, а другой больше, чем число M, то есть точка M лежала бы в интервале между корнями, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия, af(M)

(рис. 2,а и 2,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 , x 1 M , то (x 1 - M)(x 2 - M), поэтому , или af(M)

Достаточность . Пусть af(M) , или , , тогда (x 1 - M)(x 2 - M)0,

x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M)0 - противоречие с условием; остается только возможность , что и требуется доказать. Теорема доказана.

Теорема 6 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, то есть на числовой прямой корни лежат правее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 3,а и 3,б).

Доказательство . Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 > M, x 2 > M , то , (x 1 -M)(x 2 -M)>0, x 1 + x 2 > 2M; иначе x 1 x 2 - (x 1 + x 2)M + M 2 > 0, M , поэтому , или , ч.т.д.

Достаточность . Пусть . Рассуждаем от противного. Предположим, что , , тогда - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1 > M, x 2 > M, что и требуется доказать. Теорема доказана.

Следствие 1 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, но меньше, чем число N (M

, или, объединяя условия,

(рис. 4,а и 4,б).

Следствие 2 . Для того, чтобы только больший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия,

меньший корень при этом лежит вне отрезка

(рис. 5,а и 5,б).

Следствие 3 . Для того, чтобы только меньший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия, ;

больший корень при этом лежит вне отрезка

(рис. 6,а и 6,б).

Следствие 4 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем M, а другой больше, чем N (M

, или, объединяя условия,

(рис. 7,а и 7,б).

Разумеется, аналитическая и геометрическая интерпретации результатов теорем 4-6 и следствий 1-4 эквивалентны, и стратегической целью является выработка навыков точного перевода с одного языка на другой. Особенно важно продемонстрировать, как “визуализация” (“графический взгляд”) помогает безошибочно записать формальные условия, необходимые и достаточные для выполнения требований задачи.

Укажем типичные задачи, решаемые с помощью доказанных теорем (более общо - решаемые на основании свойств квадратного трехчлена).

Задача 1 . Найдите все значения a, при которых уравнения x 2 +ax+1=0 и x 2 +x+a=0 имеют хотя бы один общий корень.

Решение . Оба уравнения имеют в точности одинаковые корни в том и только том случае, если коэффициенты соответствующих квадратных трехчленов совпадают (многочлен второй степени полностью определяется двумя своими корнями и при этом соответственные коэффициенты этих многочленов равны), отсюда получаем a=1. Однако, если учитывать только действительные корни, то при a=1 таковых нет (дискриминант соответствующего трехчлена отрицателен). При a1 рассуждаем так: если x 0 - корень обоих уравнений f(x)=0 и g(x)=0, то x 0 будет корнем уравнения f(x)-g(x)=0 (это только необходимое, но не достаточное условие существования общего корня двух уравнений f(x)=0 и g(x)=0, так как уравнение f(x) - g(x)=0 является их следствием ); вычтем из первого уравнения второе, и получим

(x 2 + ax + 1) - (x 2 + x + a) = 0, x(a-1) - (a-1)=0, откуда, поскольку a1, x=1. Таким образом, если заданные уравнения имеют общий корень, то он равен 1 . Подставим x = 1 в первое уравнение: 1 + a + 1 = 0, и a = -2.

Ответ . a = -2.

Задача 2 . При каких a сумма квадратов корней уравнения x 2 - ax + a – 1 = 0 будет наименьшей?

Решение . По теореме Виета , x 1 + x 2 = a, x 1 x 2 = a - 1. Имеем:

x 1 2 + x 2 2 = (x 1 +x 2) 2 - 2x 1 x 2 = a 2 - 2(a-1) = a 2 - 2a + 2 = (a-1) 2 + 1 1 и =1 при a=1.

Ответ . a = 1.

Задача 3 . Существуют ли такие a, что корни многочлена f(x)=x 2 +2x+a действительны, различны и оба заключены между -1 и 1?

Решение . Для того, чтобы оба корня x 1 и x 2 трехчлена f(x) были заключены между -1 и 1, необходимо, чтобы между -1 и 1 было заключено среднее арифметическое этих корней: ; но, по теореме Виета , , поэтому

Ответ . Нет.

Задача 4 . При каких значениях параметра a оба корня квадратного уравнения x 2 +(2a+6)x + 4a + 12 = 0 действительны и оба больше -1?

Решение . Теорема 6 дает:

, , , .

Ответ . .

Задача 5 . При каких значениях параметра a оба корня квадратного уравнения x 2 +4ax+ (1-2a+4a 2) = 0 действительны и оба меньше -1?

Решение . Теорема 4 дает:

, , , a>1.

Ответ . a > 1.

Задача 6 . При каких значениях параметра a один корень квадратного уравнения f(x) = (a-2)x 2 - 2(a+3)x + 4a = 0 больше 3, а другой меньше 2?

Решение . Заметим сразу, что a2 (иначе уравнение имело бы только один корень). Применим следствие 4 (здесь M=2, N=3):

, , , 2

Ответ . a(2;5).

Задача 7 . При каких a уравнение (a-1)x 2 -(2a-1)x+a+5 = 0 (2) имеет действительные корни? Исследуйте знаки этих корней.

Решение . Если a = 1, уравнение (2) является линейным: -x + 6 = 0, x = 6 > 0.

Если a1, то уравнение (2) - квадратное и имеет действительные корни тогда и только тогда, когда D=(2a-1) 2 -4(a-1)(a+5)0, . Оба корня положительны при (теорема 6 ), откуда

и ;

оба корня отрицательны при (теорема 4 ) - эта система решений не имеет; корни имеют разные знаки при (a-1)(a+5) теорема 5), то есть -5

Ответ .

При оба корня положительны; при a=-5 один из корней равен 0.

При a = 1 - единственный положительный корень x=6.

При решений нет.

Задача 8 . Найдите все действительные значения a, при которых трехчлен

(a 2 -1)x 2 + 2(a-1)x + 1 положителен при всех действительных x.

Решение . При a 2 =1 получаем двучлен 2(a-1)x+1; при a=1 условие задачи выполняется, при a=-1 - нет. Если же a 2 1, то для выполнения неравенства

(a 2 -1)x 2 +2(a-1)x+1>0 при всех xR необходимо и достаточно

,

откуда находим a>1.

Ответ . a 1.

Уравнения

Задача 9 . При каких условиях уравнение x 2 +px+q=0 (3), где x=sint, имеет решения относительно t? Найдите все эти решения.

Решение . 1. Уравнение (3) имеет корень x 1 =-1, или sint=-1, или t=, если 1-p+q=0. При этом второй корень равен x 2 =1-p; значит, если , то уравнение sin 2 t +psint+q=0 (4) имеет еще, кроме указанных, корни (при p=2 обе серии корней совпадают).

2. Уравнение (3) имеет корень x 1 =1, или sint=1, или t=, если

1+p+q=0. При этом второй корень равен x 2 =-1-p; значит, если , то уравнение (4) имеет еще, кроме указанных, корни (при p=-2 обе серии корней совпадают).

3. Корни (3) равны между собой при p 2 -4q=0; тогда x 1 =x 2 =-p/2; если к тому же , то , а при p2 корней нет. Если p=2, то q=1, x 2 +2x+1=0, x=-1, t=, а если p=-2, то x=1, t=.

Случай I имеет место тогда и только тогда, когда 1-p+q>0, 1+p+q следствие 3), или p-1 .

Случай II имеет место тогда и только тогда, когда 1-p+q 0 (следствие 2 ), или -p-1 .

Случай III имеет место тогда и только тогда, когда p 2 >4q, -2+p 0, 1-p+q>0, 1+p+q>0 (следствие 1 ), или -2

При этом .

В остальных случаях уравнение sin 2 t +psint+q=0 не имеет решений.

Задача 10 . При каких aR уравнение sin 4 x+cos 4 x+sin2x+a=0 (5) имеет решения? Найдите эти решения.

Решение . Так как sin 4 x + cos 4 x = sin 4 x + 2sin 2 xcos 2 x + cos 4 x - 2sin 2 xcos 2 x =

(sin 2 x+cos 2 x) 2 - 4sin 2 xcos 2 x = 1 - sin 2 2x, уравнение (5) можно переписать так:

1 - sin 2 2x + sin2x + a = 0, sin 2 2x - 2sin2x - 2 - 2a = 0; сделаем замену y=sin2x:

y 2 - 2y - 2 - 2a = 0 (6).

Уравнение (6) имеет действительные корни, если D=3+2a. Пусть y 1 , y 2 - корни (6). Уравнение (5) имеет корни в одном из следующих случаях:

1. Хотя бы один корень равен 1. Тогда 1-2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y+1=0, и второй корень также равен 1; следовательно, при a= sin2x=1, 2x=.

2. Хотя бы один корень равен -1. Тогда 1+2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y-3=0, и второй корень равен 3; но корень y=3 не подходит, следовательно, при a= sin2x=-1, 2x=.

3. -1 : 3+2a>0, a>-, (-1) 2 -2(-1)-2-2a>0, 2(-1)-2

1 2 -21-2-2a>0, 21-2>0 - противоречивая система (0=2-2>0).

4. y 1: (-1) 2 -2(-1)-2-2a1-2-2a>0 - противоречие.

5. -1 Следствие 3: В этом случае 1 2 -21-2-2a (-1)-2-2a>0 и . Корнями (6) являются y 1 =1-, y 2 =1+, и только . Тогда

Самым мощным инструментом при решении сложных задач с параметрами является теорема Виета. Но здесь нужно быть предельно внимательным к формулировке.

Этих двух теорем (прямой и обратной)

Теорема Виета

Если уравнение имеет корни и ; то выполнены равенства .

Особенности теоремы:

Первое . Теорема верна только для уравнения и не верна для

В последнем случае нужно сначала разделить обе части уравнения на ненулевой коэффициент а при х 2 , а потом уже применять теорему Виета.

Второе. Для использования результатов теоремы необходимо иметь факт существования корней уравнений т.е. не забывать наложить условие D>0

Обратная

Теорема Виета

Если есть произвольные числа и то они являются корнями уравнения

Очень важное замечание , облегчающее решение задач: обратная теорема гарантирует существование корней в уравнении что позволяет не возится с дискриминантом. Он автоматически в этом случае неотрицателен.

Условия на корни Равносильное условие на коэффициенты а,в,с, и дискриминант D
Корни существуют (и различны)
Корни существуют и равны Причем
Корни существуют и
Корни существуют и
Корни существуют и различны
Корни существуют, один корень равен нулю, а другой >0

1). Установить, при каких значениях параметра уравнение

Не имеет корней.

Если уравнение не имеет корней, то необходимо и достаточно, чтобы дискриминант

имеет различные положительные корни .

Раз корни есть, то если они оба положительные, то и Воспользуемся формулой Виета, тогда для данного уравнения

Имеет различные отрицательные корни


Имеет корни разного знака

Имеет совпадающие корни

2). При каких значениях параметра а оба корня квадратного уравнения будут положительными?

Решение.

Так как заданное уравнение является квадратным, то оба его корня (равные или различные) будут положительными, если дискриминант неотрицателен, а сумма и произведение корней положительны, то есть



Так как, а по теореме Виета,

То получим систему неравенств

3). Найти все значения параметра а неположительны.

Так как заданное уравнение является квадратным, то . Оба его корня (равные или различные) будут отрицательными или равными нулю, если дискриминант неотрицательный, сумма корней отрицательна или равна нулю, а произведение корней неотрицательно, то есть

а по теореме Виета

то получим систему неравенств.

откуда

4).При каких значениях параметра а равна 22.5 ?

Вначале предложим “ решение “, с которым нам не раз приходилось встречаться.

поскольку то получаем “Ответ” Однако при найденном значении а исходное уравнение корней не имеет.

В этом решении мы столкнулись с одной из “популярнейших” ошибок, связанной с применением теоремы Виета:

вести речь о корнях предварительно не выяснив, существуют они или нет.

Так, в данном примере, в первую очередь необходимо было установить, что лишь при исходное уравнение имеет корни. Только после этого можно обратится к выкладкам, приведенным выше.

Ответ: Таких а не существует.

5). Корни уравнения таковы, что Определить

Решение. По теореме Виета Возведем обе части первого равенства в квадрат Учитывая, что а получаем или Проверка показывает, что значения удовлетворяют исходному уравнению.

Ответ :

6).При каком значении параметра а сумма квадратов корней уравнения принимает наименьшее значение:

Найдем дискриминант данного уравнения. Имеем Здесь важно не сделать ошибочный вывод о том, что уравнение имеет два корня при любом а . оно действительно имеет два корня при любом, но допустимом а , т.е. при при

Используя теорему Виета, запишем

Таким образом, для получения ответа осталось найти наименьшее значение квадратичной функции

на множестве

Поскольку при а при то функция на указанном множестве принимает наименьшее значение в точке

Задачи для самостоятельного решения

1). Найти все значения параметра а , при которых корни квадратного уравнения

неотрицательны

2). Вычислить значение выражения ,где -корни уравнения

3). Найти все значения параметра а , при которых сумма квадратов действительных корней уравнения больше 6.

Ответ:

4).При каких значениях параметра а уравнение ах 2 -4х+а=0 имеет:

а) положительные корни

б) отрицательные корни

Расположение корней квадратичной функции относительно

заданных точек.

Для подобных задач характерна следующая формулировка: при каких значениях параметра корни (только один корень) больше (меньше, не больше, не меньше) заданного числа А; корни расположены между числами А и В; корни не принадлежат промежутку с концами в точках А и В и т.п.

При решении задач, связанных с квадратным трехчленом

часто приходится иметь дело со следующими стандартными ситуациями (которые мы сформулируем в виде «вопрос – ответ».

Вопрос 1 . Пусть дано число (1) оба его корня и больше т.е. ?

Ответ . Коэффициенты квадратного трехчлена (7) должны удовлетворять условиям

где - абсцисса вершины параболы .

Справедливость сказанного вытекает из рис. 1, на котором отдельно представлены случаи и Отметим, что двух условий и еще недостаточно, чтобы корни и были больше На первом из рис. 1 штрихом изображена парабола, удовлетворяющая этим двум условиям, но ее корни меньше Однако, если к указанным двум условиям добавить, что абсцисса вершины параболы больше то и корни будут большими чем

Вопрос 2 . Пусть дано число При каких условиях на коэффициенты квадратного трехчлена (1) его корни и лежат на разные стороны от т.е. ?

Ответ. коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Справедливость сказанного вытекает из рис. 2, на котором отдельно представлены случаи и Отметим, что указанное условие гарантирует существование двух различных корней и квадратного трехчлена (1).

Вопрос 3 . При каких условиях на коэффициенты квадратного трехчлена (1) его корни и различны и только один из них лежит в заданном интервале

Ответ. Коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Вопрос 4. При каких условиях на коэффициенты квадратного трехчлена (1) множество его корней не пусто и все его корни и лежат в заданном интервале т.е.


Ответ . Коэффициенты квадратного трехчлена (1) должны удовлетворять условиям

Для решения таких задач полезно работать с таблицей, которая приведена ниже.

Корни многочлена


.



При каком значении параметра a один корень уравнения

больше 1, а другой меньше 1?

Рассмотрим функцию -


Цель работы:

  • Исследование всевозможных особенностей расположения корней квадратного трехчлена относительно заданной точки и относительно заданного отрезка на основе свойств квадратичной функции и графических интерпретаций.
  • Применение изученных свойств при решении нестандартных задач с параметром.

Задачи:

  • Изучить различные приемы решения задач на основе исследования расположения корней квадратного трехчлена графическим методом.
  • Обосновать всевозможные особенности расположения корней квадратного трехчлена, разработать теоретические рекомендации для решения нестандартных задач с параметром.
  • Овладеть рядом технических и интеллектуальных математических умений, научится их использовать при решении задач.

Гипотеза:

Использование графического метода в нетрадиционных задачах с параметром упрощает математические выкладки и является рациональным способом решения.


тогда и только тогда:

1. Оба корня меньше числа А,

2. Корни лежат по разные стороны от числа А,

тогда и только тогда:

  • тогда и только тогда:

тогда и только тогда:

3. Оба корня больше числа А, то есть


Найти все значения параметра а, для которых один корень уравнения

больше 1, а другой меньше 1.


При каких значениях параметра уравнение

имеет два различных корня одного знака?

-6

-2

3

a


1. Оба корня лежат между точками A и B , то есть

тогда и только тогда:

2. Корни лежат по разные стороны от отрезка

тогда и только тогда:

3. Один корень лежит вне отрезка, а другой на нем, то есть

тогда и только тогда:


Исследуйте уравнение

на количество корней в зависимости от параметра.

уравнение не имеет решений.

имеет одно решение.


Исследуйте уравнение

на количество корней в

зависимости от параметра.


Если один корень лежит на отрезке, а другой слева от него.

Если один корень лежит на отрезке, а другой справа от него.

первоначальное уравнение будет иметь два различных корня.

при которых

уравнение имеет три различных корня.

Ответ: при

при которых

первоначальное уравнение будет иметь два

различных корня.

уравнение имеет четыре различных корня.

Данные об авторе

Стукалова Надежда Васильевна

Место работы, должность:

МБОУ СОШ №15,учитель математики

Тамбовская область

Характеристики урока (занятия)

Уровень образования:

Среднее (полное) общее образование

Целевая аудитория:

Учащийся (студент)

Целевая аудитория:

Учитель (преподаватель)

Класс(ы):

Предмет(ы):

Алгебра

Предмет(ы):

Математика

Цель урока:

Тип урока:

Комбинированный урок

Учащихся в классе (аудитории):

Используемые учебники и учебные пособия:

А. Г. Мордкович, алгебра,9 класс, учебник,2011

А. Г. Мордкович, алгебра,9 класс, задачник,2011

С.А. Теляковский, алгебра 9 класс, учебник, 2009

Используемая методическая литература:

Мирошин, В.В. Решение задач с параметрами: Теория и практика / В.В. Мирошин.- М.: Экзамен, 2009.

Л. В Кузнецова Сборник заданий для экзамена

Используемое оборудование:

Компьютер, кинопроектор

Краткое описание:

План урока: 1. Организационный момент. 2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой). 3. Решение задач с параметрами (работа в группах). 4. Самостоятельная работа с последующей проверкой. 5. Подведение итогов. 6. Домашнее задание.

Конспект урока

на тему

«Расположение корней квадратного трёхчлена

в зависимости от значений параметра»

учитель математики Стукалова Н.В. МБОУ СОШ №15

г. Мичуринск - наукоград РФ 2011г.

Цель урока:

Развивать практические умения и навыки учащихся по решению заданий с параметрами;

Подготовить учащихся к успешной сдачи ГИА по математике;

Развивать исследовательскую и познавательную деятельности учащихся;

Формировать интерес к математике;

Развивать математические способности учащихся.

План урока:

1. Организационный момент.

2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой).

3. Решение задач с параметрами (работа в группах).

4. Самостоятельная работа с последующей проверкой.

5. Подведение итогов.

6. Домашнее задание.

Ход урока.

1. Организационный момент.

Учитель сообщает тему урока, ставит цели и задачи перед учащимися, сообщает план урока.

Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.

Наш урок посвящен решению задач по расположению корней квадратного трёхчлена на числовой прямой.

2. Обобщение и систематизация знаний:

Вспомнить необходимые и достаточные условия для выполнения различных требований расположения корней квадратного уравнения относительно заданных точек или промежутков.

После ответа учащихся демонстрируются слайды с правильным ответом.

1. Расположение корней по обе стороны от заданной на числовой прямой

точки.

условию х 1 < m<х 2, необходимо и достаточно выполнения неравенства аf(x)<0.

2. Расположение корней по обе стороны от заданного отрезка.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию х 1 < m, х 2 < n, где m

системы неравенств

3. Расположение корней с одной стороны от заданной на числовой прямой

Точки.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию m<х 1 <х 2, т.е располагались на числовой прямой правее точки х = m,

необходимо и достаточно выполнения системы неравенств

Если левее точки х = m, необходимо и достаточно выполнения

системы неравенств

4. Принадлежность корней заданному интервалу.

интервалу (m;n), необходимо и достаточно выполнения системы

неравенств

5.Принадлежность корней заданному отрезку.

Для того чтобы корни квадратного уравнения при а ≠ 0 принадлежали

интервалу , необходимо и достаточно выполнения системы

неравенств

3. Решение задач с параметрами.

Учащиеся разделены на 4 группы. В каждой группе есть дети более успешные в алгебре. Каждая группа начинает решение задачи, совпадающей с номером своей группы. После обсуждения хода решения задачи, от каждой группы по одному представителю выходят к доске и оформляют решение задачи своей группы, и объясняет её решение (на откидных досках). В это время ребята должны решить задачи другой группы (можно получать консультацию у учителя).

Задача №1.

При каких значениях параметра а один корень уравнения (12а + 7)х 2 + (9а - 42)х + +11 - 3а = =0 больше 1, другой корень меньше 1?

Решение.

Графиком функции у = f(х), где f(х) = (12а + 7)х 2 + (9а - 42)х + +11 - 3а, при

а ≠ - 7/12 является параболой, ветви которой при а > - 7/12 направлены вверх, при а < - 7/12 - вниз. Тогда значения параметра а удовлетворяют неравенству

(12а +)f(1)< 0, где f(1) = 12а+7+9а-42+11-3а = 18а-24. Решив неравенство (12а+7)(18а-24)<0, получим, что - 7/12<а<4/3. Ответ: (-7/12; 4/3).

Задача № 2 .

Найдите значения параметра а, при которых корни уравнения (1+а)х 2 - 3ах +4а = 0 больше 1.

Решение.

При а≠-1 заданное уравнение является квадратным и D= -а(7а+16). Получим систему , откуда -16/7≤а≤ -1.

Значения параметра, при которых корни данного уравнения при а ≠ - 1 больше 1, принадлежат промежутку [-16/7; -1).

При а = -1 заданное уравнение имеет вид3х - 4 = 0 и единственный корень

Ответ: [-16/7; -1]

Задача № 3 .

При каких значениях параметра kкорни уравнения (k-2)х 2 -2kх+2k-3=0

принадлежат интервалу (0;1)?

Решение.

При k≠2 искомые значения параметра должны удовлетворять системе неравенств

ГдеD= 4k 2 -4(k-2)(2k-3) = -4(k 2 -7k+6), f(0) = 2k-3? F(1) = k-5, x в = k/(k-2).

Данная система не имеет решений.

При k = 2 заданное уравнение имеет вид -4х+1 = 0, его единственный корень

х = ¼, который принадлежит интервалу (0;1).

Задача №4 .

При каких значениях а оба корня уравнения х 2 -2ах+а 2 -а = 0 расположены на отрезке?

Искомые значения должны удовлетворять системе неравенств

где D= 4а 2 -4(а 2 -а) = 4а, f(2) = a 2 -5a+4, f(6) = a 2 -13a+36, х в = а.

Единственным решением системы является значение, а = 4.

4. Самостоятельная работа (контрольно - обучающая).

Учащиеся работают в группах, выполняют один и тот же вариант, так как материал очень сложный и не всем может быть по силам.

№1. При каких значениях параметра а оба корня уравнения х 2 -2ах+а 2 - 1 =0 принадлежит интервалу (-2;4)?

№2. Найдите все значения k, при которых один корень уравнения

(k-5)x 2 -2kx+k-4=0 меньше1, а другой корень больше 2.

№3. При каких значениях а число 1 находится между корнями квадратного трехчлена х 2 + (а+1)х - а 2 ?

По окончании времени демонстрируются ответы. Осуществляется самопроверка самостоятельной работы.

5. Итог урока. Закончить предложение.

«Сегодня на уроке…».

«Мне запомнилось …».

«Хотелось бы отметить …».

Учитель анализирует весь ход урока и его основные моменты, оценивает деятельность каждого ученика на уроке.

6. Домашнее задание

(из сборника заданий для подготовки к ГИА в 9 классе авт. Л. В. Кузнецова)

Скачать:


Предварительный просмотр:

Муниципальное казённое учреждение

Ермоловская СОШ

Расположение корней квадратного уравнения в задачах с параметрами

Выполнил Галкин Сергей Андреевич,

Ученик 9-го класса

Руководитель: Малей Н.И.,

Учитель математики

2013

Введение…………………………………………………….. 3

Основная часть. Расположение корней квадратного уравнения и примеры………………………………………..4-15

Проверка качества применимости изложенного материала..16

Заключение…………………………………………………….17

Литература …………………………………………………….18

Приложение ……………………………………………….......19

Цель:

Сформулировать и обосновать утверждения о расположении корней квадратного уравнения и показать применение полученных утверждений для решения задач с параметрами.

Задачи:

1. Изучить литературу по данной теме.

2. Сформулировать утверждения и дать геометрическую интерпретацию

Введение

В последнее время в материалах выпускных экзаменов, ЕГЭ в задачах повышенной сложности предлагаются задания по теме «Уравнения с параметрами»

Особую роль среди уравнений с параметрами играют задачи, связанные с расположением корней квадратного уравнения.

Рассмотрим два наиболее распространённых типа таких задач

1-ый тип задачи в которых изучается расположение корней относительно заданной точки.

2-ой тип задачи в которых исследуется расположение корней относительно числового промежутка

Утверждения о расположении корней квадратного уравнения

Пусть f(x)=ax 2 +bx+c имеет действительные корни x 1 и x 2 , а M – какое-нибудь действительное число, D=b 2 – 4ac.

Утверждение 1. Для того чтобы оба корня квадратного уравнения были меньше, чем число M (т.е. лежали на числовой оси левее, чем точка M), необходимо и достаточно выполнение следующих условий:

или

Пример 1:

Найти все значения параметра а, при которых оба корня квадратного уравнения x²+4ax+(1-2a+4a²)=0 меньше -1.

Решение:

Рассмотрим функцию y=x²+4ax+1(1-2a+4a²)

Ответ: (1; +∞).

Утверждение 2 . Для того чтобы один из корней квадратного уравнения был меньше, чем число M, а другой больше, чем число M (т.е. точка M лежала бы между корнями), необходимо и достаточно выполнение условий:

Пример 2:

Найти все значения параметра m , при каждом из которых один корень уравнения 2mx²-2x-3m-2=0 больше 1,а другой меньше 1.

Решение:

2mf(1)

2m(2m-2-3m-2)

2m²-8

2m(m+4)

m(m+4)>0

Ответ: (-∞; -4)U(0; + ∞).

Утверждение 3. Для того чтобы оба корня квадратного уравнения были больше, чем число M (т.е. лежали на числовой оси правее, чем точка M), необходимо и достаточно выполнение условий:

или

Пример 3:

Найти все значения параметра а, при которых оба корня квадратного уравнения x²-6ax+(2-2a+9a²)=0 больше 3

Решение: f(x)=x²-6ax+(2-2a+9a²)

Ответ: а>11/9

Утверждение 4. Для того чтобы оба корня квадратного уравнения были больше, чем число M, но меньше, чем число N (M ) , т.е. лежали в интервале между M и N, необходимо и достаточно:

или

Пример 4:

При каких значениях m корни уравнения 4x²-(3m+1)x-m-2=0 лежат в промежутке между -1 и 2?

Решение:

Ответ:(- ; ).

Утверждение 5 . Для того чтобы только больший корень квадратного уравнения лежал в интервале [ M , N ](M N ) , необходимо и достаточно:

(при этом меньший корень лежит вне отрезка ).

5.Найти все значения а, для которых при каждом x из промежутка (-3; -1] значение выражения
(задача С3 из ЕГЭ).

Решение:

1.Значения указанных выражений не равны друг другу тогда и только тогда,когда выполнено условие:

Обозначим t=x², тогда t²-8t-2 at.

t²-8t-at-2=t²-(a+8)t-2 0

f(t)=t²-(a+8)t-2 0

Следовательно, в задаче требуется, чтобы уравнение f(t)=0 не имело корней на промежутке , необходимо и достаточно:

(при этом больший корень лежит вне отрезка [ M , N ]) .

Утверждение 7 . Для того чтобы один из корней квадратного уравнения был меньше, чем M, а другой больше, чем N (M [ M , N ] целиком лежал внутри интервала между корнями, необходимо и достаточно:

Пример 6:

Найти все значения параметра а, при которых меньший корень уравнения x²+(a+1)x+3=0 лежал в интервале (-1; 3)

Решение:


Ответ: (-∞; -5)

Пример 7:

При каких значениях параметра а один корень уравнения x²-(3a+2)x+2a-1=0 меньше -1, а другой больше 2.

Решение:

Ответ: решений нет.

Проверка качества применимости изложенного материала

Проверочную работу выполняли четыре человека: три ученика 11 класса и один ученик 10 класс (задания см. в Приложении)

В результате анализа проверочной работы была выявлена необходимость совершенствования навыков решения задач на расположение корней квадратного уравнения

Заключение:

В процессе исследования были рассмотрены основные случаи расположения корней квадратного уравнения, приведены утверждения, к которым даны иллюстрации, помогающие понять, как выводятся эти утверждения. Данный материал облегчит понимание решений заданий, содержащих параметры о расположении корней квадратного уравнения. Он может быть использован для индивидуального обучения, а также на внеклассных и факультативных занятий по математике.

Литература:

1. Задачи с параметрами П.И. Горнштейн, .Б. Полонский, М.С. Якир

3. Рабочая тетрадь для подготовки к итоговой аттестации по математике в новой форме (Негосударственное образовательное учреждение «Интернациональные коммуникации»)

4. Школа решения задач с параметрами, авторы Севрюков П.Ф., Смоляков А.Н.

Приложение

Задания:

  1. Найти все значения параметра а, при которых корни уравнения 4x²+2(а-1)х-а²+а=0 меньше -1.
  2. Найти все значения параметра а, при которых корни уравнения x²+(a-4)x-2a=0 больше 1
  3. При каких значениях параметра a оба корня уравнения x²-ax+2=0 больше 1, но меньше 3