Среднее значение. Некоторые проблемы применения среднего. Средневзвешенное значение - что это и как его вычислить

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

    средняя арифметическая;

    средняя геометрическая;

    средняя гармоническая;

    средняя квадратическая;

    средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической .

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то
.

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая.

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где
- начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Материал из Википедии - свободной энциклопедии

Сре́днее значе́ние - числовая характеристика множества чисел или функций (в математике); - некоторое число, заключённое между наименьшим и наибольшим из их значений.

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора . При этом не проводилось строгого различия между понятиями средней величины и пропорции . Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не дает возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической , геометрической и гармонической (англ. ) .

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования . Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

Иерархия средних значений в математике

  • среднее значение функции - понятие, определяемое многими способами.
    • Более конкретно, но на основе произвольных функций, определяются средние Колмогорова для набора чисел.
      • среднее степенное - частный случай средних Колмогорова при \phi(x)=x^\alpha. Средние различных степеней связывает между собой неравенство о средних . Наиболее распространённые частные случаи:
        1. среднее арифметическое (\alpha=1);
        2. среднее квадратическое (\alpha=2);
        3. среднее гармоническое (\alpha=-1);
        4. по непрерывности при \alpha\to 0 доопределяется среднее геометрическое , которое также является Колмогоровским средним при \phi(x)=\log x
  • Среднее взвешенное - обобщение средней величины на случай произвольной линейной комбинации :
  • среднее хронологическое - обобщает значения признака для одной и той же единицы или совокупности в целом, изменяющихся во времени.
  • среднее логарифмическое, определяемое по формуле \bar a = \frac{a_1 - a_2}{\ln(a_1/a_2)}, используется в теплотехнике
  • среднее логарифмическое, определяемое в электроизоляции соответствии с ГОСТ 27905.4-88 определяется как log\bar a = \frac{\log a_1+log a_2+...+...log a_n}{a_1+a_2+...+a_n} (логарифм по любому основанию)

В теории вероятностей и статистике

  • непараметрические средние - мода , медиана .
  • среднее значение случайной величины - то же, что математическое ожидание случайной величины. По сути - среднее значение её функции распределения.

См. также

Напишите отзыв о статье "Среднее значение"

Примечания

Отрывок, характеризующий Среднее значение

Он интересовался пустяками, шутил о любви к путешествиям Боссе и небрежно болтал так, как это делает знаменитый, уверенный и знающий свое дело оператор, в то время как он засучивает рукава и надевает фартук, а больного привязывают к койке: «Дело все в моих руках и в голове, ясно и определенно. Когда надо будет приступить к делу, я сделаю его, как никто другой, а теперь могу шутить, и чем больше я шучу и спокоен, тем больше вы должны быть уверены, спокойны и удивлены моему гению».
Окончив свой второй стакан пунша, Наполеон пошел отдохнуть пред серьезным делом, которое, как ему казалось, предстояло ему назавтра.
Он так интересовался этим предстоящим ему делом, что не мог спать и, несмотря на усилившийся от вечерней сырости насморк, в три часа ночи, громко сморкаясь, вышел в большое отделение палатки. Он спросил о том, не ушли ли русские? Ему отвечали, что неприятельские огни всё на тех же местах. Он одобрительно кивнул головой.
Дежурный адъютант вошел в палатку.
– Eh bien, Rapp, croyez vous, que nous ferons do bonnes affaires aujourd"hui? [Ну, Рапп, как вы думаете: хороши ли будут нынче наши дела?] – обратился он к нему.
– Sans aucun doute, Sire, [Без всякого сомнения, государь,] – отвечал Рапп.
Наполеон посмотрел на него.
– Vous rappelez vous, Sire, ce que vous m"avez fait l"honneur de dire a Smolensk, – сказал Рапп, – le vin est tire, il faut le boire. [Вы помните ли, сударь, те слова, которые вы изволили сказать мне в Смоленске, вино откупорено, надо его пить.]
Наполеон нахмурился и долго молча сидел, опустив голову на руку.
– Cette pauvre armee, – сказал он вдруг, – elle a bien diminue depuis Smolensk. La fortune est une franche courtisane, Rapp; je le disais toujours, et je commence a l"eprouver. Mais la garde, Rapp, la garde est intacte? [Бедная армия! она очень уменьшилась от Смоленска. Фортуна настоящая распутница, Рапп. Я всегда это говорил и начинаю испытывать. Но гвардия, Рапп, гвардия цела?] – вопросительно сказал он.
– Oui, Sire, [Да, государь.] – отвечал Рапп.
Наполеон взял пастильку, положил ее в рот и посмотрел на часы. Спать ему не хотелось, до утра было еще далеко; а чтобы убить время, распоряжений никаких нельзя уже было делать, потому что все были сделаны и приводились теперь в исполнение.
– A t on distribue les biscuits et le riz aux regiments de la garde? [Роздали ли сухари и рис гвардейцам?] – строго спросил Наполеон.
– Oui, Sire. [Да, государь.]
– Mais le riz? [Но рис?]
Рапп отвечал, что он передал приказанья государя о рисе, но Наполеон недовольно покачал головой, как будто он не верил, чтобы приказание его было исполнено. Слуга вошел с пуншем. Наполеон велел подать другой стакан Раппу и молча отпивал глотки из своего.
– У меня нет ни вкуса, ни обоняния, – сказал он, принюхиваясь к стакану. – Этот насморк надоел мне. Они толкуют про медицину. Какая медицина, когда они не могут вылечить насморка? Корвизар дал мне эти пастильки, но они ничего не помогают. Что они могут лечить? Лечить нельзя. Notre corps est une machine a vivre. Il est organise pour cela, c"est sa nature; laissez y la vie a son aise, qu"elle s"y defende elle meme: elle fera plus que si vous la paralysiez en l"encombrant de remedes. Notre corps est comme une montre parfaite qui doit aller un certain temps; l"horloger n"a pas la faculte de l"ouvrir, il ne peut la manier qu"a tatons et les yeux bandes. Notre corps est une machine a vivre, voila tout. [Наше тело есть машина для жизни. Оно для этого устроено. Оставьте в нем жизнь в покое, пускай она сама защищается, она больше сделает одна, чем когда вы ей будете мешать лекарствами. Наше тело подобно часам, которые должны идти известное время; часовщик не может открыть их и только ощупью и с завязанными глазами может управлять ими. Наше тело есть машина для жизни. Вот и все.] – И как будто вступив на путь определений, definitions, которые любил Наполеон, он неожиданно сделал новое определение. – Вы знаете ли, Рапп, что такое военное искусство? – спросил он. – Искусство быть сильнее неприятеля в известный момент. Voila tout. [Вот и все.]
Рапп ничего не ответил.
– Demainnous allons avoir affaire a Koutouzoff! [Завтра мы будем иметь дело с Кутузовым!] – сказал Наполеон. – Посмотрим! Помните, в Браунау он командовал армией и ни разу в три недели не сел на лошадь, чтобы осмотреть укрепления. Посмотрим!
Он поглядел на часы. Было еще только четыре часа. Спать не хотелось, пунш был допит, и делать все таки было нечего. Он встал, прошелся взад и вперед, надел теплый сюртук и шляпу и вышел из палатки. Ночь была темная и сырая; чуть слышная сырость падала сверху. Костры не ярко горели вблизи, во французской гвардии, и далеко сквозь дым блестели по русской линии. Везде было тихо, и ясно слышались шорох и топот начавшегося уже движения французских войск для занятия позиции.
Наполеон прошелся перед палаткой, посмотрел на огни, прислушался к топоту и, проходя мимо высокого гвардейца в мохнатой шапке, стоявшего часовым у его палатки и, как черный столб, вытянувшегося при появлении императора, остановился против него.
– С которого года в службе? – спросил он с той привычной аффектацией грубой и ласковой воинственности, с которой он всегда обращался с солдатами. Солдат отвечал ему.

Предположим, что нужно найти среднее число дней для выполнения задач, различными сотрудниками. Или вы хотите вычисление интервала времени 10 лет Средняя температура в определенный день. Вычисление среднего значения ряда чисел несколькими способами.

Среднее функция меры центральной тенденции, в которой находится центр ряда чисел в статистическое распределение. Три большинство общих критериями центральной тенденции выступают.

    Среднее Среднее арифметическое и вычисляется путем добавления ряда чисел и затем деления количества этих чисел. Например среднее значение 2, 3, 3, 5, 7 и 10 имеет 30, разделенных на 6, 5;

    Медиана Средний номер ряда чисел. Половина чисел имеют значения, которые больше, чем Медиана, а половина чисел имеют значения, которые меньше, чем Медиана. Например медиана 2, 3, 3, 5, 7 и 10 - 4.

    Режим Наиболее часто встречающееся число в группе чисел. Например режим 2, 3, 3, 5, 7 и 10 - 3.

Эти три меры центральной тенденции симметричную распределение ряда чисел, являются одни и те же. В асимметричное распределение ряда чисел они могут быть разными.

Вычисление среднего значения ячеек, расположенных непрерывно в одной строке или одном столбце

Выполните следующие действия.

Вычисление среднего значения ячеек, расположенных вразброс

Для выполнения этой задачи используется функция СРЗНАЧ . Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего взвешенного значения

СУММПРОИЗВ и сумм . Пример vThis вычисляет среднюю цену единицы измерения, оплаченная через три покупки, где находится каждый покупки для различное количество единиц измерения по различным ценам за единицу.

Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего значения чисел, без учета нулевых значений

Для выполнения этой задачи используются функции СРЗНАЧ и если . Скопируйте приведенную ниже таблицу и имейте в виду, что в этом примере чтобы проще было понять, скопируйте его на пустой лист.

В математике среднее арифметическое значение чисел (или просто среднее) — это сумма всех чисел в данном наборе, разделенная на их количество. Это наиболее обобщенное и распространенное понятие средней величины. Как вы уже поняли, чтобы найти нужно суммировать все данные вам числа, а полученный результат разделить на количество слагаемых.

Что такое среднее арифметическое?

Давайте рассмотрим пример.

Пример 1 . Даны числа: 6, 7, 11. Нужно найти их среднее значение.

Решение.

Для начала найдем сумму всех данных чисел.

Теперь разделим получившуюся сумму на количество слагаемых. Так как у нас слагаемых три, соответственно, мы будем делить на три.

Следовательно, среднее значение чисел 6, 7 и 11 — это 8. Почему именно 8? Да потому, что сумма 6, 7 и 11 будет такая же, как трех восьмерок. Это отлично видно на иллюстрации.

Среднее значение чем-то напоминает «выравнивание» ряда чисел. Как видите, кучки карандашей стали одного уровня.

Рассмотрим еще один пример, чтобы закрепить полученные знания.

Пример 2. Даны числа: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29. Нужно найти их среднее арифметическое значение.

Решение.

Находим сумму.

3 + 7 + 5 + 13 + 20 + 23 + 39 + 23 + 40 + 23 + 14 + 12 + 56 + 23 + 29 = 330

Делим на количество слагаемых (в этом случае — 15).

Следовательно, среднее значение данного ряда чисел равно 22.

Теперь рассмотрим отрицательные числа. Вспомним, как их суммировать. Например, у вас есть два числа 1 и -4. Найдем их сумму.

1 + (-4) = 1 - 4 = -3

Зная это, рассмотрим еще один пример.

Пример 3. Найти среднее значение ряда чисел: 3, -7, 5, 13, -2.

Решение.

Находим сумму чисел.

3 + (-7) + 5 + 13 + (-2) = 12

Так как слагаемых 5, разделим получившуюся сумму на 5.

Следовательно, среднее арифметическое значение чисел 3, -7, 5, 13, -2 равно 2,4.

В наше время технологического прогресса гораздо удобнее использовать для нахождения среднего значения компьютерные программы. Microsoft Office Excel — одна из них. Искать среднее значение в Excel быстро и просто. Тем более, эта программа входит в пакет программ от Microsoft Office. Рассмотрим краткую инструкцию, значение с помощью этой программы.

Для того чтобы посчитать среднее значение ряда чисел, необходимо использовать функцию AVERAGE. Синтаксис для этой функции:
= Average (argument1, argument2, ... argument255)
где argument1, argument2, ... argument255 — это либо числа, либо ссылки на ячейки (под ячейками подразумеваются диапазоны и массивы).

Чтобы было более понятно, опробуем полученные знания.

  1. Введите числа 11, 12, 13, 14, 15, 16 в ячейки С1 - С6.
  2. Выделите ячейку С7, нажав на нее. В этой ячейке у нас будет отображаться среднее значение.
  3. Щелкните на вкладке «Формулы».
  4. Выберите More Functions > Statistical для того, чтобы открыть
  5. Выберите AVERAGE. После этого должно открыться диалоговое окно.
  6. Выделите и перетащите туда ячейки С1-С6, чтобы задать диапазон в диалоговом окне.
  7. Подтвердите свои действия клавишей «ОК».
  8. Если вы все сделали правильно, в ячейке С7 у вас должен появиться ответ - 13,7. При нажатии на ячейку C7 функция (= Average (C1: C6)) будет отображаться в строке формул.

Очень удобно использовать эту функцию для ведения учета, накладных или когда вам просто нужно найти среднее значение из очень длинного ряда чисел. Поэтому ее часто используют в офисах и крупных компаниях. Это позволяет сохранять порядок в записях и дает возможность быстро посчитать что-либо (например, средний доход за месяц). Также с помощью Excel можно найти среднее значение функции.

Роль математики в развитии естественных наук сегодня трудно переоценить. Ее методы все глубже проникают в трудно формализуемые области знаний, обогащая последние интерпретациями и, как результат, стимулируют в них появление новых идей. Сейчас уже сложно согласиться с мнением, что использование математики, например, в биологических науках, ограничивается лишь методической ее частью и связана исключительно с обработкой данных.

Рассмотрим наиболее часто используемую в прикладных исследованиях статистическую величину - среднее значение - и дадим ей геометрическую интерпретацию.

Среднее значение и дисперсия

Понятия среднего и дисперсии возникли из нужд практики численно характеризовать набор измерений, объединенных по тому или иному принципу в группу. Для "средней величины" при этом отводится роль числа, характеризующего набор имеющихся значений в целом. Выбор такого значения - определение средней величины - очевидно, может быть реализовано множеством способов, в зависимости от требуемых свойств вводимой величины. В частности, если имеется множество измерений некоторого физического параметра (например, длины какого-либо объекта), выполненных прибором, имеющем определенную погрешность инструментальных измерений, среднее значение может быть определено как число, лежащее на минимальном суммарном "расстоянии" от всех остальных чисел. Тогда, искомое среднее значение (обозначим его \(m\)) - число досталяющее минимум функции \(Q_1(a)=|x_1-a|+|x_2-a|+\ldots+|x_n-a|\), где \(x_1,\ldots,x_n\) - набор значений, для которого вычисляется среднее. Тем не менее, определенное таким образом среднее обладает рядом особенностей. Во-первых, в случае выборки, состоящей из двух значений (или даже любого четного их числа), функция \(Q_1(a)\) имеет не один минимум (см. рис. слева, на котором дано определение среднего арифметического (\(a^{\ast}\)) и медианы (\(m\)) (по оси ординат масштабы для каждого из графиков разные)) и, следовательно, возникает вопрос какое из них должно быть выбрано в качестве определения среднего. Другим нежелательным следствием прямого использования расстояния между числами является недиффиренцируемость расстояния (функции модуля числа), вносящее определенные математические трудности, в частности, затрудняющее поиск минимума функции \(Q_1(a)\). Поскольку квадрат расстояния обладает теми же прикладными качествами, что и исходное расстояние (точнее, возрастает, убывает и обращается в нуль одновременно с расстоянием), среднее значение можно определить как число, сумма квадратов расстояний от которого до остальных чисел минимальна. Квадрат расстояния между числами - функция гладкая (не имеет углов; строгое определение гладкости функции можно найти в (Фихтенгольц, 2001)), и задача об определении среднего значения в этом случае может быть решена средствами классического математического анализа. Ее решение - хорошо известное среднее арифметическое. Таким образом, среднее арифметическое совокупности величин \(\{x_1,\ldots, x_n\}\) доставляет минимальное (убедиться в этом можно воспользовавшись сначала необходимыми, а потом достаточными условиями локального экстремума функции (Фихтенгольц, 2001): \(\dfrac{dQ_2}{da}=0\)(приводит к уравнению для среднего арифметического) и \(\dfrac{d^2Q_2}{da^2}>0\) (подтверждает, что среднее арифметическое - минимум \(Q_2(a)\)) значение функции \(Q_2(a)=\sum\limits_i(x_i-a)^2\).

Графики функций \(Q_1(a)\) и \(Q_2(a)\) приведенные на рисунке для определенного набора значений \(\{x_1,x_2,x_3,x_4\}\). Из представленной иллюстрации видно, что минимальное значение функции \(Q_1(a)\)достигается для любой точки из интервала \(\), и, таким образом, имеет
место отмеченная выше неопределенность в выборе среднего. В этом случае в качестве среднего (по соглашению) может быть выбрана середина интервала, на котором достигается минимум функции \(Q_1(a)\). Это значение называется медианой выборки (на рисунке). В случае нечетного числа элементов выборки (при условии, что все элементы различны) такой ситуации не возникает, и медиана определяется однозначно. Среднее арифметическое (\(a^{\ast}\)) вне зависимости от четности или повторяемости элементов выборки определяется однозначно, что следует из вида функции \(Q_2(a)\) и условий локального минимума (Фихтенгольц, 2003).

Общее определение средней величины было дано французским математиком О. Коши (1789–1857), который называл средним значением величин \(\{x_1,\ldots, x_n\}\) любую их функцию \(f(x_1,\ldots,x_n)\), результат действия которой лежит между максимальным и минимальным значениями ее аргументов. Более определенная, аксиоматическая характеристика среднего была дана А.Н.Колмогоровым (1908–1987), который на базе введенных четырех аксиом указал конкретный вид выражения для функции \(f(x_1,\ldots,x_n)\). Среднее по А.Н. Колмогорову имеет вид:$$
f(x_1,\ldots,x_n)=\varphi^{-1}\left(\sum\limits_{i=1}^n\varphi(x_i)\right),
$$
где \(\varphi(x)\) - строго неубывающая или невозрастающая непрерывная функция, \(\varphi^{-1}(x)\) - обратная функция к \(\varphi(x)\), т.е. для любого \(x\) справедливо \(\varphi^{-1}(\varphi(x))=x\).

Таким образом, среднее арифметическое и медиана удовлетворяют аксиоматике Коши, однако медиана не является средней величиной по Колмогорову. Причина тому нарушение аксиомы непрерывности среднего от выборочных значений.

На практике распространены задачи, когда требуется численно охарактеризовать разброс выборочных значений, что, например, важно для оценки инструментальных погрешностей прибора по набору однородных измерений какого-либо физического параметра, при объективной оценке ширины ареала обитания вида в факторном пространстве по эмпирическому материалу и др. Как и в случае определения среднего значения эта задача может быть решена множеством способов. Первостепенный шаг в ее решении - определение опорного значения (не обязательно принадлежащего выборке), относительно которого будет вычисляться мера разброса.

Внимательный читатель может заметить, что можно ввести меру разброса не привязываясь к какому-либо опорному значению, например, положив в качестве разброса расстояние между максимальным и минимальным элементами выборки: \(s=x_{\max}-x_{\min}\). Однако и в этом, и в любом другом случае, опорное значение может быть введено искусственно: \(s=(x_{\max}-r)+(r-x_{\min})\), где выражения в скобках - суть расстояния от \(x_{\min}\) и \(x_{\max}\) до произвольной опорной точки \(r\). Поэтому в дальнейших построениях будем полагать существование такой опорной точки.

Возвращаясь к определению средней величины заметим, что значения функций \(Q_1(a)\) и \(Q_2(a)\) могут рассматриваться как разбросы выборочных значений относительно точки \(a\), измеряемые суммой расстояний и квадратов расстояний соответственно. Учитывая, что \(Q_1(m)\) и \(Q_2(a^{\ast})\) определяются однозначно, то они могут быть приняты в качестве мер разброса. Опорными значениями в этом случае будут \(m\) и \(a^{\ast}\). Значение \(Q_1(m)\) в расчетах практически не используется, что связано прежде всего с нежелательными свойствами модуля, отмеченными выше. Величина \(\sigma^2=\dfrac{Q_2(a^{\ast})}{n}=\dfrac{1}{n}\sum\limits_{i=1}^n(x_i-a^{\ast})^2\) хорошо известная выборочная дисперсия. Таким образом, \(\sigma^2\) - нормированная на \(n\) величина суммы квадратов уклонений выборочных значений относительно своего среднего; существуют и другие подходы к определению \(\sigma^2\): это значение можно рассматривать, как среднее арифметическое для производной от $\{x_1,\ldots.\,x_n\}$ выборки \(\{(x_1-a^{\ast})^2,\ldots.\,(x_n-a^{\ast})^2\}\), все элементы которой заведомо неотрицательны и характеризуют разброс относительно среднего арифметического \(a^{\ast}\), можно также мыслить \(\sigma^2\) и \(a^{\ast}\) как результат минимизации \(\hat Q_2(a)=\dfrac{1}{n}Q_2(a)\), в этом случае минимум \(\hat Q_2(a)\) достигается также при \(a=a^{\ast}\), а \(\sigma^2=\hat Q_2(a^{\ast})\).

Введенные числовые характеристики самодостаточны, они не требуют накаких дополнительных ограничений на элементы выборки. Даже вне вероятностного аппарата на их основе могут быть решены некоторые задачи, например, задача о выявлении эффективности действия какого-либо удобрения на урожайность культуры. В этом случае, если у экспериментатора имеются две выборки, представляющие урожайность культуры, выращенной в условиях воздействия удобрения и в естественных условиях, то при различии средних значений у двух выборок могут быть сделаны первоначальные выводы относительно эффективности или неэффективности удобрения. Однако к полученным таким образом выводам следует относиться с известной осторожностью (вообще говоря, как и ко всем выводам, сделанным при помощи математической статистики), особенно в тех случаях, когда различия в средних значениях невелики и подвержены сильным флюктуациям при дальнейшем добавлении к выборкам новых элементов. Более определенная схема исследований возможна на базе представлений теории вероятностей, когда каждое измерение урожайности предполагается случайной величиной. В этом случае первую (полученную при использовании удобрения) выборку представляют одинаково распределенные случайные величины, имеющие одно распределение, а вторую (полученную в естественных условиях) - некоторое другое распределение. При достаточно общих условиях в теории вероятностей доказывается утверждение (центральная предельная теорема) о том, что распределение суммы независимых одинаково распределенных случайных величин имеет вполне определенное расределение, не зависимо от того, какое распределением имели случайные величины, образующие сумму. Поскольку среднее арифметическое - сумма случайных величин, оно в свою очередь также является случайной величиной и, более того, имеет вполне определеный закон распределения. Это позволяет строить выводы о различии средних двух выборок (в прикладной интерпретации - выводы об эффективности применения удобрения), давая им вероятностную характеристику. Более подробная информация по данному вопросу может быть найдена в (Гмурман, 2004). Изложенный вероятностный подход к решению задачи является общепринятым, однако и при его использовании есть свои тонкости (Алимов, 1980), связанные с адекватностью вероятностных моделей в конкретных задачых. Так в работе (Чайковский, 2004; с. 25), указывается что "почти всякий текст, даже очень длинный, обладает тем свойством, что около половины слов встречается в нем всего однажды, так что частоту его ввести всерьез нельзя; да и у часто употребляемых слов частоты могут варьировать, даже в пределах одного автора и тематики, так сильно, что о вероятности (если понимать ее как устойчивую частоту) говорить нет смысла"; там же (с. 62) указывается тот факт, что знаменитый эксперимент К. Пирсона, показавший поразительную сходимость частоты выпадения "герба" при 24000-ом подбрасывании монеты (частота оказалась равной 0.5005), вероятнее всего, - вовремя прерванный эксперимент (Тутубалин, 1992; с. 119): "... сначала Пирсон бросил монету 6000 раз, но результат ему не понравился. Тогда он бросил ее еще 6000 раз и опять не понравилось. Пришлось бросить монету еще 12000 раз, и результат (всех бросаний) оказался замечательным". Подробности, посвященные адекватности моделей теории вероятностей и обсуждению принципиальных вопросов примененимости методов математической статистики можно найти в работах (Алимов, 1980; Чайковский, 2004; Тутубалин, 1992).

Литература

  1. Колмогоров А.Н. Избранные труды. Математика и механика. 1985. С. 136-138
  2. Фихтенгольц Г.М. Курс математического анализа. 2003. Т. 1. 680 с.
  3. Гмурман В.Е. Теория вероятностей и математическая статистика. 2004. 404 с.
  4. Алимов Ю.И. Альтернатива методу математической статистики. 1980. 64 с.
  5. Чайковский Ю.В. О природе случаности. 2004. 280 с.
  6. Тутубалин В.Н. Теория вероятностей и случайных процессов. 1992. 400 с.
Please enable JavaScript to view the