Структура плазматической мембраны. Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы. Структура клеточной мембраны

Строение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название - плазмолемма.

Строение

Плазматическая мембрана состоит из молекул трех основных видов - протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

  1. Липиды располагаются в два слоя, составляя основу клеточной стенки;
  2. Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные - наружу;
  3. Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
  4. Кроме белков здесь имеется небольшое количество углеводов - гексоз;

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

Функции

Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:

Избирательная проницаемость

Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.

Существует несколько видов механизмов транспорта веществ через клеточную мембрану:

  1. Диффузия;
  2. Осмос;
  3. Экзоцитоз;
  4. Эндоцитоз;

Диффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта - это активные процессы, протекающие с потреблением энергии.

Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

  1. Пассивный - диффузия и осмос;
  2. Активный;
  3. Транспорт в мембранной упаковке;

Рассмотрим эти механизмы более подробно.

Пассивный

К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.

Осмосом называется диффузия через клеточную стенку молекул воды .

Полярные молекулы с большой массой транспортируются с помощью специальных белков - этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

Активный

Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков - везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида - пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью . Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Подавляющее большинство организмов, обитающих на Земле, состоит из клеток, во многом сходных по своему химическому составу, строению и жизнедеятельности. В каждой клетке происходит обмен веществ и превращение энергии. Деление клеток лежит в основе процессов роста и размножения организмов. Таким образом, клетка представляет собой единицу строения, развития и размножения организмов.

Клетка может существовать только как целостная система, неделимая на части. Целостность клетки обеспечивают биологические мембраны. Клетка - элемент системы более высокого ранга - организма. Части и органоиды клетки, состоящие из сложных молекул, представляют собой целостные системы более низкого ранга.

Клетка - открытая система, связанная с окружающей средой обменом веществ и энергии. Это функциональная система, в которой каждая молекула выполняет определенные функции. Клетка обладает устойчивостью, способностью к саморегуляции и самовоспроизводству.

Клетка - самоуправляемая система. Управляющая генетическая система клетки представлена сложны ми макромолекулами - нуклеиновыми кислотами (ДНК и РНК).

В 1838-1839 гг. немецкие биологи М. Шлейден и Т. Шванн обобщили знания о клетке и сформулировали основное положение клеточной теории, сущность которой заключается в том, что все организмы, как растительные, так и живот ные, состоят из клеток.

В 1859 г. Р. Вирхов описал процесс деления клетки и сформулировал одно из важнейших положений клеточной теории: "Всякая клетка происходит из другой клетки". Новые клетки образуются в результате деления материнской клетки, а не из неклеточного вещества, как это считалось ранее.

Открытие российским ученым К. Бэром в 1826 г. яйцеклеток млекопитающих привело к выводу, что клетка лежит в основе развития многоклеточных организмов.

Современная клеточная теория включает следующие положения:

1) клетка - единица строения и развития всех организмов;

2) клетки организмов разных царств живой природы сходны по строению, химическому составу, обмену веществ, основным проявлениям жизнедеятельности;

3) новые клетки образуются в результате деления материнской клетки;

4) в многоклеточном организме клетки образуют ткани;

5) из тканей состоят органы.

С введением в биологию современных биологических, физических и химических методов исследования стало возможным изучить структуру и функционирование различных компонентов клетки. Один из методов изучения клетки - микроскопирование . Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки.

Изобретенный в 40-е гг. XX в. электронный микроскоп дает увеличение в десятки и сотни тысяч раз. В электронном микроскопе вместо света используется поток электронов, а вместо линз - электромагнитные поля. Поэтому электронный микроскоп дает четкое изображение при значительно больших увеличениях. При помощи такого микроскопа удалось изучить строение органоидов клетки.

Строение и состав органоидов клетки изучают с помощью метода центрифугирования . Измельченные ткани с разрушенными клеточными оболочками помещают в пробирки и вращают в центрифуге с большой скоростью. Метод основан на том, что различные клеточные ор ганоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно.

Широко используют метод культуры клеток и тканей , который состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных животных или растительных клеток и даже вырас тить целое растение. С помощью это го метода можно получить ответ на вопрос, как из одной клетки образуются разнообразные ткани и органы организма.

Основные положения клеточной теории были впервые сформулированы М. Шлейденом и Т. Шванном. Клетка - единица строения, жизнедеятельности, размножения и развития всех живых организмов. Для изучения клетки используют методы микроскопирования, центрифугирования, культуры клеток и тканей и др.

Клетки грибов, растений и животных имеют много общего не только в химическом составе, но и в строении. При рассматривании клетки под микроскопом в ней видны различные структуры - органоиды . Каждый органоид выполняет определенные функции. В клетке различают три основные части: плазматическую мембрану, ядро и цитоплазму (рис 1).

Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. На рисунке 2 вы видите: мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны.

Основная функция плазматической мембраны транспортная . Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена.

Важное свойство мембраны - избирательная проницаемость , или полупроницаемость, позволяет клетке взаимодействовать с окружающей средой: в нее поступают и вы водятся из нее лишь определенные вещества. Мелкие молекулы воды и некоторых других веществ проникают в клетку путем диффузии, частично через поры в мембране.

В цитоплазме, клеточном соке вакуолей растительной клетки, растворены сахара, органические кислоты, соли. Причем их концентрация в клетке значительно выше, чем в окружающей среде. Чем больше концентрация этих веществ в клетке, тем больше она поглощает воды. Известно, что вода постоянно расходуется клеткой, благодаря чему концентрация клеточного сока увеличивается и вода снова поступает в клетку.

Поступление более крупных молекул (глюкозы, аминокислот) в клетку обеспечивают транспортные белки мембраны, которые, соединяясь с молекулами транспортируемых веществ, переносят их через мембрану. В этом процессе участвуют ферменты расщепляющие АТФ.

Рисунок 1. Обобщённая схема строения эукариотической клетки.
(для увеличения изображения нажмите на рисунок)

Рисунок 2. Строение плазматической мембраны.
1 - пронзающие белки, 2 - погруженные белки, 3 - внешние белки

Рисунок 3. Схема пиноцитоза и фагоцитоза.

Еще более крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос ) (рис 3).

Клетки животных, в отличие от клеток растений, окружены мягкой и гибкой "шубой", образованной преимущественно молекулами полисахаридов, которые, присоединяясь к некоторым белкам и липидам мембраны, окружают клетку снаружи. Состав полисахаридов специфичен для разных тканей, благодаря чему клетки "узнают" друг друга и соединяются между собой.

У клеток растений такой "шубы" нет. У них над плазматической мембраной находится пронизанная порами клеточная оболочка , состоящая преимущественно из целлюлозы. Через поры из клетки в клетку тянутся нити цитоплазмы, соединяющие клетки между собой. Так осуществляется связь между клетками и достигается целостность организма.

Клеточная оболочка у растений играет роль прочного скелета и защищает клетку от повреждения.

Клеточная оболочка есть у большинства бактерий и у всех грибов, только химический состав ее другой. У грибов она состоит из хитиноподобного вещества.

Клетки грибов, растений и животных имеют сходное строение. В клетке различают три основные части: ядро, цитоплазму и плазматическую мембрану. Плазматическая мембрана состоит из липидов и белков. Она обеспечивает поступление веществ в клетку и выделение их из клетки. В клетках растений, грибов и большинства бактерий над плазматической мембраной имеется клеточная оболочка. Она выполняет защитную функцию и играет роль скелета. У растений клеточная оболочка состоит из целлюлозы, а у грибов из хитиноподобного вещества. Клетки животных покрыты полисахаридами, обеспечивающими контакты между клетками одной ткани.

Вам известно, что основную часть клетки составляет цитоплазма . В ее состав входят вода, аминокислоты, белки, углеводы, АТФ, ионы не органических веществ. В цитоплазме расположены ядро и органоиды клетки. В ней вещества перемещаются из одной части клетки в другую. Цитоплазма обеспечивает взаимодействие всех органоидов. Здесь протекают химические реакции.

Вся цитоплазма пронизана тонкими белковыми микротрубочками, образующими цитоскелет клетки , благодаря которому она сохраняет постоянную форму. Цитоскелет клетки гибкий, так как микротрубочки способны изменять свое положение, перемещаться, с одного конца и укорачиваться с другого. В клетку поступают разные вещества. Что же происходит с ними в клетке?

В лизосомах - мелких округлых мембранных пузырьках (см. рис. 1) молекулы сложных органических веществ с помощью гидролитических ферментов расщепляются на более простые молекулы. Например, белки расщепляются на аминокислоты, полисахариды - на моносахариды, жиры - на глицирин и жирные кислоты. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.

Если разрушить мембрану лизосом, то содержащиеся в них ферменты могут переварить и саму клетку. Поэтому иногда лизосомыназывают "орудиями убийства клетки".

Ферментативное окисление образовавшихся в лизосомах мелких молекул аминокислот, моносахаридов, жирных кислот и спиртов до угле кислого газа и воды начинается в цитоплазме и заканчивается в других органоидах - митохондриях . Митохондрии - палочковидные, нитевидные или шаровидные органоиды, отграниченные от цитоплазмы двумя мембранами (рис. 4). Внешняя мембрана гладкая, а внутренняя образует складки - кристы , которые увеличивают ее поверхность. На внутренней мембране и размещаются ферменты, участвующие в реакциях окисления органических веществ до углекислого газа и воды. При этом освобождается энергия, которая запасается клеткой в молекулах АТФ. Поэтому митохондрии называют "силовыми станциями" клетки.

В клетке органические вещества не только окисляются, но и синтезируются. Синтез липидов и углеводов осуществляется на эндоплазматической сети - ЭПС (рис. 5), а белков - на рибосомах. Что представляет собой ЭПС? Это система канальцев и цистерн, стенки которых образованы мембраной. Они пронизывают всю цитоплазму. По каналам ЭПС вещества перемещаются в разные части клетки.

Существует гладкая и шероховатая ЭПС. На поверхности гладкой ЭПС при участии ферментов синтезируются углеводы и липиды. Шероховатость ЭПС придают расположенные на ней мелкие округлые тельца - рибосомы (см. рис. 1), которые участвуют в синтезе белков.

Синтез органических веществ происходит и в пластидах , которые содержатся только в клетках растений.

Рис. 4. Схема строения митохондрии.
1.- внешняя мембрана; 2.- внутренняя мембрана; 3.- складки внутренней мембраны - кристы.

Рис. 5. Схема строения шероховатой ЭПС.

Рис. 6. Схема строения хлоропласта.
1.- наружная мембрана; 2.- внутрення мембрана; 3.- внутреннее содержимое хлоропласта; 4.- складки внутренней мембраны, собранные в "стопки" и образующие граны.

В бесцветных пластидах - лейкопластах (от греч. леукос - белый и пластос - созданный) накапливается крахмал. Очень богаты лейкопластами клубни картофеля. Желтую, оранжевую, красную окраску плодам и цветкам придают хромопласты (от греч. хрома - цвет и пластос ). В них синтезируются пигменты, участвующие в фотосинтезе, - каротиноиды . В жизни растений особенно велико значение хлоропластов (от греч. хлорос - зеленоватый и пластос ) - зеленых пластид. На рисунке 6 вы видите, что хлоропласты покрыты двумя мембранами: наружной и внутренней. Внутренняя мембрана образует складки; между складками находятся пузырьки, уложенные в стопки, - граны . В гранах имеются молекулы хлорофилла, которые участвуют в фотосинтезе. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны.

В цитоплазме белки, липиды, углеводы могут накапливаться в виде зерен, кристаллов, капелек. Эти включения - запасные питательные вещества, которые расходуются клеткой по мере необходимости.

В клетках растений часть запасных питательных веществ, а также продукты распада накапливаются в клеточном соке вакуолей (см. рис. 1). На их долю может приходиться до 90% объема растительной клетки. Животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Рис. 7. Схема строения комплекса Гольджи.

На рисунке 7 вы видите систему полостей, окруженных мембраной. Это комплекс Гольджи , который выполняет в клетке разнообразные функции: участвует в накоплении и транспортировке веществ, выведении их из клетки, формировании лизосом, клеточной оболочки. Например, в полости комплекса Гольджи поступают молекулы целлюлозы, которые при помощи пузырьков перемещаются на поверхность клетки и включаются в клеточную оболочку.

Большинство клеток размножается путем деления. В этом процессе участвует клеточный центр . Он состоит из двух центриолей, окруженных уплотненной цитоплазмой (см. рис. 1). В начале деления центриоли расходятся к полюсам клетки. От них расходятся белковые нити, которые соединяются с хромосомами и обеспечивают их равно мерное распределение между двумя дочерними клетками.

Все органоиды клетки тесно связаны между собой. Например, в рибосомах синтезируются молекулы белков, по каналам ЭПС они транспортируются к разным частям клетки, а в лизосомах белки разрушаются. Вновь синтезируемые молекулы используются на построение структур клетки или накапливаются в цитоплазме и вакуолях как запасные питательные вещества.

Клетка заполнена цитоплазмой. В цитоплазме располагаются ядро и разнообразные органоиды: лизосомы, митохондрии, пластиды, вакуоли, ЭПС, клеточный центр, комплекс Гольджи. Они различаются по своему строению и функциям. Все органоиды цитоплазмы взаимодействуют между собой, обеспечивая нормальное функционирование клетки.

Таблица 1. СТРОЕНИЕ КЛЕТКИ

ОРГАНЕЛЛЫ СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Оболочка Состоит из целлюлозы. Окружает растительные клетки. Имеет поры Придает клетке прочность, поддерживает определенную форму, защищает. Является скелетом растений
Наружная клеточная мембрана Двумембранная клеточная структура. Состоит из билипидного слоя и мозаично вкрапленных белков, снаружи располагаются углеводы. Обладает полупроницаемостью Ограничивает живое содержимое клеток всех организмов. Обеспечивает избирательную проницаемость, защищает, регулирует водно-солевой баланс, обмен с внешней средой.
Эндоплазматическая сеть (ЭПС) Одномембранная структура. Система канальцев, трубочек, цистерн. Пронизывает всю цитоплазму клетки. Гладкая ЭПС и гранулярная ЭПС с рибосомами Делит клетку на отдельные отсеки, где происходят химические процессы. Обеспечивает сообщение и транспорт вещества в клетке. На гранулярной ЭПС идет синтез белка. На гладкой - синтез липидов
Аппарат Гольджи Одномембранная структура. Система пузырьков, цистерн, в которой находятся продукты синтеза и распада Обеспечивает упаковку и вынос веществ из клетки, образует первичные лизосомы
Лизосомы Одномембранные шарообразные структуры клетки. Содержат гидролитические ферменты Обеспечивают расщепление высокомолекулярных веществ, внутриклеточное переваривание
Рибосомы Немембранные структуры грибовидной формы. Состоят из малой и большой субъединиц Содержатся в ядре, цитоплазме и на гранулярной ЭПС. Участвует в биосинтезе белка.
Митохондрии Двумембранные органеллы продолговатой формы. Наружная мембрана гладкая, внутренняя образует кристы. Заполнена матриксом. Имеются митохондриальные ДНК, РНК, рибосомы. Полуавтономная структура Являются энергетическими станциями клеток. Обеспечивают дыхательный процесс - кислородное окислене органических веществ. Идет синтез АТФ
Пластиды Хлоропласты Характерны для растительных клеток. Двумембранные, полуавтономные органеллы продолговатой формы. Внутри заполнены стромой, в которой располагаются граны. Граны образованы из мембранных структур - тилакоидов. Имеются ДНК, РНК, рибосомы Протекает фотосинтез. На мембранах тилакоидов идут реакции световой фазы, в строме - темновой фазы. Синтез углеводов
Хромопласты Двумембранные органеллы шаровидной формы. Содержат пигменты: красный, оранжевый, желтый. Образуются из хлоропластов Придают окраску цветкам, плодам. Образуются осенью из хлоропластов, придают листьям желтую окраску
Лейкопласты Двумембранные неокрашенные пластиды шарообразной формы. На свету могут переходить в хлоропласты Запасают питательные вещества в виде крахмальных зерен
Клеточный центр Немембранные структуры. Состоят их двух центриолей и центросферы Образует веретено деления клетки, участвуют в делении. После деления клетки удваиваются
Вакуоль Характерна для растительной клетки. Мембранная полость, заполнена клеточным соком Регулирует осмотическое давление клетки. Накапливает питательные вещества и продукты жизнедеятельности клетки
Ядро Главный компонент клетки. Окружено двухслойной пористой ядерной мембраной. Заполнено кариоплазмой. Содержит ДНК в виде хромосом (хроматина) Регулирует все процессы в клетке. Обеспечивает передачу наследственной информации. Число хромосом постоянно для каждого вида. Обеспечивает репликацию ДНК и синтез РНК
Ядрышко Темное образование в ядре, от кариоплазмы не отделено Место образования рибосом
Органеллы движения. Реснички. Жгутики Выросты цитоплазмы, окруженные мембраной Обеспечивают движение клетки, удаление частичек пыли (мерцательный эпителий)

Важнейшая роль в жизнедеятельности и делении клеток грибов, растений и животных принадлежит ядру и находящимся в нем хромосомам. Большинство клеток этих организмов имеет одно ядро, но есть и многоядерные клетки, например мышечные. Ядро расположено в цитоплазме и имеет округлую или овальную форму. Оно покрыто оболочкой, состоящей из двух мембран. Ядерная оболочка имеет поры, через которые происходит обмен веществ между ядром и цитоплазмой. Ядро заполнено ядерным соком, в котором расположены ядрышки и хромосомы.

Ядрышки - это "мастерские по производству" рибосом, которые формируются из образуемых в ядре рибосомных РНК и синтезированных в цитоплазме белков.

Главная функция ядра - хранение и передача наследственной информации - связана с хромосомами . Каждый вид организма имеет свой набор хромосом: определенное их число, форму и размеры.

Все клетки тела, кроме половых, называются соматическими (от греч. сома - тело). Клетки организма одного вида содержат одинаковый набор хромосом. Например, у человека в каждой клетке тела содержится 46 хромосом, у плодовой мухи дрозофилы - 8 хромосом.

Соматические клетки, как правило, имеют двойной набор хромосом. Он называется диплоидным и обозначается 2n . Так, у человека 23 пары хромосом, то есть 2n = 46. В половых клетках содержится в два раза меньше хромосом. Это одинарный, или гаплоидный , набор. У человека 1n = 23.

Все хромосомы в соматических клетках, в отличие от хромосом в половых клетках, парные. Хромосомы, составляющие одну пару, идентичны друг другу. Парные хромосомы называют гомологичными . Хромосомы, которые относятся к разным парам и различаются по форме и размерам, называют негомологичными (рис. 8).

У некоторых видов число хромо сом может совпадать. Например, у клевера красного и гороха посевного 2n = 14. Однако хромосомы у них различаются по форме, размерам, нуклеотидному составу молекул ДНК.

Рис. 8. Набор хромосом в клетках дрозофилы.

Рис. 9. Строение хромосомы.

Чтобы понять роль хромосом в передаче наследственной информации, необходимо познакомиться с их строением и химическим составом.

Хромосомы неделящейся клетки имеют вид длинных тонких нитей. Каждая хромосома перед делением клетки состоит из двух одинаковых нитей - хроматид , которые соединяются между ласти перетяжки - (рис. 9).

Хромосомы состоят из ДНК и белков. Поскольку нуклеотидный состав ДНК различается у разных видов, состав хромосом уникален для каждого вида.

Каждая клетка, кроме бактериальной, имеет ядро, в котором находятся ядрышки и хромосомы. Для каждого вида характерен определенный набор хромосом: число, форма и размеры. В соматических клетках большинства организмов набор хромосом диплоидный, в половых - гаплоидный. Парные хромосомы называют гомологичными. Хромосомы состоят из ДНК и белков. Молекулы ДНК обеспечивают хранение и передачу наследственной информации от клетки к клетке и от организма к организму.

Проработав эти темы, Вы должны уметь:

  1. Рассказать, в каких случаях следует применять световой микроскоп (строение), трансмиссионный электронный микроскоп.
  2. Описать структуру клеточной мембраны и пояснить связь между структурой мембраны и ее способностью осуществлять обмен веществами между клеткой и средой.
  3. Дать определение процессам: диффузия, облегченная диффузия, активный транспорт, эндоцитоз, экзоцитоз и осмос. Указать различия между этими процессами.
  4. Назвать функции структур и указать, в каких клетках (растительных, животных или прокариотических) они находятся: ядро, ядерная мембрана, нуклеоплазма, хромосомы, плазматическая мембрана, рибосома, митохондрия, клеточная стенка, хлоропласт, вакуоль, лизосома, эндоплазматическая сеть гладкая (агранулярная) и шероховатая (гранулярная), клеточный центр, аппарат Гольджи, ресничка, жгутик, мезосома, пили или фимбрии.
  5. Назвать не менее трех признаков, по которым можно отличить растительную клетку от животной.
  6. Перечислить важнейшие различия между прокариотической и эукариотической клеткой.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 1. "Плазматическая мембрана." §1, §8 стр. 5;20
  • Тема 2. "Клетка." §8-10 стр. 20-30
  • Тема 3. "Прокариотическая клетка. Вирусы." §11 стр. 31-34

Плазматическая мембрана выполняет ряд важнейших функций:

1) Барьерная. Барьерная функция плазматической мембраны заключается в ограничении свободной диффузии веществ из клетки в клетку, предотвращении утечки водорастворимого содержимого клетки. Но поскольку клетка должна получать необходимые питательные вещества, выделять конечные продукты метаболизма, регулировать внутриклеточные концентрации ионов, то в ней образовались специальные механизмы переноса веществ через клеточную мембрану.

2) Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны - избирательная проницаемость , или полупроницаемость. Она легко пропускает воду и водорастворимые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.

Существует несколько механизмов транспорта веществ через мембрану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия - это движение частиц среды, приводящее к переносу вещества из зоны, где его концентрация высока в зону с низкой концентрацией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше размеры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков переносчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряжены. Диффузия воды через клеточную мембрану называется осмосом. Предполагается, что в клеточной мембране для проникновения воды и некоторых ионов существуют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быстро диффундируют через мембрану легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молекулы небольшого диаметра (СО, мочевина).

Перенос полярных молекул (сахаров, аминокислот), осуществляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обнаружены во всех типах биологических мембран, и каждый конкретный белок предназначен для переноса молекул определенного класса. Транспортные белки являются трансмембранными, их полипептидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфических веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки-переносчики (транспортеры) и каналообразующие белки (белки-каналы). Белки-переносчики переносят молекулы через мембрану, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) проходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента концентрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена отрицательно по отношению к наружной. Мембранный потенциал облегчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против электрохимического градиента. Он всегда осуществляется белками-транспортерами и тесно связан с источником энергии. В белках-переносчиках имеются участки связывания с транспортируемым веществом. Чем больше таких участков связывается с веществом, тем выше скорость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котранспортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных - антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na 4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осуществляется симпортно, а перенос С1~ и НСО" антипортно. Предполагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na + + насос, обнаруженный в плазматической мембране всех клеток. Na + -K насос работает по принципу антипорта, перекачивая Na" из клетки и К т внутрь клетки против их электрохимических градиентов. Градиент Na + создает осмотическое давление, поддерживает клеточный объем и обеспечивает транспорт сахаров и аминокислот. На работу этого насоса тратится треть всей энергии необходимой для жизнедеятельности клеток. При изучении механизма действия Na + -K + насоса было установлено, что он является ферментом АТФазой и трансмембранным интегральным белком. В присутствии Na + и АТФ под действием АТФа-зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фосфорилируется, изменяет свою конфигурацию и Na + выводится из клетки. Вслед за выведением Na из клетки всегда происходит транспорт К" в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восстанавливает свою конфигурацию и К 1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфорилироваться. Большая субъединица на цитоплазматической стороне имеет участки для связывания Na + и АТФ, а на внешней стороне -участки для связывания К + и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na + -K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Na f из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий электрический потенциал с отрицательным значением во внутренней части клетки по отношению к ее наружной поверхности. Na"-K + насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кислот, полисахаридов, липопротеидов) и других частиц осуществляется посредством последовательного образования и слияния окруженных мембраной пузырьков (везикул). Процесс везикулярного транспорта проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необходимо чтобы молекулы воды были вытеснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считается, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромолекулами или органеллами клетки. Пузырьки могут сливаться со специфическими мембранами, что и обеспечивает обмен макромолекулами между внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндоцитозом. При этом транспортируемые вещества обволакиваются частью плазматической мембраны, образуется пузырек (вакуоль), который перемещается внутрь клетки. В зависимости от размера образующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d=150 нм). Фагоцитоз - это поглощение больших частиц, микроорганизов или обломков органелл, клеток. При этом образуются крупные пузырьки, фагосомы или вакуоли (d-250 нм и более). У простейших фагоцитарная функция - форма питания. У млекопитающих фагоцитарная функция осуществляется макрофагами и нейтрофилами, защищающими организм от инфекции путем поглощения вторгшихся микробов. Макрофаги участвуют также в утилизации старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эритроцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализированные рецепторные клетки. Связывание частиц со специфическими рецепторами мембраны вызывает образование псевдоподии, которые обволакивают частицу и, сливаясь краями, образуют пузырек -фагосому. Образование фагосомы и собственно фагоцитоз происходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "застегивая молнию".

Значительная часть материала, поглощенного клеткой путем эндоцитоза, заканчивает свой путь в лизосомах. Большие частицы включаются в фагосомы, которые затем сливаются с лизосомами и образуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые также сливаются с лизосомами, образуя эндолизосомы. Присутствующие в лизосомах разнообразные гидролитические ферменты быстро разрушают макромолекулы. Продукты гидролиза (аминокислоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с помощью экзоцитоза к плазматической мембране и там повторно утилизируются. Основным биологическим значением эндоцитоза является получение строительных блоков за счет внутриклеточного переваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в специализированных областях плазматической мембраны, так называемых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплазматическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плазмалеммы. Ямки занимают около 2% общей поверхности клеточной мебраны эукариотов. В течении минуты ямки растут, все глубже впячиваются, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плазматической мембраны фибробластов в течении одной минуты отщепляется примерно четвертая часть мембраны в виде окаймленных пузырьков. Пузырьки быстро теряют свою кайму и приобретают способность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) положительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов - для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки - первичные эндосомы, могут сливаться между собой, увеличиваясь в размере. В дальнейшем они соединяются с лизосомами, превращаясь в эндолизосому - пищеварительную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза довольно высока. Макрофаги образуют до 125, а клетки эпителия тонкого кишечника до тысячи пиносом в минуту. Обилие пиносом приводит к тому, что плазмалемма быстро тратится на образование множества мелких вакуолей. Восстановление мембраны идет довольно быстро при рециклизации в процессе экзоцитоза за счет возвращения вакуолей и их встраивания в плазмалемму. У макрофагов вся плазматическая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жидкости специфических макромолекул является специфический эндоцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечивает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецептором, называются лигандами. При помощи рецепторного эндоцитоза во многих животных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с правильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприкасаются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они способны при определенных условиях выбрасывать в окружающую среду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отрываются и переходят в среду. В других случаях наблюдается инвагинация плазмалеммы вглубь клетки и захват ею лизосом, распложенных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является рецепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодействий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигнальные молекулы, которые вырабатываются в одних клетках и специфически влияют на другие, чувствительные к сигналу (клетки-мишени). Сигнальная молекула - первичный посредник связывается с находящимися на клетках-мишенях рецепторами, реагирующими только на определенные сигналы. Сигнальные молекулы - лиганды - подходят к своему рецептору как ключ к замку. Лигандами для мембранных рецепторов (рецепторов плазмалеммы) являются гидрофильные молекулы, пептидные гормоны, нейромедиаторы, цитокины, антитела, а для ядерных рецепторов - жирорастворимые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - полисахариды и гликопротеиды. Считается, что чувствительные к отдельным веществам участки, разбросаны по поверхности клетки или собраны в небольшие зоны. Так, на поверхности прокариотических клеток и клеток животных имеется ограниченное число мест с которыми могут связываться вирусные частицы. Мембранные белки (переносчики и каналы) узнают, взаимодействуют и переносят лишь определенные вещества. Клеточные рецепторы участвуют в передаче сигналов с поверхности клетки внутрь ее. Разнообразие и специфичность наборов рецепторов на поверхности клеток ведет к созданию очень сложной системы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверхности их могут слипаться (конъюгация у простейших, образование тканей у многоклеточных). Клетки не воспринимающие маркеры, а также отличающиеся набором детерминантных маркеров уничтожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодействует с находящимся в клетке предшественником вторичного посредника - мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипаза С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов - АМФ или ГМФ. Последние изменяют активность двух типов ферментов протеинкиназ в цитоплазме клетки, ведущих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием которого усиливается секреция ряда гормонов - тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика - синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина поджелудочной железой, гистамина тучными клетками, серотонина тромбоцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболических процессов в клетке.

На плазматической мембране находятся специфические рецепторы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазматической мембране находится целая система фогорецепторных белков-родопсинов, с помощью которых световой раздражитель трансформируется в химический сигнал, а затем электрический импульс.

КЛЕТКА

Клетка – главный гистологический элемент. Эукариотическая клетка состоит из трех основных компартментов: плазматическая мембрана, ядро и цитоплазма со структурированными клеточными единицами (органеллы, включения). Важное значение для организации клеток имеют биологические мембраны, входящие в состав каждого клеточного компармента и многих органелл. Мембраны клеток имеют принципиально сходную организацию. Любую клетку снаружи ограничивает плазматическая мембрана.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Плазматическая мембрана согласно жидкостно-мозаичной модели, плазматическая мембрана с мозаичным расположением белков и липидов. В плоскости мембраны белки обладают латеральной подвижностью. Интегральные белки перераспределяются в мембранах в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного вещества. Основные функции плазматической мембраны : избирательная проницаемость, межклеточные взаимодействия, эндоцитоз, экзоцитоз.

Химический состав.

В состав плазматической мембраны входят липиды, холестерин, белки и углеводы.

Липиды (фосфолипиды, сфинголипиды, гликолипиды) составляют до 45% массы мембран.

Фосфолипиды. Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводородного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны в виде двойного слоя (бислой). Таким образом, в мембране хвосты фосфолипидов направлены внутрь бислоя, а головки обращены кнаружи.

Сфинголипиды - липиды, содержащие основание с длинной цепью (сфингозин или сходную с ним группу); сфинголипиды в значительном количестве находятся в миелиновых оболочках нервных волокон, слоёв модифицированной плазмолеммы шванновских клеток и олигодендроглиоцитов ЦНС.

Гликолипиды – молекулы содержащих олигосахариды липидов, присутствующие в наружной части бислоя, а их остатки сахаров ориентированы к поверхности клетки. Гликолипиды составляют 5% липидных молекул наружного монослоя.

Холестерин имеет чрезвычайно важное значение не только как компонент биологических мембран, на основе холестерина происходит синтез стероидных гормонов – половых, глюкокортикоидов, минералокортикоидов.

Белки составляют более 50% массы мембран. Белки плазмолеммы подразделяют на интегральные и периферические.

Интегральные мембранные белки прочно встроены в липидный бислой. Примеры интегральных мембранных белков - белки ионных каналов и рецепторные белки (мембранные рецепторы). Молекула белка, проходящая через всю толщу мембраны и выступающая из неё как на наружной, так и на внутренней поверхности, - трансмембранный белок.

Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны (наружной или внутренней) и нековалентно связаны с интегральными мембранными белками. Примерами периферических мембранных белков, связанных с наружной поверхностью мембраны, могут служить рецепторные и адгезионные белки. Примеры периферических мембранных белков, связанных с внутренней поверхностью мембраны, - белки, ассоциированные с цитоскелетом (например, дистрогликаны, белок полосы 4.1, протеинкиназа С), белки системы вторых посредников.

Углеводы (преимущественно олигосахариды) входят в состав гликопротеинов и гликолипидов мембраны, составляя 2-10% её массы. С углеводами клеточной поверхности взаимодействуют лектины. Цепи олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами пламолеммы, выступают на наружной поверхности мембран клетки и формируют поверхностную оболочку толщиной 5 - нм – гликокаликс. Гликокаликс участвует в процессах межклеточного узнавания, межклеточного взаимодействия, пристеночного пищеварения.

ИЗБИРАТЕЛЬНАЯ ПРОНИЦАЕМОСТЬ

Трансмембранная избирательная проницаемость поддерживает клеточный гомеостаз, оптимальное содержание в клетке ионов, воды, ферментов и субстратов. Пути реализации избирательной проницаемости мембран: пассивный транспорт, облегченная диффузия, активный транспорт. Гидрофобный характер сердцевины бислоя определяет возможность (или невозможность) непосредственного проникновения через мембрану различных с физико-химической точки зрения веществ (в первую очередь, полярных и неполярных).

Неполярные вещества (например, холестерин и его производные) свободно проникают через биологические мембраны. По этой причине эндоцитоз и экзоцитоз полярных соединений (например, пептидных гормонов) происходят при помощи мембранных пузырьков, а секреция стероидных гормонов – без участия таких пузырьков. По этой же причине рецепторы неполярных молекул (например, стероидных гормонов) расположены внутри клетки.

Полярные вещества (например, белки и ионы) не могут проникать через биологические мембраны. Именно поэтому рецепторы полярных молекул (например, пептидных гормонов) встроены в плазматическую мембрану, а передачу сигнала к другим клеточным компартментам осуществляют вторые посредники. По этой же причине трансмембранный перенос полярных соединений осуществляют специальные системы, встроенные в биологические мембраны.

МЕЖКЛЕТОЧНЫЕ ИНФОРМАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ

Клетка, воспринимая и трансформируя различные сигналы, реагирует на изменения окружающей её среды. Плазматическая мембрана – место приложения физических (например, кванты света в фоторецепторах), химических (например, вкусовые и обонятельные молекулы, рН), механических (например, давление или растяжение в механорецепторах) раздражителей внешней среды и сигналов информационного характера (например, гормоны, нейромедиаторы) из внутренней среды организма. При участии плазмолеммы происходят узнавание и агрегация (например, межклеточные контакты) как соседних клеток, так и клеток с компонентами внеклеточного вещества (например, адгезионные контакты, адресная миграция клеток и направленный рост аксонов в нейроонтогенезе). Информационные межклеточные взаимодействия укладываются в схему, предусматривающую следующую последовательность событий:

Сигнал → рецептор → (второй посредник) → ответ

Сигналы. Передачу сигналов от клетки к клетке осуществляют сигнальные молекулы (первый посредник), вырабатываемые в одних клетках и специфически воздействующие на другие клетки – клетки-мишени. Специфичность воздействия сигнальных молекул определяют присутствующие в клетках-мишенях рецепторы, связывающие только собственные лиганды. Все сигнальные молекулы (лиганды) – в зависимости от их физико-химической природы – подразделяют на полярные (точнее – гидрофильные) и аполярные (точнее – жирорастворимые).

Рецепторы регистрируют поступающий к клетке сигнал и передают его вторым посредникам. Различают мембранные и ядерные рецепторы.

Мембранные рецепторы – гликопротеины. Они контролируют проницаемость плазмолеммы путем изменения конформации белков ионных каналов (например, н-холинорецептор), регулируют поступление молекул в клетку (например, холестерина), связывают молекулы внеклеточного вещества с элементами цитоскелета (например, интегрины), регистрируют присутствие информационных сигналов (например, нейромедиаторов, квантов света, обонятельных молекул, антигенов, цитокинов, гормонов пептидной природы). Мембранные рецепторы регистрируют поступающий к клетке сигнал и передают его внутриклеточным химическим соединениям, опосредующим конечный эффект (вторые посредники ). Функционально мембранные рецепторы подразделяют на каталитические, связанные с ионными каналами и оперирующие через G-белок.

Ядерные рецепторы – белки-рецепторы стероидных гормонов (минерально- и глюкокортикоиды, эстрогены, прогестерон, тестостерон), ретиноидов, тиреоидных гормонов, желчных кислот, витамина D 3 ,. Каждый рецептор имеет область связывания лаганда и участок, взаимодействующий со специфическими последовательностями ДНК. Другими словами, ядерные рецепторы – активируемые лигандом транскриптиционные факторы. В геноме человека имеется более 30 ядерных рецепторов, лиганды которых находятся на стадии идентификации (сиротские рецепторы).

Внерецепторные низкомолекулярные сигналы. Некоторые низкомолекулярные сигналы (например, оксид азота и монооксид углерода) воздействуют на клетку-мишень, минуя рецепторы.

Оксид азота (NO ) – газообразный медиатор межклеточных взаимодействий, образуется из L-аргинина при участии фермента NO-синтазы. В клетках-мишенях активирует гуанилатциклазу, что приводит к увеличению уровня второго посредника – цГМФ.

Монооксид углерода (угарный газ, СО). Как сигнальная молекула СОиграет важную роль в иммунной, сердечно-сосудистой системах и периферической нервной системе.

Вторые посредники. Внутриклеточныесигнальные молекулы (вторые посредники) передают информацию с мембранных рецепторов на эффекторы (исполнительные молекулы), опосредующие ответ клетки на сигнал. Стимулы, такие как свет, запах, гормоны и другие химические сигналы (лиганды), инициируют ответ клетки-мишени, изменяя в ней уровень внутриклеточных вторых посредников. Вторые (внутриклеточные) посредники представлены многочисленным классом соединений. К ним относятся циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, диацилглицерол, Са 2+ .

Ответы клеток-мишеней. Функции клеток выполняются на разных уровнях реализации генетической информации (например, транскрипция, посттрансляционная модификация) и крайне разнообразны (например, изменения режима функционирования, стимуляция или подавление активности, перепрограммирование синтезов и так далее).

ЭНДОЦИТОЗ.

Эндоцитоз – поглощение (интернализация) клеткой воды, веществ, частиц и микроорганизмов. К вариантам эндоцитоза относят пиноцитоз, фагоцитоз, опосредованный рецепторами эндоцитоз с образованием окаймленных клатрином пузырьков и клатрин-независимый эндоцитоз с участием кавеол.

Пиноцитоз - процесс поглощения жидкости и растворенных веществ с образованием небольших пузырьков. Пиноцитоз рассматривают как неспецифический способ поглощения внеклеточных жидкостей и содержащихся в ней веществ, когда некоторая область клеточной мембраны впячивается, образуя ямку и далее пузырек, содержащий межклеточную жидкость.

Опосредуемый рецепторами эндоцитоз характеризуется поглощением из внеклеточной жидкости конкретных макромолекул, связываемых специфическими рецепторами, расположенными в плазмолемме. Последовательность событий опосредованного рецепторами эндоцитоза такова: взаимодействие лиганда с мембранным рецептором → концентрирование комплекса «лиганд-рецептор» на поверхности окаймленной ямки → формирование окаймленного клатрином пузырька → погружение в клетку окаймленного пузырька. Обладающий ГТФазной активностью хемомеханический белок динамин на стыке плазмолеммы и окаймленного пузырька формирует т.н. молекулярную пружину, которая при расщеплении ГТФ распрямляется и отталкивает пузырек от плазмолеммы. Подобным образом клетка поглощает трансферрин, холестерин вместе с ЛНП и многие другие молекулы.

Клатрин-независимый эндоцитоз. Путем клатрин-независимого эндоцитоза происходит поглощение многих объектов и молекул, например, рецептора трансформирующего фактора роста TGFβ, токсинов, вирусов и др. Один из путей клатрин-независимого эндоцитоза – поглощение диаметром 50-80 нм – кавеол.. Кавеолы характерны для большинства клеточных типов; особенно многочисленны в эндотелиальных клетках, где они участвуют в транспорте крупных макромолекул.

Фагоцитоз – поглощение крупных частиц (например, микроорганизмов или остатков клеток). Фагоцитоз осуществляют специальные клетки – фагоциты (макрофаги, нейтрофилы). В ходе фагоцитоза образуются большие эндоцитозные пузырьки – фагосомы. Фагосомы сливаются с лизосомами и формируют фаголизосомы . Фагоцитоз, в отличие от пиноцитоза, индуцирует сигналы, воздействующие на рецепторы в плазмолемме фагоцитов. Подобными сигналами служат АТ, опсонирующие фагоцитируемую частицу.

ЭКЗОЦИТОЗ

Экзоцитоз (секреция) – процесс, когда внутриклеточные секреторные пузырьки (например, синаптические) и секреторные гранулы сливаются с плазмолеммой, а их содержимое освобождается из клетки. В ходе экзоцитоза можно выделить следующие последовательные стадии: перемещение везикулы в субплазмолеммальное пространство, установление связи и (от англ. dock – стыковка) к участку плазмолеммы, слияние мембран, высвобождение содержимого гранулы (пузырька) и восстановление (обособление) мембраны гранулы.

Мембранные пузырьки содержат вещества, подлежащие выведению из клетки (секреции, экзоцитозу). Такие пузырьки образуются в комплексе Гольджи.

Гранулы – секреторные пузырьки с электронно-плотным содержимым, они присутствуют в хромаффинных клетках (катехоламины), тучных (гистамин) и некоторых эндокринных клетках (гормоны).

Конститутивная и регулируемая секреция. Процесс секреции может быть спонтанным и регулируемым. Одна часть пузырьков постоянно сливается с клеточной мембраной (конститутивная секреция), в то время как другая часть пузырьков накапливается под плазмолеммой, но процесс слияния пузырька и мембраны происходит только под действием сигнала, чаще всего вследствие увеличения концентрации Са 2+ в цитозоле (регулируемый экзоцитоз).

Типы секреции.

Типы секреции (мерокриновый, или эккриновый, апокриновый и голокриновый) будет рассмотрены в дальнейшем.

Трансцитоз – транспорт макромолекул через клетку, в ходе которого происходит быстрое и эффективное переключение эндоцитоза на экзоцитоз. Трансцитоз обычно осуществляется с участием кавеол. Кавеолы формируют дискретные пузырьки-переносчики, курсирующие между апикальной и базальной частями клетки, подвергаясь в каждом обороте (круге транспорта) процессу отрыва-слияния. Трансцитоз характерен, например, для эндотелиальных клеток, где происходит транспорт макромолекул через клетки из просвета сосуда в ткань.

Клеточная мембрана представляет собой двойной слой молекул (бислой) фосфолипидов со вставками свободно расположенных белковых молекул. Толщина наружной клеточной мембраны чаще всего составляет 6—12 нм.
Свойства мембраны : образование компартмента (замкнутого пространства), избирательная проницаемость, асимметричность строения, текучесть.
Функции мембраны :
. транспорт веществ в клетку и из клетки, газообмен;
. рецепторная; контакты между клетками в многоклеточном организме (одномембранные структуры, наружная
мембрана в митохондриях, наружная и внутренняя мембрана ядра);
. граница между наружной и внутренней средой клетки;
. модифицированные складки мембраны образуют многие органеллы клетки (мезосома).
Основа мембран — липидный бислой (см. рис. 1). Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Липиды состоят из полярной (т.е. гидрофильной, обладает сродством к воде) головы и двух неполярных (гидрофобных) хвостов. Все молекулы ориентированы одинаково: головы молекул — в воде, а углеводородные хвосты — над ее поверхностью.


Рис. 1. Строение плазматической мембраны
Белковые молекулы как бы «растворены» в липидном бислое мембраны. Они могут находиться только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой.
Функции белков в мембранах :
. дифференцировка клеток в ткани (гликопротеины);
. транспорт крупных молекул (поры и каналы, насосы);
. способствование восстановлению повреждений мембраны, доставляя фосфолипиды;
. катализ реакций, происходящих на мембранах;
. взаимная связь внутренних частей клетки с окружающим пространством;
. поддержание структуры мембран;
. получение и преобразование химических сигналов из окружающей среды (рецепторы).

Транспорт веществ через мембрану

В зависимости от необходимости использования энергии для осуществления транспорта веществ различают пассивный транспорт, который идет без расходования АТФ, и активный транспорт, в ходе которого расходуется АТФ.
В основе пассивного транспорта лежит разность концентраций и зарядов. При этом вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Скорость транспорта зависит от величины градиента. Способы пассивного транспорта через мембрану:
. простая диффузия — непосредственно через липидный слой (газы, неполярные или малые незаряженные полярные молекулы). Диффузия воды через мембраны — осмос;
. диффузия через мембранные каналы — транспорт заряженных молекул и ионов;
. облегченная диффузия — транспорт веществ с помощью специальных транспортных белков (сахара, аминокислоты, нуклеотиды).
Активный транспорт происходит против электрохимического градиента с помощью белков — переносчиков. Одна из таких систем называется натрий-калиевый насос, или натрийкалиевая АТФаза (рис. 8). Этот белок замечателен тем, что на него тратится колоссальное количество АТФ — примерно треть АТФ, синтезируемой в клетке. Это белок, который переносит через мембрану внутрь ионы калия, а наружу — ионы натрия. В результате получается, что натрий накапливается снаружи клеток.


Рис. 8. Калийнатриевый насос
Фазы работы насоса:
. с внутренней стороны мембраны к белку-насосу поступают ионы натрия и молекула АТФ, а с наружной — ионы калия;
. ионы натрия соединяются с молекулой белка и белок приобретает АТФ-азную активность, т.е. способность вызывать гидролиз АТФ, сопровождающийся освобождением энергии, приводящей в движение насос;
. фосфат, освободившийся при гидролизе АТФ, присоединяется к белку;
. конформационные изменения белка, он оказывается неспособным удерживать ионы натрия, и они высвобождаются и выходят за пределы клетки;
. белок присоединяет ионы калия;
. фосфат от белка отщепляется и конформация белка вновь изменяется;
. высвобождение ионов калия внутрь клетки;
. белок возобновляет способность присоединять ионы натрия.
За один цикл работы насос выкачивает из клетки 3 ионы натрия и закачивается 2 иона калия. Снаружи накапливается положительный заряд. При этом внутри клетки заряд отрицательный. В результате любой положительный ион может быть перенесен через мембрану сравнительно легко просто за счет того, что есть разность зарядов. Так, через натрий-зависимый белок для транспорта глюкозы присоединяет ион натрия и молекулу глюкозы снаружи, а дальше за счет того, что ион натрия притягивается внутрь, белок с легкостью переносит и натрий и глюкозу внутрь. На этом же принципе основано то, что нервные клетки имеют такое же распределение зарядов, и это позволят пропустить внутрь натрий и очень быстро создать изменение заряда, называемое нервным импульсом.
Крупные молекулы поступают через мембрану в ходе эндоцитоза. При этом мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму везикул — одномембранных мешочков. Различают два типа эндоцитоза: фагоцитоз (поглощение крупных твердых частиц) и пыноцитоз (поглощение растворов).
Экзоцитоз — процесс выведения различных веществ из клетки. При этом везикулы сливаются с плазматической мембраной, и их содержимое выводится за пределы клетки.

Лекция, реферат. Строение и функции плазматической мембраны. Транспорт веществ через мембрану - понятие и виды. Классификация, сущность и особенности.