В состав ионизирующего излучения не входят. Физика ионизирующего излучения. Проникающая способность излучения

Ионизирующие излучения - потоки фотонов, а также заряженных или нейтральных частиц, взаимодействие которых с веществом среды приводит к его ионизации. Ионизация играет важную роль в развитии радиационно-индуцированных эффектов, особенно в живой ткани. Средний расход энергии на образование одной пары ионов сравнительно мало зависит от вида И. и., что позволяет судить по степени ионизации вещества о переданной ему энергии И. и. Для регистрации и анализа И. и. инструментальными методами также используют ионизацию.

Источники И. и. делят на естественные (природные) и искусственные. Естественными источниками И. и. являются космос и распространенные в природе радиоактивные вещества (радионуклиды). В космосе формируется и достигает Земли космическое излучение - корпускулярные потоки ионизирующего излучения. Первичное космическое излучение состоит из заряженных частиц и фотонов, отличающихся высокой энергией. В атмосфере Земли первичное космическое излучение частично поглощается и инициирует ядерные реакции, в результате которых образуются радиоактивные атомы, сами испускающие И. и., поэтому космическое излучение у поверхности Земли отличается от первичного космического излучения. Различают три основных вида космического излучения: галактическое космическое излучение, солнечное космическое излучение и радиационные пояса Земли. Галактическое космическое излучение является наиболее высокоэнергетической составляющей корпускулярного потока в межпланетном пространстве и представляет собой ядра химических элементов (преимущественно водорода и гелия), ускоренных до высоких энергий; по своей проникающей способности этот вид космического излучения превосходит все виды И. и., кроме нейтрино. Для полного поглощения галактического космического излучения потребовался бы свинцовый экран толщиной около 15 м . Солнечное космическое излучение представляет собой высокоэнергетическую часть корпускулярного излучения Солнца и возникает при хромосферных вспышках днем. В период интенсивных солнечных вспышек плотность потока солнечного космического излучения может в тысячи раз превысить обычный уровень плотности потока галактического космического излучения. Солнечное космическое излучение состоит из протонов, ядер гелия и более тяжелых ядер. Солнечные протоны высоких энергий представляют наибольшую опасность для человека в условиях космического полета (см. Космическая биология и медицина ). Радиационные пояса Земли сформировались в околоземном пространстве за счет первичного космического излучения и частичного захвата его заряженной компоненты магнитным полем Земли. Радиационные пояса Земли состоят из заряженных частиц: электронов - в электронном поясе и протонов - в протонном. В радиационных поясах устанавливается поле И. и. повышенной интенсивности, что учитывают при запуске пилотируемых космических кораблей.

Природные, или естественные, радионуклиды имеют различное происхождение; часть из них принадлежит к радиоактивным семействам, родоначальники которых (уран, торий) входят в состав пород, слагающих нашу планету, с периода ее образования; некоторая часть естественных радионуклидов является продуктом активации стабильных изотопов космическим излучением. Отличительным свойством радионуклидов является радиоактивность, т.е. самопроизвольное превращение (распад) атомных ядер, приводящее к изменению их атомного номера и (или) массового числа. Скорость радиоактивного распада, характеризующая активность радионуклида, равна числу радиоактивных превращений в единицу времени.

В качестве единицы радиоактивности Международной системой единиц (СИ) определен беккерель (Бк ); 1 Бк равен одному распаду в секунду. На практике применяется также внесистемная единица активности кюри (Ки ); 1 Ки равен 3,7× 10 10 распадов в секунду, т.е. 3,7× 10 10 Бк . В результате радиоактивных превращений возникают заряженные и нейтральные частицы, формирующие поле И. и.

По виду частиц, входящих в состав И. и., различают альфа-излучение, бета-излучение, гамма-излучение, рентгеновское излучение, нейтронное излучение, протонное излучение и др. Рентгеновское и гамма-излучение относят к фотонным, или электромагнитным, И. и., а все остальные виды И. и. - к корпускулярным. Фотоны - это «порции» (кванты) электромагнитных излучений. Их энергия выражается в электрон-вольтах. Она в десятки тысяч раз превосходит энергию кванта видимого света.

Альфа-излучение представляет собой поток альфа-частиц, или ядер атомов гелия, несущих положительный заряд, равный двум элементарным единицам заряда. Альфа-частицы относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с веществом. По этой причине альфа-излучение является слабопроникающим и в медицинской практике используется либо для облучения поверхности тела, либо альфа-излучающий радионуклид вводится непосредственно в патологический очаг при внутритканевой лучевой терапии.

Бета-излучение - поток отрицательно заряженных электронов или положительно заряженных позитронов, испускаемых при бета-распаде. Бета-частицы относятся к слабоионизирующим частицам; однако по сравнению с альфа-частицами при одинаковой энергии они имеют большую проникающую способность.

Нейтронное излучение - поток электрически нейтральных частиц (нейтронов), которые возникают в некоторых ядерных реакциях при взаимодействии высокоэнергетических элементарных частиц с веществом, а также при делении тяжелых ядер. Нейтроны передают часть своей энергии ядрам атомов вещества среды и инициируют ядерные реакции. В результате в облученном нейтронным потоком веществе возникают заряженные частицы различного вида, ионизирующие вещество среды, могут также образовываться радионуклиды. Свойства нейтронного излучения и характер его взаимодействия с живой тканью определяются энергией нейтронов.

Некоторые виды И. и. возникают в ядерно-энергетических и ядерно-физических установках; ядерных реакторах, ускорителях заряженных частиц, рентгеновских аппаратах, в также созданных с помощью этих средств искусственных радионуклидов.

протонное излучение генерируется в специальных ускорителях. Око представляет собой поток протонов - частиц, несущих единичный положительный заряд и обладающих массой, близкой к массе нейтронов. Протоны относятся к сильно ионизирующим частицам; будучи ускоренными до высоких энергий, они способны сравнительно глубоко проникать в вещество среды. Это позволяет эффективно использовать протонное излучение в дистанционной лучевой терапии .

Электронное излучение генерируется специальными ускорителями электронов (например, бетатронами, линейными ускорителями), если пучок ускоренных электронов выводится наружу. Эти же ускорители могут быть источником тормозного излучения - разновидности фотонного излучения, возникающего при торможении ускоренных электронов в веществе специальной мишени ускорителя. Рентгеновское излучение, используемое в медицинской радиологии, представляет собой также тормозное излучение электронов, ускоренных в рентгеновской трубке.

Гамма-излучение - поток фотонов высоких энергий, испускаемых при распаде радионуклидов; широко применяется при лучевой терапии злокачественных новообразований. Различают направленное и ненаправленное И. и. Если все направления распространения И. и. равноценны, то говорят о изотропном И. и. По характеру распространения во времени И. и. может быть непрерывным и импульсным.

Для описания поля И.

и. используют физические величины, определяющие пространственно-временное распределение излучения в веществе среды. Важнейшими характеристиками поля И. и. являются плотность потока частиц и плотность потока энергии. В общем случае плотность потока частиц - это число частиц, проникающих в единицу времени в элементарную сферу, отнесенное к площади поперечного сечения этой сферы. Плотность потока энергии И. и. является синонимом распространенного на практике термина «интенсивность излучения». Она равна плотности потока частиц, умноженной на среднюю энергию одной частицы, и характеризует скорость переноса энергии И. и. Единицей измерений интенсивности И. и. в системе СИ является Дж/м 2 × с .

Биологическое действие ионизирующих излучении . Под биологическим действием И. и. понимают многообразные реакции, возникающие в облучаемом биологическом объекте, начиная от первичных процессов размена энергии излучения до эффектов, проявляющихся спустя длительное время после радиационного воздействия. Знание механизмов биологического действия И. и. необходимо для экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности. Для ионизации большинства элементов, входящих в состав биологического субстрата, необходимо достаточно большое количество энергии - 10-15 эВ , называемое потенциалом ионизации. Поскольку частицы и фотоны И. и. обладают энергией от десятков до миллионов эВ , что намного превышает энергию внутри- и межмолекулярных связей молекул и веществ, составляющих любой биологический субстрат, то поражающему радиационному воздействию подвержено все живое.

Максимально упрощенная схема начальных этапов лучевого поражения состоит в следующем. Вслед и по сути одновременно с передачей энергии И. и. атомам и молекулам облученной среды (физический этап биологического действия И. и.) в ней развиваются первичные радиационно-химические процессы, в основе которых лежат два механизма: прямой, когда молекулы вещества испытывают изменения при непосредственном взаимодействии с И. и., и косвенный, при котором изменяемые молекулы непосредственно не поглощают энергию И. и., а получают ее путем передачи от других молекул. В результате этих процессов образуются свободные радикалы и другие высокореакционные продукты, приводящие к изменению жизненно важных макромолекул, а в финале - к конечному биологическому эффекту. В присутствии кислорода радиационно-химические процессы интенсифицируются (кислородный эффект), что при прочих равных обстоятельствах способствует усилению биологического действия И. и. (см. Радиомодификация , Радиомодифицирующие агенты ). Следует иметь в виду, что изменения облучаемого субстрата не являются обязательно окончательными и необратимыми. Как правило, конечный результат в каждом конкретном случае не может быть предсказан, т. к наряду с лучевым повреждением может произойти и восстановление исходного состояния.

Воздействие И. и. на живой организм принято называть облучением, хотя это не совсем точно, ибо облучение организма может осуществляться и любым другим видом неионизирующего излучения (видимым светом, инфракрасным, ультрафиолетовым, высокочастотным излучением и др.). Эффективность облучения зависит от фактора времени, под которым понимают распределение дозы ионизирующего излучения во времени. Наиболее эффективно однократное острое облучение при высокой мощности дозы И. и. Пролонгированное хроническое или прерывистое (фракционированное) облучение в заданной дозе оказывает меньшее биологическое действие,

благодаря процессам пострадиационного восстановления .

Различают внешнее и внутреннее облучение. При внешнем облучении источник И. и. располагается вне организма, а при внутреннем (инкорпорированном) оно осуществляется радионуклидами, попавшими в организм через дыхательную систему, желудочно-кишечный тракт или через поврежденную кожу.

Биологическое действие И. и. в значительной степени зависит от его качества, в основном определяемого линейной передачей энергии (ЛПЭ) - энергией, теряемой частицей на единице длины ее пробега в веществе среды. В зависимости от значения ЛПЭ все И. и. делят на редкоионизирующие (ЛПЭ менее 10 кэВ/мкм ) и плотноионизирующие (ЛПЭ более 10 кэВ/мкм ). Воздействие разными видами И. и. в равных поглощенных дозах приводит к разным по величине эффектам. Для количественной оценки качества излучения введено понятие относительной биологической эффективности (ОБЭ), которую обычно оценивают сравнением дозы изучаемого И. и., вызывающей определенный биологический эффект, с дозой стандартного И. и., обусловливающей такой же эффект. Условно можно считать, что ОБЭ зависит только от ЛПЭ и возрастает с увеличением последней.

На каком бы уровне - тканевом, органном, системном или организменном не рассматривалось биологическое действие И. и., его эффект всегда определяется действием И. и. на уровне клетки. Детальное изучение реакций, инициируемых в клетке И. и., составляет предмет фундаментальных исследований радиобиологии . Следует заметить, что большинство реакций, возбуждаемых И. и., в том числе и такая универсальная реакция, как задержка клеточного деления, является временной, преходящей и не сказывается на жизнеспособности облученной клетки. К реакциям такого типа - обратимым реакциям - относятся также различные нарушения метаболизма, в т.ч. угнетение обмена нуклеиновых кислот и окислительного фосфорилирования, слипание хромосом и др. Обратимость этого типа лучевых реакций объясняется тем, что они являются следствием повреждения части множественных структур, утрата которой очень быстро восполняется или просто остается незамеченной. Отсюда и характерная особенность этих реакций: с увеличением дозы И. и. возрастает не доля реагирующих особей (клеток), а величина, степень реакции (например, продолжительность задержки деления) каждой облученной клетки.

Существенно иную природу имеют эффекты, приводящие облученную клетку к гибели, - летальные лучевые реакции. Под клеточной гибелью в радиобиологии понимают утрату клеткой способности к делению. Напротив, «выжившими» считаются те клетки, которые сохранили способность к размножению (клонированию).

Существуют две формы летальных реакций, которые гибельны для делящихся и малодифференцированных клеток: интерфазная, при ней клетка погибает вскоре после облучения, во всяком случае до наступления первого митоза, и репродуктивная, когда пораженная клетка гибнет не сразу после воздействия И. и., а в процессе деления. Наиболее распространена репродуктивная форма летальных реакций. Основной причиной гибели клеток при ней являются возникающие под влиянием облучения структурные повреждения хромосом.

Эти повреждения легко обнаруживаются при цитологическом исследовании клеток на разных стадиях митоза и имеют вид хромосомных перестроек, или хромосомных аберраций. Из-за неправильного соединения хромосом и просто утраты их концевых фрагментов при делении потомки такой поврежденной клетки несомненно погибнут сразу же после данного деления или в результате двух-трех последующих митозов (в зависимости от значимости утраченного генетического материала для жизнеспособности клетки). Возникновение структурных повреждений хромосом - процесс вероятности, в основном связанный с образованием двойных разрывов в молекуле ДНК, т.е. с нерепарируемыми повреждениями жизненно важных клеточных макромолекул. В связи с этим, в отличие от рассмотренных выше обратимых клеточных реакций, с увеличением дозы И. и. возрастает число (доля) клеток с летальным повреждением генома, строго описываемая для каждого вида клеток в координатах «доза - эффект». В настоящее время разработаны специальные методы выделения клоногенных клеток из различных тканей in vivo и их выращивания in vitro, с помощью чего после построения соответствующих дозовых кривых выживания количественно оценивают радиочувствительность изучаемых органов и возможности ее изменения в нужном направлении. Кроме того, подсчет числа клеток с хромосомными аберрациями на специальных препаратах используют в целях биологической дозиметрии для оценки радиационной обстановки, например на борту космического корабля, а также для определения степени тяжести и прогноза острой лучевой болезни.

Описанные лучевые реакции клеток лежат в основе непосредственных эффектов, проявляющихся в первые часы, дни, недели и месяцы после общего облучения организма или локального облучения отдельных сегментов тела. К ним относятся, например, лучевые ы, различные проявления острой лучевой болезни (лейкопения, аплазия костного мозга, геморрагический синдром, поражения кишечника), стерильность (временная или постоянная, в зависимости от дозы И. и.).

Спустя длительное время (месяцы и годы) после облучения развиваются отдаленные последствия местного и общего радиационного воздействия. К ним относятся сокращение продолжительности жизни, возникновение злокачественных новообразований и радиационная . Патогенез отдаленных последствий облучения в большей степени связывают с повреждением тканей, характеризующихся низким уровнем пролиферативной активности, из которых состоит большинство органов животных и человека. Глубокое знание механизмов биологического действия И. и. необходимо, с одной стороны, для разработки способов противолучевой защиты и патогенетического лечения радиационных поражений, а с другой - для изыскания путей направленного усиления лучевого воздействия при радиационно-генетических работах и других аспектах радиационной биотехнологии или при лучевой терапии злокачественных новообразований с помощью радиомодифицирующих агентов. Кроме того, понимание механизмов биологического действия И. и. необходимо врачу на случай экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности.

Библиогр.: Гозенбук В.Л. и др. Дозовая нагрузка на человека в полях гамма-нейтронного излучения, М., 1978; Иванов В.И. Курс дозиметрии, М., 1988; Кеирим-Маркус И.Б. Эквидозиметрия, М., 1980; Комар В.Е. и Хансон К.П. Информационные макромолекулы при лучевом повреждении клеток, М., 1980; Моисеев А.А. и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984; Ярмоненко С.П. Радиобиология человека и животных, М., 1988.

Виды ионизирующих излучений

Ионизирующие излучения (ИИ) - потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул. Ионизация - превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.ьИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц. Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаде составляет 20 тыс. км/с. При этом α-частицы обладают наименьшей проникающей способностью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10 -7 м до 1 · 10 -14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и β-излучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы. Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны - элементарные частицы атомного ядра, их масса в 4 раза меньше массы α-частиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений:

Корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения);

Электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения. Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γ-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р. При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад. Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. 7.



Таблица 7

Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр. Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ионизирующие излучения - потоки фотонов, а также заряженных или нейтральных частиц, взаимодействие которых с веществом среды приводит к его ионизации. Ионизация играет важную роль в развитии радиационно-индуцированных эффектов, особенно в живой ткани. Средний расход энергии на образование одной пары ионов сравнительно мало зависит от вида ионизирующих излучений , что позволяет судить по степени ионизации вещества о переданной ему энергии И. и. Для регистрации и анализа ионизирующих излучений инструментальными методами также используют ионизацию.

Источники ионизирующих излучений делят на естественные (природные) и искусственные. Естественными источниками ионизирующих излучений являются космос и распространенные в природе радиоактивные вещества (радионуклиды). В космосе формируется и достигает Земли космическое излучение - корпускулярные потоки ионизирующего излучения. Первичное космическое излучение состоит из заряженных частиц и фотонов, отличающихся высокой энергией. В атмосфере Земли первичное космическое излучение частично поглощается и инициирует ядерные реакции, в результате которых образуются радиоактивные атомы, сами испускающие И. и. , поэтому космическое излучение у поверхности Земли отличается от первичного космического излучения. Различают три основных вида космического излучения: галактическое космическое излучение, солнечное космическое излучение и радиационные пояса Земли. Галактическое космическое излучение является наиболее высокоэнергетической составляющей корпускулярного потока в межпланетном пространстве и представляет собой ядра химических элементов (преимущественно водорода и гелия), ускоренных до высоких энергий; по своей проникающей способности этот вид космического излучения превосходит все виды ионизирующих излучений , кроме нейтрино. Для полного поглощения галактического космического излучения потребовался бы свинцовый экран толщиной около 15 м . Солнечное космическое излучение представляет собой высокоэнергетическую часть корпускулярного излучения Солнца и возникает при хромосферных вспышках днем. В период интенсивных солнечных вспышек плотность потока солнечного космического излучения может в тысячи раз превысить обычный уровень плотности потока галактического космического излучения. Солнечное космическое излучение состоит из протонов, ядер гелия и более тяжелых ядер. Солнечные протоны высоких энергий представляют наибольшую опасность для человека в условиях космического полета (см. Космическая биология и медицина ). Радиационные пояса Земли сформировались в околоземном пространстве за счет первичного космического излучения и частичного захвата его заряженной компоненты магнитным полем Земли. Радиационные пояса Земли состоят из заряженных частиц: электронов - в электронном поясе и протонов - в протонном. В радиационных поясах устанавливается поле И. и. повышенной интенсивности, что учитывают при запуске пилотируемых космических кораблей.

Природные, или естественные, радионуклиды имеют различное происхождение; часть из них принадлежит к радиоактивным семействам, родоначальники которых (уран, торий) входят в состав пород, слагающих нашу планету, с периода ее образования; некоторая часть естественных радионуклидов является продуктом активации стабильных изотопов космическим излучением. Отличительным свойством радионуклидов является радиоактивность, т.е. самопроизвольное превращение (распад) атомных ядер, приводящее к изменению их атомного номера и (или) массового числа. Скорость радиоактивного распада, характеризующая активность радионуклида, равна числу радиоактивных превращений в единицу времени.

В качестве единицы радиоактивности Международной системой единиц (СИ) определен беккерель (Бк ); 1 Бк равен одному распаду в секунду. На практике применяется также внесистемная единица активности кюри (Ки ); 1 Ки равен 3,7× 10 10 распадов в секунду, т.е. 3,7× 10 10 Бк . В результате радиоактивных превращений возникают заряженные и нейтральные частицы, формирующие поле И. и.

По виду частиц, входящих в состав ионизирующих излучений , различают альфа-излучение, бета-излучение, гамма-излучение, рентгеновское излучение, нейтронное излучение, протонное излучение и др. Рентгеновское и гамма-излучение относят к фотонным, или электромагнитным, ионизирующим излучениям , а все остальные виды ионизирующих излучений - к корпускулярным. Фотоны - это «порции» (кванты) электромагнитных излучений. Их энергия выражается в электрон-вольтах. Она в десятки тысяч раз превосходит энергию кванта видимого света.

Альфа-излучение представляет собой поток альфа-частиц, или ядер атомов гелия, несущих положительный заряд, равный двум элементарным единицам заряда. Альфа-частицы относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с веществом. По этой причине альфа-излучение является слабопроникающим и в медицинской практике используется либо для облучения поверхности тела, либо альфа-излучающий радионуклид вводится непосредственно в патологический очаг при внутритканевой лучевой терапии.

Бета-излучение - поток отрицательно заряженных электронов или положительно заряженных позитронов, испускаемых при бета-распаде. Бета-частицы относятся к слабоионизирующим частицам; однако по сравнению с альфа-частицами при одинаковой энергии они имеют большую проникающую способность.

Нейтронное излучение - поток электрически нейтральных частиц (нейтронов), которые возникают в некоторых ядерных реакциях при взаимодействии высокоэнергетических элементарных частиц с веществом, а также при делении тяжелых ядер. Нейтроны передают часть своей энергии ядрам атомов вещества среды и инициируют ядерные реакции. В результате в облученном нейтронным потоком веществе возникают заряженные частицы различного вида, ионизирующие вещество среды, могут также образовываться радионуклиды. Свойства нейтронного излучения и характер его взаимодействия с живой тканью определяются энергией нейтронов.

Некоторые виды ионизирующих излучений возникают в ядерно-энергетических и ядерно-физических установках; ядерных реакторах, ускорителях заряженных частиц, рентгеновских аппаратах, в также созданных с помощью этих средств искусственных радионуклидов.

протонное излучение генерируется в специальных ускорителях. Око представляет собой поток протонов - частиц, несущих единичный положительный заряд и обладающих массой, близкой к массе нейтронов. Протоны относятся к сильно ионизирующим частицам; будучи ускоренными до высоких энергий, они способны сравнительно глубоко проникать в вещество среды. Это позволяет эффективно использовать протонное излучение в дистанционной лучевой терапии .

Электронное излучение генерируется специальными ускорителями электронов (например, бетатронами, линейными ускорителями), если пучок ускоренных электронов выводится наружу. Эти же ускорители могут быть источником тормозного излучения - разновидности фотонного излучения, возникающего при торможении ускоренных электронов в веществе специальной мишени ускорителя. Рентгеновское излучение, используемое в медицинской радиологии, представляет собой также тормозное излучение электронов, ускоренных в рентгеновской трубке.

Гамма-излучение - поток фотонов высоких энергий, испускаемых при распаде радионуклидов; широко применяется при лучевой терапии злокачественных новообразований. Различают направленное и ненаправленное И. и. Если все направления распространения ионизирующие излучения равноценны, то говорят о изотропном И. и. По характеру распространения во времени И. и. может быть непрерывным и импульсным.

Для описания поля И. и. используют физические величины, определяющие пространственно-временное распределение излучения в веществе среды. Важнейшими характеристиками поля И. и. являются плотность потока частиц и плотность потока энергии. В общем случае плотность потока частиц - это число частиц, проникающих в единицу времени в элементарную сферу, отнесенное к площади поперечного сечения этой сферы. Плотность потока энергии И. и. является синонимом распространенного на практике термина «интенсивность излучения». Она равна плотности потока частиц, умноженной на среднюю энергию одной частицы, и характеризует скорость переноса энергии И. и. Единицей измерений интенсивности И. и. в системе СИ является Дж/м 2 × с .

Биологическое действие ионизирующих излучении . Под биологическим действием И. и. понимают многообразные реакции, возникающие в облучаемом биологическом объекте, начиная от первичных процессов размена энергии излучения до эффектов, проявляющихся спустя длительное время после радиационного воздействия. Знание механизмов биологического действия ионизирующих излучений необходимо для экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности. Для ионизации большинства элементов, входящих в состав биологического субстрата, необходимо достаточно большое количество энергии - 10-15 эВ , называемое потенциалом ионизации. Поскольку частицы и фотоны ионизирующих излучений обладают энергией от десятков до миллионов эВ , что намного превышает энергию внутри- и межмолекулярных связей молекул и веществ, составляющих любой биологический субстрат, то поражающему радиационному воздействию подвержено все живое.

Максимально упрощенная схема начальных этапов лучевого поражения состоит в следующем. Вслед и по сути одновременно с передачей энергии И. и. атомам и молекулам облученной среды (физический этап биологического действия И. и. ) в ней развиваются первичные радиационно-химические процессы, в основе которых лежат два механизма: прямой, когда молекулы вещества испытывают изменения при непосредственном взаимодействии с ионизирующими излучениями , и косвенный, при котором изменяемые молекулы непосредственно не поглощают энергию ионизирующих излучений , а получают ее путем передачи от других молекул. В результате этих процессов образуются свободные радикалы и другие высокореакционные продукты, приводящие к изменению жизненно важных макромолекул, а в финале - к конечному биологическому эффекту. В присутствии кислорода радиационно-химические процессы интенсифицируются (кислородный эффект), что при прочих равных обстоятельствах способствует усилению биологического действия И. и. (см. Радиомодификация , Радиомодифицирующие агенты ). Следует иметь в виду, что изменения облучаемого субстрата не являются обязательно окончательными и необратимыми. Как правило, конечный результат в каждом конкретном случае не может быть предсказан, т. к наряду с лучевым повреждением может произойти и восстановление исходного состояния.

Воздействие ионизирующих излучений на живой организм принято называть облучением, хотя это не совсем точно, ибо облучение организма может осуществляться и любым другим видом неионизирующего излучения (видимым светом, инфракрасным, ультрафиолетовым, высокочастотным излучением и др.). Эффективность облучения зависит от фактора времени, под которым понимают распределение дозы ионизирующего излучения во времени. Наиболее эффективно однократное острое облучение при высокой мощности дозы И. и. Пролонгированное хроническое или прерывистое (фракционированное) облучение в заданной дозе оказывает меньшее биологическое действие, благодаря процессам пострадиационного восстановления .

Различают внешнее и внутреннее облучение. При внешнем облучении источник И. и. располагается вне организма, а при внутреннем (инкорпорированном) оно осуществляется радионуклидами, попавшими в организм через дыхательную систему, желудочно-кишечный тракт или через поврежденную кожу.

Биологическое действие ионизирующих излучений в значительной степени зависит от его качества, в основном определяемого линейной передачей энергии (ЛПЭ) - энергией, теряемой частицей на единице длины ее пробега в веществе среды. В зависимости от значения ЛПЭ все ионизирующие излучения делят на редкоионизирующие (ЛПЭ менее 10 кэВ/мкм ) и плотноионизирующие (ЛПЭ более 10 кэВ/мкм ). Воздействие разными видами ионизирующих излучений в равных поглощенных дозах приводит к разным по величине эффектам. Для количественной оценки качества излучения введено понятие относительной биологической эффективности (ОБЭ), которую обычно оценивают сравнением дозы изучаемого И. и. , вызывающей определенный биологический эффект, с дозой стандартного И. и. , обусловливающей такой же эффект. Условно можно считать, что ОБЭ зависит только от ЛПЭ и возрастает с увеличением последней.

На каком бы уровне - тканевом, органном, системном или организменном не рассматривалось биологическое действие И. и. , его эффект всегда определяется действием И. и. на уровне клетки. Детальное изучение реакций, инициируемых в клетке ионизирующими излучениями , составляет предмет фундаментальных исследований радиобиологии . Следует заметить, что большинство реакций, возбуждаемых ионизирующими излучениями , в том числе и такая универсальная реакция, как задержка клеточного деления, является временной, преходящей и не сказывается на жизнеспособности облученной клетки. К реакциям такого типа - обратимым реакциям - относятся также различные нарушения метаболизма, в т.ч. угнетение обмена нуклеиновых кислот и окислительного фосфорилирования, слипание хромосом и др. Обратимость этого типа лучевых реакций объясняется тем, что они являются следствием повреждения части множественных структур, утрата которой очень быстро восполняется или просто остается незамеченной. Отсюда и характерная особенность этих реакций: с увеличением дозы И. и. возрастает не доля реагирующих особей (клеток), а величина, степень реакции (например, продолжительность задержки деления) каждой облученной клетки.

Существенно иную природу имеют эффекты, приводящие облученную клетку к гибели, - летальные лучевые реакции. Под клеточной гибелью в радиобиологии понимают утрату клеткой способности к делению. Напротив, «выжившими» считаются те клетки, которые сохранили способность к размножению (клонированию).

Существуют две формы летальных реакций, которые гибельны для делящихся и малодифференцированных клеток: интерфазная, при ней клетка погибает вскоре после облучения, во всяком случае до наступления первого митоза, и репродуктивная, когда пораженная клетка гибнет не сразу после воздействия И. и. , а в процессе деления. Наиболее распространена репродуктивная форма летальных реакций. Основной причиной гибели клеток при ней являются возникающие под влиянием облучения структурные повреждения хромосом. Эти повреждения легко обнаруживаются при цитологическом исследовании клеток на разных стадиях митоза и имеют вид хромосомных перестроек, или хромосомных аберраций. Из-за неправильного соединения хромосом и просто утраты их концевых фрагментов при делении потомки такой поврежденной клетки несомненно погибнут сразу же после данного деления или в результате двух-трех последующих митозов (в зависимости от значимости утраченного генетического материала для жизнеспособности клетки). Возникновение структурных повреждений хромосом - процесс вероятности, в основном связанный с образованием двойных разрывов в молекуле ДНК, т.е. с нерепарируемыми повреждениями жизненно важных клеточных макромолекул. В связи с этим, в отличие от рассмотренных выше обратимых клеточных реакций, с увеличением дозы И. и. возрастает число (доля) клеток с летальным повреждением генома, строго описываемая для каждого вида клеток в координатах «доза - эффект». В настоящее время разработаны специальные методы выделения клоногенных клеток из различных тканей in vivo и их выращивания in vitro, с помощью чего после построения соответствующих дозовых кривых выживания количественно оценивают радиочувствительность изучаемых органов и возможности ее изменения в нужном направлении. Кроме того, подсчет числа клеток с хромосомными аберрациями на специальных препаратах используют в целях биологической дозиметрии для оценки радиационной обстановки, например на борту космического корабля, а также для определения степени тяжести и прогноза острой лучевой болезни.

Описанные лучевые реакции клеток лежат в основе непосредственных эффектов, проявляющихся в первые часы, дни, недели и месяцы после общего облучения организма или локального облучения отдельных сегментов тела. К ним относятся, например, эритема, лучевые дерматиты, различные проявления острой лучевой болезни (лейкопения, аплазия костного мозга, геморрагический синдром, поражения кишечника), стерильность (временная или постоянная, в зависимости от дозы ионизирующих излучений ).

Спустя длительное время (месяцы и годы) после облучения развиваются отдаленные последствия местного и общего радиационного воздействия. К ним относятся сокращение продолжительности жизни, возникновение злокачественных новообразований и радиационная катаракта. Патогенез отдаленных последствий облучения в большей степени связывают с повреждением тканей, характеризующихся низким уровнем пролиферативной активности, из которых состоит большинство органов животных и человека. Глубокое знание механизмов биологического действия ионизирующих излучений необходимо, с одной стороны, для разработки способов противолучевой защиты и патогенетического лечения радиационных поражений, а с другой - для изыскания путей направленного усиления лучевого воздействия при радиационно-генетических работах и других аспектах радиационной биотехнологии или при лучевой терапии злокачественных новообразований с помощью радиомодифицирующих агентов. Кроме того, понимание механизмов биологического действия ионизирующих излучений необходимо врачу на случай экстренного принятия адекватных мер обеспечения радиационной безопасности персонала и населения при авариях на атомных электростанциях и других предприятиях атомной промышленности.

Библиогр.: Гозенбук В.Л. и др. Дозовая нагрузка на человека в полях гамма-нейтронного излучения, М., 1978; Иванов В.И. Курс дозиметрии, М., 1988; Кеирим-Маркус И.Б. Эквидозиметрия, М., 1980; Комар В.Е. и Хансон К.П. Информационные макромолекулы при лучевом повреждении клеток, М., 1980; Моисеев А.А. и Иванов В.И. Справочник по дозиметрии и радиационной гигиене, М., 1984; Ярмоненко С.П. Радиобиология человека и животных, М., 1988.

1. Ионизирующие излучения, их виды, природа и основные свойства.

2. Ионизирующие излучения, их особенности, основные качества, единицы измерения. (2 в 1)

Для лучшего восприятия последующего материала необходимо вспом-

нить некоторые понятия.

1. Ядра всех атомов одного элемента имеют одинаковый заряд, то есть содер-

жат одинаковое число положительно заряжённых протонов и различное ко-

личество частиц без заряда - нейтронов.

2. Положительный заряд ядра, обусловленный количеством протонов, уравно-

вешивается отрицательным зарядом электронов. Поэтому атом электрически

нейтрален.

3. Атомы одного и того же элемента с одинаковым зарядом, но различным

числом нейтронов называются ИЗОТОПАМИ.

4. Изотопы одного и того жеэлемента имеют одинаковые химические, но раз-

личные физические свойства.

5. Изотопы (или нуклиды) по своей устойчивости делятся на стабильные и

распадающиеся, т.е. радиоактивные.

6. Радиоактивность - самопроизвольное превращение ядер атомов одних эле-

ментов в другие, сопровождающееся испусканием ионизирующих излуче-

7. Радиоактивные изотопы распадаются с определённой скоростью, измеряе-

мой периодом полураспада, то есть временем, когда первоначальное число

ядер уменьшается вдвое. Отсюда радиоактивные изотопы подразделяются на

короткоживущие (период полураспада исчисляется от долей секунды до не-

скольких дней) и долгоживущие (с периодом полураспада от нескольких ме-

сяцев до миллиардов лет).

8. Радиоактивный распад не может быть остановлен, ускорен или замедлен ка-

ким-либо способом.

9. Скорость ядерных превращений характеризуется активностью, т.е. числом

распадов в единицу времени. Единицей активности является беккерель

(Бк)- одно превращение в секунду. Внесистемная единица активности -

кюри (Ки), в 3,7 х 1010 раз большая, чем беккерель.

Различают следующие виды радиоактивных превращений: корпуску-

лярные и волновые.

К корпускулярным относят:

1. Альфа-распад. Характерен для естественных радиоактивных элементов с

большими порядковыми номерами и представляет собой поток ядер гелия,

несущих двойной положительный заряд. Испускание альфа-частиц различ-

ной энергии ядрами одного и того же вида происходит при наличии различ-

ных энергетических уровней. При этом возникают возбуждённые ядра, ко-

торые переходя в основное состояние, испускают гамма-кванты. При взаи

модействии альфа-частиц с веществом их энергия расходуется на возбужде-

ние и ионизацию атомов среды.

Альфа-частицам присуща самая большая степень ионизации - образо-

вание 60000 пар ионов на пути в 1 см воздуха. Сначала траектория частиц

гии, столкновение с ядрами), что увеличивает плотность ионизации в конце

пути частицы.

Обладая относительно большой массой и зарядом, альфа-частицы

имеют незначительную проникающую способность. Так, для альфа-частицы

с энергией 4 Мэв длина пробега в воздухе составляет 2,5 см, а биологиче-

ской ткани 0,03мм. Альфа-распад приводит к уменьшению порядкового но-

мера вещества на две единицы и массового числа на четыре единицы.

Пример: ----- +

Альфа-частицы рассматриваются как внутренние облучатели. За-

щита: папиросная бумага, одежда, алюминиевая фольга.

2. Электронный бета-распад. Характерен как для естественных, так и для

искусственных радиоактивных элементов. Ядро испускает электрон и воз-

никает при этом ядро нового элемента при неизменном массовом числе и с

большим порядковым номером.

Пример: ----- + ē

Когда ядро испускает электрон, это сопровождается выбросом нейтрино

(1/2000 массы покоя электрона).

При испускании бета-частиц ядра атомов могут находиться в возбуждённом

состоянии. Переход их в невозбуждённое состояние сопровождается испус-

канием гамма-квантов. Длина пробега бета-частицы в воздухе при 4 Мэв 17

см, при этом образуется 60 пар ионов.

3. Позитронный бета-распад. Наблюдается у некоторых искусственных ра-

диоактивных изотопов. Масса ядра практически не изменяется, а порядко-

вый номер уменьшается на единицу.

4. К-захват орбитального электрона ядром. Ядро захватывает электрон с К-

оболочки, при этом из ядра вылетает нейтрон и возникает характеристиче-

ское рентгеновское излучение.

5. К корпускулярным излучениям относят также нейтронные. Нейтроны-не

имеющие заряда элементарные частицы с массой, равной 1. В зависимости

от их энергии различают медленные (холодные, тепловые и надтепловые)

резонансные, промежуточные, быстрые, очень быстрые и сверхбыстрые

нейтроны. Нейтронное излучение самое короткоживущее: через 30-40 се-

кунд нейтрон распадается на электрон и протон. Проникающая способность

потока нейтронов сравнима с таковой для гамма-излучения. При проникно-

вении нейтронного излучения в ткани на глубину 4-6 см, образуется наве-

дённая радиоактивность: стабильные элементы становятся радиоактивными.

6. Самопроизвольное деление ядер. Этот процесс наблюдается у радиоактив-

ных элементов с большим атомным номером при захвате их ядрами медлен-

ных электронов. Одни и те же ядра образуют различные пары осколков с из-

быточным количеством нейтронов. При делении ядер выделяется энергия.

Если нейтроны вновь используются для последующего деления других ядер,

реакция будет цепной.

В лучевой терапии опухолей применяются пи-мезоны - элементарные ча-

стицы с отрицательным зарядом и массой, в 300 раз превышающей массу элек-

трона. Пи-мезоны взаимодействуют с ядрами атомов лишь в конце пробега, где

они разрушают ядра облучаемой ткани.

Волновые виды превращений.

1. Гамма-лучи. Это поток электромагнитных волн длиной от 0,1 до 0,001

нм. Скорость их распространения близка к скорости света. Проникающая

способность высокая: они могут проникать не только через тело челове-

ка, но и через более плотные среды. В воздухе величина пробега гамма-

лучей достигает нескольких сотен метров. Энергия гамма-кванта почти в

10000 раз выше энергии кванта видимого света.

2. Рентгеновские лучи. Электромагнитное излучение, искусственно полу-

чаемые в рентгеновских трубках. При подаче высокого напряжения на

катод, из него вылетают электроны, которые с большой скоростью дви-

жутся к антикатоду и ударяются о его поверхность, изготовленную из тя-

жёлого металла. Возникает тормозное рентгеновское излучение, облада-

ющее высокой проникающей способностью.

Особенности радиационного излучения

1. Ни один источник радиоактивного излучения не определяется ни одним ор-

ганом чувств.

2. Радиоактивное излучение является универсальным фактором для различных наук.

3. Радиоактивное излучение является глобальным фактором. В случае ядерного

загрязнения территории одной страны действие радиации получают и другие.

4. При действии радиоактивного излучения в организме развиваются специфи-

ческие реакции.

Качества, присущие радиоактивным элементам

и ионизирующему излучению

1. Изменение физических свойств.

2. Способность к ионизации окружающей среды.

3. Проникающая способность.

4. Период полураспада.

5. Период полувыведения.

6. Наличие критического органа, т.е. ткани, органа или части тела, облучение

которых может принести наибольший ущерб здоровью человека или его

потомству.

3. Этапы действия ионизирующих излучений на организм человека.

Действие ионизирующей радиации на организм

Непосредственные прямые нарушения в клетках и тканях, происходящие

вслед за излучением, ничтожны. Так, например, при действии облучения, вы-

зывающего смерть подопытного животного, температура в его организме по-

вышается всего лишь на одну сотую долю градуса. Однако при действии ра-

диоактивного излучения в организме возникают весьма серьёзные разнообраз-

ные нарушения, которые следует рассматривать поэтапно.

1. Физико-химический этап

Явления, которые происходят на этом этапе, называются первичными или

пусковыми. Именно они определяют весь дальнейший ход развития лучевых

поражений.

Сначала ионизирующие излучения взаимодействуют с водой, выбивая из

её молекул электроны. Образуются молекулярные ионы, несущие положитель-

ные и отрицательные заряды. Идёт так называемый Радиолиз воды.

Н2О - ē → Н2О+

Н2О + ē → Н2О-

Молекула Н2О может быть разрушена: Н и ОН

Гидроксилы могут рекомбинироваться: ОН

ОН образуется перекись водорода Н2О2

При взаимодействии Н2О2 и ОН образуется НО2 (гидропероксид) и Н2О

Ионизированные и возбуждённые атомы и молекулы в течение 10 секун-

ды взаимодействуют между собой и с различными молекулярными системами,

давая начало химически активным центрам (свободные радикалы, ионы, ион-

радикалы и др.). В этот же период возможны разрывы связей в молекулах как за

счёт непосредственного взаимодействия с ионизирующим агентом, так и за

счёт внутри- и межмолекулярной передачи энергии возбуждения.

2. Биохимический этап

Увеличивается проницаемость мембран, через них начинают диффунди-

ровать в органеллы электролиты, вода, ферменты.

Возникшие в результате взаимодействия излучений с водой радикалы

взаимодействуют с растворёнными молекулами различных соединений, давая

начало вторичнорадикальным продуктам.

Дальнейшее развитие радиационного поражения молекулярных структур

сводится к изменениям белков, липидов, углеводов и ферментов.

В белках происходят:

Конфигурационные изменения белковой структуры.

Агрегация молекул за счёт образования дисульфидных связей

Разрыв пептидных или углеродных связей, ведущих к деструкции белков

Снижение уровня метионина- донатора сульфгидрильных групп, трипто-

фана, что приводит к резкому замедлению синтеза белков

Уменьшение содержания сульфгидрильных групп за счёт их инактивации

Повреждение системы синтеза нуклеиновых кислот

В липидах:

Образуются перекиси жирных кислот, не имеющие специфических фер-

ментов для их разрушения (действие пероксидазы незначительно)

Угнетаются антиоксиданты

В углеводах:

Полисахариды распадаются до простых сахаров

Облучение простых сахаров приводит к их окислению и распаду до орга-

нических кислот и формальдегида

Гепарин теряет свои антикоагулянтные свойства

Гиалуроновая кислота теряет способность соединяться с белком

Снижается уровень гликогена

Нарушаются процессы анаэробного гликолиза

Уменьшается содержание гликогена в мышцах и печени.

В ферментной системе нарушается окислительное фосфорилирование и

изменяется активность ряда ферментов, развиваются реакции химически актив-

ных веществ с различными биологическими структурами, при которых отме-

чаются как деструкция, так и образование новых, не свойственных для облуча-

емого организма, соединений.

Последующие этапы развития лучевого поражения связаны с нарушением

обмена веществ в биологических системах с изменениями соответствующих

4. Биологический этап или судьба облученной клетки

Итак, эффект действия радиации связан с изменениями, происходящими,

как в клеточных органеллах, так и во взаимоотношениях между ними.

Наиболее чувствительными к облучению органеллами клеток организма

млекопитающих являются ядро и митохондрии. Повреждения этих структур

происходят при малых дозах и в самые ранние сроки. В ядрах радиочувстви-

тельных клеток угнетаются энергетические процессы, нарушается функция

мембран. Образуются белки, утратившие свою нормальную биологическую ак-

тивность. Более выраженной радиочувствительностью, чем ядра, обладают ми-

тохондрии. Эти изменения проявляются в форме набухания митохондрий, по-

вреждения их мембран, резком угнетении окислительного фосфорилирования.

Радиочувствительность клеток в значительной мере зависит от скорости

протекающих в них обменных процессов. Клетки, для которых характерны ин-

тенсивно протекающие биосинтетические процессы, высокий уровень окисли-

тельного фосфорилирования и значительная скорость роста, обладают более вы-

сокой радиочувствительностью, чем клетки, пребывающие в стационарной фазе.

Наиболее биологически значимыми в облучённой клетке являются изме-

нения ДНК: разрывы цепочек ДНК, химическая модификация пуриновых и

пиримидиновых оснований, их отрыв от цепи ДНК, разрушение фосфоэфирных

связей в макромолекуле, повреждение ДНК-мембранного комплекса, разруше-

ние связей ДНК-белок и многие другие нарушения.

Во всех делящихся клетках сразу после облучения временно прекращает-

ся митотическая активность («радиационный блок митозов»). Нарушение мета-

болических процессов в клетке приводит к увеличению выраженности молеку-

лярных повреждений в клетке. Этот феномен получил название биологическо-

го усиления первичного радиационного повреждения. Однако, наряду с

этим, в клетке развиваются и репарационные процессы, следствием которых

является полное или частичное восстановление структур и функций.

Наиболее чувствительными к ионизирующему излучению являются:

лимфатическая ткань, костный мозг плоских костей, половые железы, менее чув-

ствительными: соединительная, мышечная, хрящевая, костная и нервная ткани.

Гибель клеток может произойти как в репродуктивную фазу, непосред-

ственно связанную с процессом деления, так и в любой фазе клеточного цикла.

Более чувствительны к ионизирующему излучению новорождённые (вви-

ду высокой митотической активности клеток), старики (ухудшается способ-

ность клеток к восстановлению) и беременные. Повышается чувствительность к

ионизирующим излучениям и при введении некоторых химических соединений

(так называемая радиосенсибилизация).

Биологический эффект зависит:

От вида облучения

От поглощённой дозы

От распределения дозы во времени

От специфики облучаемого органа

Наиболее опасно облучение крипт тонкого кишечника, семенников, кост-

ного мозга плоских костей, области живота и облучение всего организма.

Одноклеточные организмы примерно в 200 раз менее чувствительны к

действию радиации, чем многоклеточные.

4. Природные и техногенные источники ионизирующих излучений.

Источники ионизирующего излучения бывают естественного и искус-

ственного происхождения.

Естественная радиация обусловлена:

1. Космическим излучением (протоны, альфа-частицы, ядра лития, бериллия,

углерода, кислорода, азота составляют первичное космическое излучение.

Атмосфера земли поглощает первичное космическое излучение, затем фор-

мируется вторичное излучение, представленное протонами, нейтронами,

электронами, мезонами и фотонами).

2. Излучением радиоактивных элементов земли (уран, торий, актиний, ра-

дий, радон, торон), воды, воздуха, строительных материалов жилых зданий,

радона и радиоактивного углерода (С-14), присутствующих во вдыхаемом

3. Излучением радиоактивных элементов, содержащихся в животном мире

и организме человека (К-40, уран -238, торий -232 и радий -228 и 226).

Примечание: начиная с полония (№84) все элементы являются радиоак-

тивными и способны к самопроизвольному делению ядер при захвате их ядра-

ми медленных нейтронов (естественная радиоактивность). Однако естественная

радиоактивность обнаруживается и у некоторых лёгких элементов (изотопы

рубидия, самария, лантана, рения).

5. Детерминированные и стохастические клинические эффекты, возникающие у человека при воздействии ионизирующих излучений.

Важнейшие биологические реакции организма человека на действие

ионизирующей радиации разделяют на два вида биологических эффектов

1. Детерминированные (причинно обусловленные) биологические эффек-

ты, для которых существует пороговая доза действия. Ниже порога болезнь

не проявляется, но при достижении определённого порога возникают болез-

ни, прямо пропорционально зависящие от дозы: лучевые ожоги, лучевые

дерматиты, лучевая катаракта, лучевая лихорадка, лучевое бесплодие, ано-

малии развития плода, острая и хроническая лучевая болезнь.

2. Стохастические (вероятностные) биологические эффекты не имеют поро-

га действия. Могут возникать при любой дозе. Для них характерен эффект

малых доз и даже одной клетки (клетка становится раковой, если она облуча-

ется в митозе): лейкоз, онкологические заболевания, наследственные болезни.

По времени возникновения все эффекты подразделяются на:

1. непосредственные - могут возникнуть в течение недели, месяца. Это острая

и хроническая лучевая болезнь, ожоги кожи, лучевая катаракта...

2. отдалённые - возникающие в течение жизни индивидуума: онкологические

заболевания, лейкозы.

3. возникающие через неопределённое время: генетические последствия - из-

менения наследственных структур: геномные мутации - кратные изменения

гаплоидного числа хромосом, хромосомные мутации или хромосомные

аберрации - структурные и численные изменения хромосом, точковые (ген-

ные) мутации: изменения в молекулярной структуре генов.

Корпускулярные излучения - быстрые нейтроны и альфа-частицы, вызы-

вают хромосомные перестройки чаще, чем электромагнитные излучения.__

6. Радиотоксичность и радиогенетика.

Радиотоксичность

В результате радиационных нарушений обменных процессов в организме

накапливаются радиотоксины - это химические соединения, которые играют

определённую роль в патогенезе лучевых поражений.

Радиотоксичность зависит от ряда факторов:

1. Вида радиоактивных превращений: альфа-излучение в 20 раз токсичнее бе-

та-излучения.

2. Средней энергии акта распада: энергия Р-32больше С-14.

3. Схемы радиоактивного распада: изотоп более токсичен, если даёт начало

новому радиоактивному веществу.

4. Путей поступления: поступление через желудочно-кишечный тракт в 300

раз более токсично, чем поступление через неповреждённую кожу.

5. Времени пребывания в организме: больше токсичность при значительном

периоде полураспада и малой скорости полувыведения.

6. Распределения по органам и тканям и специфики облучаемого органа:

остеотропные, гепатотропные и равномерно распределяющиеся изотопы.

7. Продолжительности поступления изотопов в организм: случайное проглаты-

вание радиоактивного вещества может окончиться благополучно, при хро-

ническом поступлении возможно накопление опасного количества излуча-

теля.

7. Острая лучевая болезнь. Профилактика.

Мельниченко - стр. 172

8. Хроническая лучевая болезнь. Профилактика.

Мельниченко стр. 173

9. Использование источников ионизирующих излучений в медицине (понятие о закрытых и открытых источниках излучений).

Источники ионизирующих излучений подразделяются на закрытые и от-

крытые. В зависимости от данной классификации по-разному трактуются и

способы защиты от данных излучений.

Закрытые источники

Их устройство исключает попадание радиоактивных веществ в окружа-

ющую среду в условиях применения и износа. Это могут быть иглы, запаянные

в стальные контейнеры, теле-гамма-установки для облучения, ампулы, бусины,

источники непрерывного излучения и генерирующие излучение периодически.

Излучение от закрытых источников только внешнее.

Принципы защиты при работе с закрытыми источниками

1. Защита количеством (уменьшение мощности дозы на рабочем месте - чем

меньше доза, тем меньше облучение. Однако технология манипуляций не

всегда позволяет уменьшить мощность дозы до минимальной величины).

2. Защита временем (сокращения времени контакта с ионизирующим излуче-

нием можно достигнуть тренировкой без излучателя).

3. Расстоянием (дистанционное управление).

4. Экранами (экраны-контейнеры для хранения и транспортировки радиоак-

тивных препаратов в нерабочем положении, для оборудования, передвиж-

ные - ширмы в рентгеновских кабинетах, части строительных конструкций

для защиты территорий - стены, двери, индивидуальные средства защиты -

щитки из орг.стекла, просвинцованные перчатки).

Альфа- и бета- излучение задерживается водородосодержащими веще-

ствами (пластмассой) и алюминием, гамма-излучение ослабляется материалами

с высокой плотностью - свинцом, сталью, чугуном.

Для поглощения нейтронов экран должен иметь три слоя:

1. слой - для замедления нейтронов - материалы с большим количеством ато-

мов водорода - вода, парафин, пластмасса и бетон

2. слой - для поглощения медленных и тепловых нейтронов - бор, кадмий

3. слой - для поглощения гамма-излучения - свинец.

Для оценки защитных свойств того или иного материала, его способности

задерживать ионизирующее излучение используют показатель слоя половинно-

го ослабления, обозначающий толщину слоя данного материала, после прохож-

дения которого интенсивность гамма-излучения уменьшается вдвое.

Открытые источники радиоактивного излучения

Открытый источник - это источник излучения, при использовании кото-

рого возможно попадание радиоактивных веществ в окружающую среду. При

этом не исключается не только внешнее, но и внутреннее облучение персонала

(газы, аэрозоли, твёрдые и жидкие радиоактивные вещества, радиоактивные

изотопы).

Все работы с открытыми изотопами разделяются на три класса. Класс ра-

бот устанавливается в зависимости от группы радиотоксичности радиоактивно-

го изотопа (А, Б, В, Г) и фактического его количества (активности) на рабочем

месте.

10. Способы защиты человека от ионизирующих излучений. Радиационная безопасность населения РФ. Нормы радиационной безопасности (НРБ-2009).

Способы защиты от открытых источников ионизирующих излучений

1. Организационные мероприятия: выделение трёх классов работ в зависимо-

сти от опасности.

2. Планировочные мероприятия. Для первого класса опасности - специально

изолированные корпуса, куда не допускаются посторонние люди. Для второ-

го класса выделяется только этаж или часть здания. Работы третьего класса

могут проводиться в обычной лаборатории с наличием вытяжного шкафа.

3. Герметизация оборудования.

4. Применение несорбирующих материалов для покрытия столов и стен,

устройство рациональной вентиляции.

5. Индивидуальные средства защиты: одежда, обувь, изолирующие костюмы,

защита органов дыхания.

6. Соблюдение радиационной асептики: халаты, перчатки, личная гигиена.

7. Радиационный и медицинский контроль.

Для обеспечения безопасности человека во всех условиях воздействия на

него ионизирующего излучения искусственного или природного происхожде-

ния применяются нормы радиационной безопасности.

В нормах устанавливаются следующие категории облучаемых лиц:

Персонал (группа А - лица, постоянно работающие с источниками иони-

зирующих излучений и группа Б - ограниченная часть населения, которая ино-

гда может подвергаться воздействию ионизирующих излучений - уборщицы,

слесари и т.д.)

Всё население, включая лиц из персонала, вне сферы и условий их произ-

водственной деятельности.

Основные пределы доз для персонала группы Б равны ¼ значений для

персонала группы А. Эффективная доза для персонала не должна превышать за

период трудовой деятельности (50 лет) 1000 мЗв, а для населения за период

жизни (70 лет) - 70 мЗв.

Планируемое облучение персонала группы А выше установленных пре-

делов при ликвидации или предотвращении аварии может быть разрешено

только в случае необходимости спасения людей или предотвращения их облу-

чения. Допускается для мужчин старше 30 лет при их добровольном письмен-

ном согласии, информирования о возможных дозах облучения и риске для здо-

ровья. В аварийных ситуациях облучение не должно быть более 50 мЗв.__

11. Возможные причины возникновения чрезвычайных ситуаций на радиационно-опасных объектах.

Классификация радиационных аварий

Аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные и запроектные.

Проектная авария — авария, для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности.

Запроектная авария — вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям. При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм. В тяжелых случаях могут произойти тепловые и ядерные взрывы.

В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на шесть типов: локальная, местная, территориальная, региональная, федеральная, трансграничная.

Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1 000 человек, или материальный ущерб превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной.

При трансграничных авариях радиационные последствия аварии выходят за территорию Российской Федерации, либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.

12. Санитарно-гигиенические мероприятия в чрезвычайных ситуациях на радиационно-опасных объектах.

К мероприятиям, способам и средствам, обеспечивающим защиту населения от радиационного воздействия при радиационной аварии, относятся:

обнаружение факта радиационной аварии и оповещение о ней;

выявление радиационной обстановки в районе аварии;

организация радиационного контроля;

установление и поддержание режима радиационной безопасности;

проведение при необходимости на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта и участников ликвидации последствий аварии;

обеспечение населения, персонала, участников ликвидации последствий аварии необходимыми средствами индивидуальной защиты и использование этих средств;

укрытие населения в убежищах и противорадиационных укрытиях;

санитарная обработка;

дезактивация аварийного объекта, других объектов, технических средств и др;

эвакуация или отселение населения из зон, в которых уровень загрязнения или дозы облучения превышают допустимые для проживания населения.

Выявление радиационной обстановки проводится для определения масштабов аварии, установления размеров зон радиоактивного загрязнения, мощности дозы и уровня радиоактивного загрязнения в зонах оптимальных маршрутов движения людей, транспорта, а также определения возможных маршрутов эвакуации населения и сельскохозяйственных животных.

Радиационный контроль в условиях радиационной аварии проводится с целью соблюдения допустимого времени пребывания людей в зоне аварии, контроля доз облучения и уровней радиоактивного загрязнения.

Режим радиационной безопасности обеспечивается установлением особого порядка доступа в зону аварии, зонированием района аварии; проведением аварийно-спасательных работ, осуществлением радиационного контроля в зонах и на выходе в “чистую” зону и др.

Использование средств индивидуальной защиты заключается в применении изолирующих средств защиты кожи (защитные комплекты), а также средств защиты органов дыхания и зрения (ватно-марлевые повязки, различные типы респираторов, фильтрующие и изолирующие противогазы, защитные очки и др.). Они защищают человека в основном от внутреннего облучения.

Для защиты щитовидной железы взрослых и детей от воздействия радиоактивных изотопов йода на ранней стадии аварии проводится йодная профилактика. Она заключается в приеме стабильного йода, в основном йодистого калия, который принимают в таблетках в следующих дозах: детям от двух лет и старше, а также взрослым по 0,125 г, до двух лет по 0,04 г., прием внутрь после еды вместе с киселем, чаем, водой 1 раз в день в течение 7 суток. Раствор йода водно-спиртовой (5%-ная настойка йода) показан детям от двух лет и старше, а также взрослым по 3-5 капель на стакан молока или воды в течение 7 суток. Детям до двух лет дают 1-2 капли на 100 мл молока или питательной смеси в течение 7 суток.

Максимальный защитный эффект (снижение дозы облучения примерно в 100 раз) достигается при предварительном и одновременном с поступлением радиоактивного йода приеме его стабильного аналога. Защитный эффект препарата значительно снижается при его приеме более чем через два часа после начала облучения. Однако и в этом случае происходит эффективная защита от облучения при повторных поступлениях радиоактивного йода.

Защиту от внешнего облучения могут обеспечить только защитные сооружения, которые должны оснащаться фильтрами-поглотителями радионуклидов йода. Временные укрытия населения до проведения эвакуации могут обеспечить практически любые герметизированные помещения.

Тест 8 класс

В — 1

1. В состав ионизирующего излучения входят:

а) ультрафиолетовые лучи;

б) альфа-излучение;

в) бета-излучение;

г) тепловое излучение;

д) электромагнитное излучение;

е) гамма-излучение.

2. За счет чего в основном образуется естественный радиацион-ный фон? Назовите правильный ответ:

а) за счет радиации Солнца, Земли, внутренней радиоактив-ности человека, рентгеновских исследований, флюорогра-фии, радиоактивных осадков от ядерных испытаний, про-водившихся в атмосфере;

б) за счет увеличения добычи радиоактивных материалов;

в) за счет роста химически опасных производств, использо-вания радиоактивных материалов на производстве, сжига-ния угля, нефти, газа на ТЭС.

3. К радиационно-опасным объектам относятся:

4. Каковы пути проникновения радиоактивных веществ в орга-низм человека при внутреннем облучении? Назовите правиль-ные ответы:

а) через одежду и кожные покровы;

б) в результате прохождения радиоактивного облака;

в) в результате потребления загрязненных продуктов питания;

г) в результате вдыхания радиоактивной пыли и аэрозолей;

д) в результате радиоактивного загрязнения поверхности зем-ли, зданий и сооружений;

е) в результате потребления загрязненной воды.

5. Внимательно прочитайте задание и определите, какие дозы облучения людей (в рентгенах) соответствуют следующим признакам поражения:

а) через несколько часов после облучения появляется лучевая болезнь III степени, которая в большинстве случаев при-водит к смертельному исходу;

б) после однократного облучения появляется рвота, чувство усталости, в организме сокращается количество белых кро-вяных телец; серьезной потери трудоспособности не насту-пает;

в) отсутствуют признаки поражения;

г) пораженные погибают в первые дни облучения в результате молниеносной формы лучевой болезни.

6. Какое заболевание вызывает проникающая радиация у неза-щищенных людей? Назовите правильный ответ:

а) поражение центральной нервной системы;

б) поражение опорно-двигательного аппарата;

в) лучевую болезнь.

7. Определите какие из приведенных марок противогазов и респираторов необходимо использовать для защиты от радиоактивного йода? Назовите правильный ответ:

а) ГП-5;

б) ГП-7;

в) ПДФ-Д;

г) ПДФ-Ш;

д) ПДФ-2П;

е) ПДФ-2Ш;

ж) «Лепесток»;

з) Р-2, Р-2Д.

8. При движении по зараженной радиоактивными веществами местности необходимо:

а) находиться в средствах индивидуальной защиты органов дыхания и кожи;

б) периодически снимать средства индивидуальной защиты органов дыхания и кожи и отряхивать их от пыли;

в) двигаться по высокой траве и кустарнику;

г) избегать движения по высокой траве и кустарнику;

д) без надобности не садиться и не прикасаться к местным предметам;

е) принимать пищу и пить только при ясной безветренной погоде;

ж) не принимать пищу, не пить, не курить;

з) не поднимать пыль и не ставить вещи на землю. Выберите из предложенных вариантов ваши дальнейшие дейст-вия и расположите их в логической последовательности.

9. Управление ГОЧС передало сообщение об аварии на АЭС. В нём жителям района, в котором вы живете, рекомендовано покинуть свои квартиры (дома) и прийти на сборный пункт для эвакуации в безопасную зону. Родители находятся на работе. Вы располагаете временем 1,5 часа. Ваши действия и их последовательность:

а) позвонить родителям на работу и сообщить о случившемся;

б) вывесить на двери табличку об отсутствии в квартире жи-телей и следовать на сборный пункт;

г) выключить газ, электричество, погасить огонь в печи;

д) переодеться в чистую одежду;

е) освободить холодильник от продуктов, вынести скоропор-тящиеся продукты и мусор в мусоросборник;

з) использовать намоченный носовой платок в качестве сред-ства защиты органов дыхания при следовании на сборный пункт

Тест 8 класс

Аварии с выбросом радиоактивных веществ

В — 2

1. Самым опасным излучением для человека является:

а) альфа-излучение;

б) бета-излучение;

в) гамма-излучение.

2. Объект с ядерным реактором, завод, использующий ядерное топливо или перерабатывающий ядерный материал, а также его место хранения и транспортное средство, перевозящее ядерный материал или источникионизирующего излучения, при аварии на котором или разрушении которого может про-изойти облучение людей, животных и растений, а также ра-диоактивное загрязнение окружающей природной среды, это:

а) объект экономики особой опасности;

б) экологически опасный объект;

в) радиационно-опасный объект;

г) объект повышенной опасности.

3. Из предложенных вариантов ответов выберите те, которые характеризуют специфические свойства радиоактивных веществ

:а) стелются по земле на небольшой высоте и таким образом могут распространяться на несколько десятков километров;

б) не имеют запаха, цвета, вкусовых качеств или других внешних признаков;

в) способны вызвать поражение не только при непосредствен-ном соприкосновении с ними, но и на расстоянии (до со-тен метров) от источника загрязнения;

г) моментально распространяются в атмосфере независимо от скорости и направления ветра;

д) имеют специфический запах сероводорода;

е) поражающие свойства радиоактивных веществ не могут быть уничтожены химически и (или) каким-либо другим способом, так как радиоактивный распад не зависит от внешних факторов, а определяется периодом полураспада данного вещества.

4. Ткань, орган и часть тела, воздействие на который в условиях неравномерного облучения организма может причинить наибольший ущерб здоровью данного лица или его потомства, называют критическим. В порядке убывания радиочувствительности критические органы относятся к I, II или III группам. Определите, какие из приведенных критических органов относятся к I, II и III группам:

а) мышцы, щитовидная железа, жировая ткань, печень, поч-ки, селезенка, желудочно-кишечный тракт, легкие, хрус-талики глаз;

б) кожный покров, костная ткань, кисти, предплечья, голени и стопы;

в) половые органы и красный костный мозг;

5. Какую цель преследует проведение йодной профилактики? Не допустить:

а) возникновения лучевой болезни;

б) внутреннего облучения;

в) поражения щитовидной железы.

6. Тяжелую степень лучевой болезни вызывает доза облучения:

а) 450 бэр.;

б) 10 бэр.;

в) 0,5 бэр.

7. Что необходимо сделать при оповещении об аварии на радиационно- опасном объекте? Определите из предложенных вари-антов последовательность ваших действий:

а) надеть средства индивидуальной защиты;

б) освободить от продуктов питания холодильник и вынести скоропортящиеся продукты и мусор; в) включить радиоприемник, телевизор и выслушать сообщение;

г) следовать на сборный эвакуационный пункт;

д) взять необходимые продукты питания, вещи и документы;

е) вывесить на двери табличку: «В квартире жильцов нет»;

ж) выключить газ, электричество, погасить огонь в печи.

8. При проживании в районе с повышенным радиационным фоном и радиоактивным загрязнением местности, сложив-шимся в результате аварии на АЭС, вам по необходимости приходится выходить на улицу (открытую местность). Какие санитарно-гиенические мероприятия вы должны выполнить при возвращении в дом (квартиру)? Ваши действия и их последовательность:

а) перед входом в дом снять одежду и выбить (вытряхнуть) из нее пыль;

б) обувь ополоснуть в специальной емкости с водой, протереть влажной тканью и оставить у порога;

в) воду из емкости вылить в канализацию;

г) войдя в помещение, верхнюю одежду повесить в плотно закрывающийся шкаф;

д) верхнюю одежду повесить в специально отведенном месте у входа в дом (на улице);

е) вымыть руки и лицо;

ж) принять душ с мылом.

9. К радиационно-опасным объектам относятся:

а) взрывоопасные производства на промышленных предприя-тиях;

б) производства, связанные с применением, хранением и пере-работкой легковоспламеняющихся и горючих жидкостей;

в) предприятия по производству ядерного топлива;

г) атомные электростанции; д) предприятия цветной и черной металлургии;

е) хранилища твердых и жидких радиоактивных отходов;

ж) транспортные ядерные энергетические установки;

з) предприятия нефтеперерабатывающей промышленности;

и) предприятия угольной промышленности;

к) научно — исследовательские организации, имеющие ядер-ные установки и стенды;

л) системы ядерного оружия, склады с ядерными боеприпа-сами и заводы по их производству.

Ответы к тестам