Железо в таблице менделеева. Железо в организме человека. Железо и его соединения

Железо англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

Этимология названий железа на древних языках довольно отчетливо отражает историю знакомства наших предков с этим металлом. Многие древние народы, несомненно, познакомились с ним, как с металлом, упавшим с неба, т. е. как с метеоритным железом. Так, в древнем Египте железо имело название би-ни-пет (бенипет, коптское - бенипе), что в буквальном переводе означает небесная руда, или небесный металл. В эпоху первых династий Ур в Месопотамии железо именовали ан-бар (небесное железо). В папирусе Эберса (ранее 1500 г. до н.э.) имеются два упоминания о железе; в одном случае о нем говорится как о металле из города Кэзи (Верхний Египет), в другом - как о металле небесного изготовления (артпет). Древнегреческое название железа, так же как и северокавказское - зидо, связано с древнейшим словом, уцелевшим в латинском языке,- sidereus (звездный от Sidus - звезда, светило). На древнем и современном армянском языке железо называется еркат, что означает капнувшее (упавшее) с неба. O том, что древние люди пользовались вначале именно железом метеоритного происхождения, свидетельствуют и распространенные у некоторых народов мифы о богах или демонах, сбросивших с неба железные предметы и орудия, - плуги, топоры и пр. Интересен также факт, что к моменту открытия Америки индейцы и эскимосы Северной Америки не были знакомы со способами получения железа из руд, но умели обрабатывать метеоритное железо.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

Впрочем, некоторые народы не связывали название железа с небесным происхождением металла. Так, у славянских народов железо называется по "функциональному" признаку. Русское железо (южнославянское зализо, польское zelaso, литовское gelesis и т. д.) имеет корень "лез" или "рез" (от слова лезо - лезвие). Такое словообразование прямо указывает на функцию предметов, изготовлявшихся из железа, - режущих инструментов и оружия. Приставка "же", по-видимому, смягчение более древнего "зе" или "за"; она сохранилась в начальном виде у многих славянских народов (у чехов - zelezo). Старые немецкие филологи - представители теории индоевропейского, или, как они его называли, индогерманского праязыка - стремились произвести славянские названия от немецких и санскритских корней. Например, Фик сопоставляет слово железо с санскритским ghalgha (расплавленный металл, от ghal - пылать). Но вряд ли это соответствует действительности: ведь древним людям была недоступна плавка железа. С санскритским ghalgha скорее можно сопоставить греческое название меди, но не славянское слово железо. Функциональный признак в названиях железа нашел отражение и в других языках. Так, на латинском языке наряду с обычным названием стали (chalybs), происходящим от наименования племени халибов, жившего на южном побережье Черного моря, употреблялось название acies, буквально обозначающее лезвие или острие. Это, слово в точности соответствует древнегреческому, применявшемуся в том же самом смысле. Упомянем в нескольких словах о происхождении немецкого и английского названий железа. Филологи обычно принимают, что немецкое слово Eisen имеет кельтское происхождение, так же как и английское Iron. В обоих терминах отражены кельтские названия рек (Isarno, Isarkos, Eisack), которые затем трансформировались) isarn, eisarn) и превратились в Eisen. Существуют, впрочем, и другие точки зрения. Некоторые филологи производят немецкое Eisen от кельтского isara, означающего "крепкий, сильный". Существуют также теории, утверждающие, что Eisen происходит от ayas или aes (медь), а также от Eis (лед) и т.д. Староанглийское название железа (до 1150 г.) - iren; оно употреблялось наряду с isern и isen и перешло в средние века. Современное Iron вошло в употребление после 1630 г. Заметим, что в "Алхимическом лексиконе" Руланда (1612) в качестве одного из старых названий железа приведено слово Iris, означающее "радуга" и созвучное Iron.

Ставшее международным, латинское название Ferrum принято у романских народов. Оно, вероятно, связано с греколатинским fars (быть твердым), которое происходит от санскритского bhars (твердеть). Возможно сопоставление и с ferreus, означающим у древних писателей "нечувствительный, непреклонный, крепкий, твердый, тяжкий", а также с ferre (носить). Алхимики наряду с Ferrum ynoтребляли и многие другие названия, например Iris, Sarsar, Phaulec,Mineraи др.

Железные изделия из метеоритного железа найдены в захоронениях, относящихся к очень давним временам (IV - V тысячелетиях до н.э.), в Египте и Месопотамии. Однако железный век в Египте начался лишь с ХIIв. до н. э., а в других странах еще позднее. В древнерусской литературе слово железо фигурирует в древнейших памятниках (с XI в.) под названиями желъзо, железо, жельзо.

Трудно переоценить роль железа для человеческого организма, ведь именно оно способствует «творению» крови, его содержание влияет на уровень гемоглобина и миоглобина, железо нормализует работу ферментной системы. Но что это за элемент с точки зрения химии? Какая валентность железа? Об этом будет рассказано в данной статье.

Немного истории

Человечество знало об этом химическом элементе и даже владело изделиями из него еще в IV веке до нашей эры. Это были народы Древнего Египта и Шумеры. Именно они первые начали изготавливать украшения, оружие из сплава железа и никеля, которые были найдены при археологических раскопках и тщательно исследованы химиками.

Немного позже, племена арийцев, переселившиеся в Азию, научилось добывать твердое железо из руды. Оно было настолько ценным для людей того времени, что изделия покрывали золотом!

Характеристика железа

Железо (Fe) стоит на четвертом месте по содержанию его в недрах земной коры. Оно занимает место в 7 группе 4 периода и имеет номер 26 в химической таблице элементов Менделеева. Валентность железа имеет прямую зависимость от своего положения в таблице. Но об этом позже.

Данный металл наиболее всего распространен в природе в виде руды, встречается в воде как минерал, а также в различных соединениях.

Наибольшее количество запасов железа в виде руды, находится в России, Австралии, Украине, Бразилии, США, Индии, Канаде.

Физические свойства

Прежде чем переходить к валентности железа, необходимо подробнее рассмотреть его физические свойства, так сказать, приглядеться к нему поближе.

Этот металл имеет достаточно пластичный, но способен к увеличению твердости путем его взаимодействия с другими элементами (например, с углеродом). Также он обладает магнитными свойствами.

Во влажной среде железо может корродировать, то есть ржаветь. Хотя абсолютно чистый металл устойчивее к влаге, но если в нем есть примеси, именно они провоцируют коррозию.

Железо хорошо взаимодействует с кислотной средой, даже может образовывать соли железной кислоты (при условии сильного окислителя).

В воздушной среде быстро покрывается оксидной пленкой, которая защищает его от взаимодействий.

Химические свойства

Также этот элемент обладает рядом химических свойств. Железо, как и остальные элементы таблицы Менделеева, имеет заряд атомного ядра, который соответствует порядковому номеру +26. А возле ядра вращается 26 электронов.

А вообще, если рассматривать свойства железа - химического элемента, то он является металлом с невысокой активной способностью.

Взаимодействуя с окислителями более слабыми, железо образует соединения, где оно двухвалентно (то есть его степень окисления +2). А если с сильными окислителями, то степень окисления железа достигает +3 (то есть валентность его становится равной 3).

При взаимодействии с химическими элементами, которые не являются металлами, Fe выступает по отношению к ним восстановителем, при этом степень окисления его становиться, кроме +2 и +3, даже +4, +5, +6. Такие соединения имеют очень сильные окислительные свойства.

Как уже отмечалось выше, железо в воздушной среде покрывается оксидной пленкой. А при нагревании скорость реакции повышается и может образоваться оксид железа с валентностью 2 (температура менее 570 градусов по Цельсию) или оксид с валентностью 3 (температурный показатель более 570 градусов).

Взаимодействие Fe с галогенами, приводит к образованию солей. Элементы фтор и хлор окисляют его до +3. Бром же - до +2 или +3 (все зависит от того, какие условия осуществления химического превращения при взаимодействии с железом).

Вступая во взаимодействия с йодом, элемент окисляется до +2.

Нагревая железо и серу, получается сульфид железа с валентностью 2.

Если феррум расплавить и соединить его с углеродом, фосфором, кремнием, бором, азотом, то получатся соединения называемые сплавами.

Железо является металлом, поэтому оно вступает во взаимодействие и с кислотами (об этом кратко также говорилось чуть выше). Например, кислоты серная и азотная, имеющие высокую концентрацию, в среде с пониженной температурой, на железо не оказывают воздействия. Но стоит ей повысится, как происходит реакция, в результате которой железо окисляется до +3.

Чем выше концентрация кислоты, тем большую температуру необходимо дать.

Нагревая 2-х валентное железо в воде, получим его оксид и водород.

Также Fe обладает способностью вытеснять из водных растворов солей металлы, которые имеют пониженную активность. При этом он окисляется до +2.

При повышении температуры, железо восстанавливает металлы из оксидов.

Что такое валентность

Уже в предыдущем разделе немного встречалось понятие валентности, а также степени окисления. Пришло время рассмотреть валентность железа.

Но для начала необходимо понять, что это вообще за такое свойство химических элементов.

Химические вещества почти всегда постоянны в своем составе. Например, в формуле воды Н2О - 1 атом кислорода и 2 атома водорода. То же самое и с другими соединениями, в которых задействованы два химических элемента, один из которых водород: к 1 атому химического элемента может добавиться 1-4 атома водорода. Но никак не наоборот! А потому, видно, что водород присоединяет к себе всего 1 атом другого вещества. И именно это явление называют валентностью - способностью атомов химического элемента присоединять конкретное количество атомов других элементов.

Значение валентности и графическая формула

Есть элементы таблицы Менделеева, которые обладают постоянной валентностью - это кислород и водород.

А есть такие химические элементы, у которых она изменяется. Например, железо чаще 2-х и 3-х валентно, сера 2, 4, 6-ти, углерод 2 и 4-х. Это элементы с переменной валентностью.

Также, зная валентность одного из элементов в соединении, можно определить валентность другого.

Валентность железа

Как было отмечено, железо относится к элементам с переменной валентностью. И она может колебаться не только между показателями 2 и 3, но и достигать 4, 5 и даже 6.

Конечно, более подробно изучает валентность железа Рассмотрим этот механизм кратко на уровне простейших частиц.

Железо является д-элементом, к которому причисляется еще 31 элемент таблицы Менделеева (это 4-7 периоды). С возрастанием порядкового номера, свойства д-элементов приобретают небольшие изменения. Атомный радиус у этих веществ также медленно возрастает. Они обладают переменной валентностью, которая зависит от того, что предвнешний д-электронный подуровень является незавершенным.

Потому для железа валентными есть не только с-электроны, находящиеся во внешнем слое, но и неспаренные 3д-электроны предвнешнего слоя. И, как следствие, валентность Fe в химических соединениях может равнятся 2, 3, 4, 5, 6. В основном, она равна 2 и 3 - это более устойчивые с другими веществами. В менее устойчивых - он проявляет валентность 4, 5, 6. Но, такие соединения встречаются реже.

Двухвалентный феррум

При взаимодействии 2 валентного железа с водой получается оксид железа (2). Такое соединение обладает черным цветом. Достаточно легко взаимодействует с соляной (малой концентрации) и азотной (высокой концентрации) кислотами.

Если такому оксиду 2-х валентного железа провзаимодействовать или с водородом (температура 350 градусов по Цельсию), или с углеродом (коксом) при 1000 градусов, то оно восстанавливается до чистого состояния.

Добывают оксид железа 2-х валентного такими способами:

  • через соединение оксида 3-х валентного железа с угарным газом;
  • при нагревании чистого Fe, при этом низкое давление кислорода;
  • при раскладывании оксалата 2-х валентного железа в вакуумной среде;
  • при взаимодействии чистого железа с его оксидами, температура при этом 900-1000 градусов по Цельсию.

Что касается природной среды, то оксид железа 2-х валентного, присутствует в виде минерала вюстита.

Есть еще способ, как в растворе определить валентность железа - в данном случае, имеющего ее показатель 2. Необходимо провести реакции с красной солью (гексацианоферрат калия) и с щелочью. В первом случае наблюдается получение осадка темно-синего цвета - комплексной соли железа 2-х валентного. Во втором - получение темного серо-зеленого осадка - гидроксида железа также 2-х валентного, в то время, как гидроксид железа 3-х валентного имеет цвет в растворе темно-бурый.

Трехвалентное железо

Оксид 3-х валентного феррума имеет порошкообразную структуру, цвет которой красно-коричневый. Имеет также наименования: окись железа, красный пигмент, пищевой краситель, крокус.

В природе это вещество встречается в виде минерала - гематита.

Оксид такого железа с водой уже не взаимодействует. Но соединяется с кислотами и щелочами.

Применяется оксид железа (3) для окрашивания материалов, применяемых в строительстве:

  • кирпичей;
  • цемента;
  • керамических изделий;
  • бетона;
  • тротуарной плитки;
  • напольных покрытий (линолеум).

Железо в организме человека

Как отмечалось в начале статьи, вещество железо является важной составляющей человеческого организма.

Когда этого элемента является недостаточно, то могут возникнуть следующие последствия:

  • повышенная усталость и чувствительность к холоду;
  • сухость кожи;
  • снижение мозговой деятельности;
  • ухудшение прочности ногтевой пластины;
  • головокружение;
  • проблемы с пищеварением;
  • седина и выпадение волос.

Накапливается железо, как правило, в селезенке и печени, а также почках и поджелудочной железе.

В рационе человека должны быть продукты, содержащие железо:

  • говяжья печень;
  • гречневая каша;
  • арахис;
  • фисташки;
  • зеленый горошек консервированный;
  • сушенные белые грибы;
  • куриные яйца;
  • шпинат;
  • кизил;
  • яблоки;
  • груши;
  • персики;
  • свекла;
  • морепродукты.

Недостаток железа в крови, приводит к снижению гемоглобина и развитию такого заболевания, как железодефицитная анемия.

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.


Железо (латинское ferrum), fe, химический элемент viii группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54 fe (5,84%), 56 fe (91,68%), 57 fe (2,17%) и 58 fe (0,31%).

Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) - звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун ; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» - английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали , который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Ж. - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Ж. играют окислительно-восстановительные реакции - переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ fe 3+ восстанавливается до fe 2+ и легко мигрирует, а при встрече с кислородом воздуха fe 2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование - «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

Ж. может существовать в виде двух кристаллических решёток: a - и g - объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - fe с ОЦК-решёткой (а = 2,86645 å при 20°С). Между 910°С и 1400°С устойчива g -модификация с ГЦК-решёткой (а = 3,64 å). Выше 1400°С вновь образуется ОЦК-решётка d -fe (а = 2,94 å), устойчивая до температуры плавления (1539°С). a - fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g -fe и d -fe парамагнитны.

Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов . Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 å), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус fe 1,26 å). Твёрдый раствор углерода в g -fe наз. аустенитом , а в (a -fe- ферритом . Насыщенный твёрдый раствор углерода в g - fe содержит 2,0% С по массе при 1130°С; a -fe растворяет всего 0,02- 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твёрдый раствор углерода в a - fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности.

Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость , фосфор (даже 10 -20 % Р) - хладноломкость ; углерод и азот уменьшают пластичность , а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26 å

Ионные радиусы fe 2+ o,80 å, fe 3+ o,67 å

Плотность (20 o c) 7,874 г/см 3

t пл 1539°С

t kип около 3200 о С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт /(м·К )

Теплоёмкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоёмкость (0-1000 o c) 640,57 дж/ (кг ·К) .

Удельное электрическое сопротивление (20 ° С)

9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления

(0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м. 2

(19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв

170-210 Мн/м 2

Относительное удлинение 45-55%

Твёрдость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Конфигурация внешней электронной оболочки атома fe 3 d 6 4s 2 . Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись feo, окись fe 2 o 3 и закись-окись fe 3 o 4 (соединение feo с fe 2 o 3 , имеющее структуру шпинели ) . Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (fe 2 o 3 · n h 2 o). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной плёнкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. - воронения. При нагревании в водяном паре Ж. окисляется с образованием fe 3 o 4 (ниже 570°С) или feo (выше 570°С) и выделением водорода.

Гидроокись fe (oh) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом fe (oh) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись fe (oh) 3 . Закись feo проявляет основные свойства. Окись fe 2 o 3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с mgo), она образует ферриты - соединения типа fe 2 o 3 · n meo, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например k 2 feo 4 , солей не выделенной в свободном состоянии железной кислоты.

Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды fecl 2 и fecl 3 . При нагревании Ж. с серой образуются сульфиды fes и fes 2 . Карбиды Ж. - fe 3 c (цементит ) и fe 2 c (e -карбид) - выпадают из твёрдых растворов углерода в Ж. при охлаждении. fe 3 c выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, даёт с Ж. твёрдые растворы внедрения; из них выделяются нитриды fe 4 n и fe 2 n. С водородом Ж. даёт лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, fe 3 si) и фосфиды (например, fe 3 p).

Соединения Ж. с многими элементами (О, s и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов fe 2+ в узлах решётки замещена ионами fe 3+ ; для сохранения электронейтральности некоторые узлы решётки, принадлежавшие ионам fe 2+ , остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу fe 0,947 o.

Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная hno 3 (плотность 1,45 г/см 3 ) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная hno 3 растворяет Ж. с образованием ионов fe 2+ или fe 3+ , восстанавливаясь до mh 3 или n 2 o и n 2 .

Растворы солей 2-валентного Ж. на воздухе неустойчивы - fe 2+ постепенно окисляется до fe 3+ . Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей fe 3+ тиоцианат-ионов scn - даёт яркую кроваво-красную окраску вследствие возникновения fe (scn) 3 , что позволяет открывать присутствие 1 части fe 3+ примерно в 10 6 частях воды. Для Ж. характерно образование комплексных соединений.

Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путём его прямого восстановления из рудных концентратов водородом, природным газом или углём при относительно низких температурах.

Ж. - важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом s, Р, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Т. Л.

Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг, для поросят - до 200 мг, для супоросных свиней - 60 мг.

В. В. Ковальский.

В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52 fe, 55 fe и 59 fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; neogi p., iron in ancient india, calcutta, 1914; friend j. n., iron in antiquity, l.,1926; frank e. b., old french ironwork, camb. (mass.), 1950; lister r., decorative wrought ironwork in great britain, l., 1960.

cкачать реферат

в таблице Менделеева оно под №26

Альтернативные описания

Главный металл промышленности

Его куют, пока горячо и не отходя от кассы

Значение имени Тимур

Химический элемент, серебристо-белый металл, главная составная часть чугуна и стали

Металл для Феликса

Химический элемент, металл

Чтобы избежать накопления денег, в древней Спарте деньги чеканились из этого материала

Так у компьютерщиков именуется сам компьютер, без программного обеспечения

Самым устойчивым элементом Периодической системы является именно этот элемент

Металл, из которого может быть «сделана» логика

. «иду в воду - красно, выйду - черно» (загадка)

Переведите с латинского слово «феррум»

Материал, из которого должен быть сделан подарок, преподнесенный к шестой годовщине свадьбы

Жертва ржавчины

Куй его, пока горячо!

Химический элемент, Fe

Металл, из которого сделан Феликс

Металлические части уздечки

Куется только сгоряча

Металл гвоздей

Ржавое, метеоритное

Куют, пока горячо

Куй..., пока горячо

В таблице он после марганца

. «куй..., не отходя от кассы!»

Следом за марганцем в таблице

Металл номер двадцать шесть

Хим. элемент 26

Идущий следом за марганцем в таблице

Между марганцем и кобальтом

Предшественник кобальта в таблице

Металл для логики

Куй его, пока горячо (посл.)

Химический элемент 26

Вслед за марганцем в таблице

Основной компонент стали

Двадцать шестой в таблице Менделеева

До кобальта в таблице

Принимают на металлолом

Материал для одной маски

Металл, чье содержание в организме женщины в пять раз больше, чем у мужчины

Перед кобальтом в таблице

Последователь марганца в таблице

Между марганцем и кобальтом в таблице

Предтеча кобальта в таблице

Основной компонент чугуна

После марганца в таблице

Металл для леди Маргарет Тэтчер

Последыш марганца в таблице

Следом за марганцем

Химический элемент, серебристо-белый металл, главная составная часть чугуна и стали

Главная составная часть стали

Изделия из такого металла

Лекарство, содержащее препараты такого химического элемента

Наименование химического элемента

Тип минерала, относящийся к самородным элементам

. "Куй..., не отходя от кассы!"

. "иду в воду - красно, выйду - черно" (загадка)

Куй его, пока горячо

Металл, из которого может быть "сделана" логика

Переведите с латинского слово "феррум"

Ср. зале(и)зо южн. зап. металл, крушец, выплавляемый из руды в виде чугуна, и выковываемый из сего последнего под кричным молотом. соединении с углеродом, оно образует сталь. продажу железо идет в виде: полосового или сортового; первое прямо из под кричного молота; оно бывает: широкое, узкое, круглое, брусковое и пр. второе перековано: шинное, резное, листовое и пр. Ржа железо ест. Моль одежду, ржа железо, а худое братство нравы тлит. Деньги железо, а платье тлен. При рати железо дороже золота. Железом и золота добуду. Ржавое железо не блестит. Заруби деревом на железе. Что ощерился, аль железо увидал? огне и железо плавко. горну и железо надсядется. На то дорогу золотом устлали, чтоб она железо ела. Куй железо, пока кипит (пока горячо). Лезу я, лезу по железу на мясную гору? садиться на лошадь. Железо или мн. железа, вязи, оковы, кандалы, ножные, ручные цепи; железные конские путы. Железко, железце ср. железный обломок; мелкая железная, стальная вещь, вставляемая в какое-либо орудие или колодку, напр. копьецо стрелы, резец рубанка, железная часть долота и пр. Железный, из железа сделанный, почему-либо к железу относящийся; подобный железу по крепости, жесткости, цвету и пр. Железная руда, из которой добывается железо; железный завод, заведение, где оно выплавляется, выковывается; железный ряд, где оно продается железными торговцами. Железный сок, заводск. брызги и отломки от крицы, кричный сок. Железная лошадь, серо-железная, железного цвета, масти. Устюжна железная, а люди в ней каменные, за осаду ее при самозванцах. Железная дорога, железянка, чугунка. Железное колесо, тул. арктический пояс. Железные руки, сильные, но грубые и неуклюжие. Железный человек, стойкий, твердый; терпеливый, спорый; немилосердый, бездушный. Железное здоровье, крепкое. Либо железную цепь, либо золотую, добуду. Ссуды пишут на железной доске, а долги на песке. Железное дерево, бакаут, гваяк; назыв. так и др. весьма твердые тропической породы дерева. Железный корень, растен. Centaurea scabiosa. Железный урок или железное ср. стар. пеня, пошлина с виновного, в пользу властей, за наложение оков. Железовая лошадь, см. масть. Железистый прилаг. содержащий в себе железо. Железина, окал, окалина, гарь, огарки; железная, горелая блестка, осыпающаяся во время ковки. Кусок, полоса железа. Железня, железняга ж. арх. железная плиточка в ладонь, для игры в бабки, в козны; биток, битка. Железник м. дерево Caragana frutescens, дереза, чапыжник, ошибочно чилижник, сибирек? кустовая акация. Ракитник, дереза, Cytisus biflorus. Equisetum, хвощ столярный. Potentilla argentea, червичник, горлянка, забируха. Железница, рыба Clupea alosa, из рода сельдей, бешенка или верховодка. Железняк м. торговец железом. Общее название руд, содержащих окисленное железо и похожих видом на камень, а не на железо: бол. известны: бурый и магнитный железняк, магнитный камень. Самый твердый, лучший кирпич, несколько сплавившийся. Растен. Verbena offic. Растен. Phlomis pungens, качим, перекати-поле. Растен. Sarrothamnus scoparius, жерновец, дереза, бобровик. Сказочная разрывили спрыг-трава, от которой железные замки и запоры рассыпаются; ею же добывают и клады. Железнянка, см. железнянка, железа, желвь. Железоделательный, железодельный завод, железный, выделывающий железо из руды. Железоковательный, железоковный, относящийся до выковки железа в полосах и самых крупных вещах. Железоплавиленный, железоплавильный, железоплавный, относящийся к выплавке железа; завод, печь. Железорезный, служащий к резке железа;-завод, -стан

Химический элемент Fe

Химический элемент с позывным Fe