Живое вещество совокупность живых организмов. Живое вещество. Химический состав живого вещества. Свойства и функции живого вещества. Основные свойства живого вещества биосферы

В основу концепции биосферы положено представление о живом веществе. Более 90 % всего живого вещества приходится на наземную растительность (98 % биомассы суши). Живое вещество- наиболее мощный геохимический и энергетический фактор, ведущая сила планетарного развития. Основной источник биохимической активности организмов — это солнечная энергия, используемая в процессе фотосинтеза зелеными растениями и некоторыми микроорганизмами для создания органического вещества. Органическое вещество обеспечивает пищей и энергией остальные организмы. Фотосинтез привел к накоплению в атмосфере свободного кислорода, образованию озонового слоя, защищающего от ультрафиолетового и жесткого космического излучения, он поддерживает современный газовый состав атмосферы. Жизнь на Земле всегда существовала в форме сложно организованных комплексов разнообразных организмов (биоценозов). Вместе с тем живые организмы и среда их обитания образуют целостные системы — биогеоценозы. Питание, дыхание и размножение организмов и связанные с ними процессы создания, накопления и распада органического вещества обеспечивают постоянный круговорот вещества и энергии. С этим круговоротом связана миграция атомов химических элементов через живое вещество. Так, весь атмосферный кислород оборачивается через живое вещество за 2000 лет, углекислый газ за 300 лет. Большим разнообразием органических и химических соединений характеризуется состав самих организмов. Благодаря живому веществу на планете образовались почвы и органическое минеральное топливо (торф, уголь, возможно даже нефть).

Исследуя процессы миграции атомов в биосфере, В.И. Вернадский подошел к вопросу о генезисе (происхождении) химических элементов в земной коре, а затем и к необходимости объяснить устойчивость соединений, из которых состоят организмы. Анализируя проблему миграции атомов, он пришел к выводу, что нигде не существуют органические соединения, независимые от живого вещества. «Под именем живого вещества, — писал В.И. Вернадский в 1919 г., — я буду подразумевать всю совокупность всех организмов, растительности и животных, в том числе и человека».

Таким образом, живое вещество — совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. В 1930-х гг. В.И. Вернадский из общей массы живого вещества выделяет человечество как его особую часть. Такое обособление человека от всего живого стало возможным по трем причинам.

Во-первых, человечество является не производителем, а потребителем биогеохимической энергии. Такой тезис требовал пересмотра геохимических функций живого вещества в биосфере. Во-вторых, масса человечества, исходя из данных демографии, не является постоянным количеством живого вещества. И в-третьих, его геохимические функции характеризуются не массой, а производственной деятельностью.

Если бы человек не выделился из природного животного мира, то его численность была бы порядка 100 тысяч. Такие протолюди жили бы в ограниченном ареале, и их эволюция определялась бы медленными процессами, происходящими в результате популяционно-генетических изменений, характерных для видообразования. Однако с появлением человека произошел качественный скачок в развитии природы на Земле. Есть все основания полагать, что это новое качество связано с разумом и сознанием homo sapiens. Таким образом, главным видовым отличием человека является его разум, и именно благодаря сознанию человечество развивалось своим путем. Это отразилось и на процессе размножения людей, так как для формирования социально зрелых форм сознания требуется длительное время — не менее 20 лет.

Какие же характерные особенности присущи живому веществу? Прежде всего это огромная свободная энергия. В процессе эволюции видов биогенная миграция атомов, т.е. энергия живого вещества биосферы, увеличилась во много раз и продолжает расти, ибо живое вещество перерабатывает энергию солнечных излучений, атомную энергию радиоактивного распада и космическую энергию рассеянных элементов, приходящих из нашей Галактики. Живому веществу присуща также высокая скорость протекания химических реакций по сравнению с веществом неживым, где похожие процессы идут в тысячи и миллионы раз медленнее. К примеру, некоторые гусеницы в сутки могут переработать пищи в 200 раз больше, чем весят сами, а одна синица за день съедает столько гусениц, сколько весит сама.

Для живого вещества характерно то, что слагающие его химические соединения . главнейшими из которых являются белки, устойчивы только в живых организмах. После завершения процесса жизнедеятельности исходные живые органические вещества разлагаются до химических составных частей.

Живое вещество существует на планете в форме непрерывного чередования поколений , благодаря чему вновь образовавшееся поколение генетически связано с живым веществом прошлых эпох. Это главная структурная единица биосферы, определяющая все другие процессы поверхности земной коры. Для живого вещества характерно наличие эволюционного процесса. Генетическая информация любого организма зашифрована в каждой его клетке. Этим клеткам изначально предначертано быть самими собой, за исключением яйцеклетки, из которой развивается целый организм. Таким образом, живое вещество по сути бессмертно.

В.И. Вернадский отмечал, что живое вещество неотделимо от биосферы, является ее функцией и одновременно «одной из самых могущественных геохимических сил нашей планеты». Круговорот веществ В.И. Вернадский назвал биогеохимическими циклами. Эти циклы и круговорот обеспечивают важнейшие функции живого вещества в целом. Ученый выделил пять таких функций:

Газовая функция - осуществляется зелеными растениями, выделяющими кислород в процессе фотосинтеза, а также всеми растениями и животными, выделяющими углекислый газ в результате дыхания;

Концентрационная функция - проявляется в способности живых организмов накапливать в своих телах многие химические элементы (на первом месте — углерод, среди металлов — кальций);

Окислительно-восстановительная функция - выражается в химических превращениях веществ в процессе жизнедеятельности. В результате образуются соли, окислы, новые вещества. С данной функцией связано формирование железных и марганцевых руд, известняков и т.п.;

Биохимическая функция - определяется как размножение, рост и перемещение в пространстве живого вещества. Все это приводит к круговороту химических элементов в природе, их биогенной миграции;

Функция биогеохимической деятельности человека - связана с биогенной миграцией атомов, многократно усиливающейся под влиянием хозяйственной деятельности человека. Человек разрабатывает и использует для своих нужд большое количество веществ земной коры, в том числе таких, как уголь, газ, нефть, торф, сланцы, многие руды. Одновременно происходит антропогенное поступление в биосферу чужеродных веществ, причем в количествах, превышающих допустимое значение. Это привело к кризисному противостоянию человека и природы. Главной причиной надвигающегося экологического кризиса считается технократическая концепция, рассматривающая биосферу, с одной стороны, как источник физических ресурсов, с другой — как сточную трубу для удаления отходов.

Все экологические процессы протекают в системах, включающих в свой состав живое вещество, поэтому важно уметь отличать живое вещество от других видов веществ (неорганических, косных, биокосных и др.).

Живое вещество - это то, что образует совокупность тел всех независимо от их принадлежности к той или иной систематической группе. Общая масса (в сухом виде) живого вещества на планете Земля составляет (2,4-3,6) * 10 12 тонн.

Живое вещество неотделимо от и является его функцией, а также одной из самых могущественных геологических сил на . Оно представляет собой неразрывное молекулярно-биологическое единство, системное целое с характерными признаками, общими для всей эпохи его существования, а также для каждой отдельной геологической эпохи. Уничтожение отдельных компонентов живого вещества может привести к нарушению системы в целом, т. е. к экологической катастрофе и гибели системы живого вещества в целом.

Рассмотрим некоторые наиболее общие вещества вне зависимости от геологической эпохи его существования.

1. Система, состоящая из живого вещества (организм), способна к росту, т. е. она увеличивается в размерах.

2. Организм (живой) в течение времени своего существования сохраняет свои наиболее типичные признаки и способен передавать эти признаки по наследству, т. е. является носителем и передатчиком .

3. Живой организм в процессе своей жизни способен к развитию, которое делится на два периода - эмбриональное и постэмбриональное.

4. Живое вещество как отдельный организм, способно к размножению, благодаря чему обеспечивается существование данного вида в течение длительного (с исторических позиций) времени.

5. Для живого вещества характерен направленный обмен веществ.

Уровни организации живого вещества

Живое вещество как совокупность всех организмов, живущих на Земле, состоит из нескольких царств (Прокариоты, Животные, Растения, Грибы), которые находятся в сложных взаимоотношениях. Живое вещество имеет сложное строение и разные уровни организации. Рассмотрим некоторые из них в порядке усложнения.

1. Молекулярно-генный (суборганизменный) - особая форма организации живого, присущая всем без исключения организмам, представляющая собой совокупность различных органических и неорганических веществ, связанных между собой определенной структурой и системой биохимических процессов, позволяющих сохранять данную совокупность соединений как целостную систему, способную к росту, развитию, самосохранению и размножению в течение всего времени существования этого организма, т. е. до смерти.

2. Клеточный - все живое (кроме неклеточных форм жизни) образовано особыми структурами - клетками, которые имеют строго определенное строение, присущее как организмам из царства Растения, так и организмам из царств Животные и Грибы; некоторые организмы состоят из одной клетки, поэтому такие организмы при клеточном уровне соответствуют и новому уровню организации - организменному (см. пятый уровень организации).

3. Тканевый - характерен для сложных многоклеточных организмов, у которых произошла специализация клеток по выполняемым функциям, что привело к образованию тканей - совокупности клеток, имеющих одинаковое происхождение, близкое строение и выполняющих одинаковые или близкие по характеру функции; различают растительные и животные так, у растений выделяют покровные, основные, механические, проводящие ткани и меристемы (ткани роста); у животных - покровные, нервные, мышечные и соединительные ткани.

4. Органный - у высокоорганизованных организмов ткани образуют структуры, предназначенные для выполнения определенных функций, которые называются органами, а органы объединяются в системы органов (например, желудок входит в состав пищеварительной системы).

5. Организменный - системы органов объединены в , при функционировании которого реализуется жизнедеятельность конкретного живого существа; известно, что в природе существует большое число одноклеточных организмов.

6. Популяционно-видовой - особи одного вида образуют особые группировки, живущие на данной конкретной территории и занимающие определенную экологическую нишу, которые называются популяциями, а популяции одинаковых организмов образуют подвиды и виды.

7. Биогеоценотический - этот уровень организации живого вещества связан с тем, что на данной территории проживает определенное количество популяций различных видов (как животных, так и растений, грибов, прокариотов и неклеточных форм жизни), которые взаимосвязаны друг с другом различными связями, в том числе и пищевыми.

8. Биосферный - это высший уровень организации живого на планете Земля, представляющий собой всю совокупность живых существ, живущих на ней, которые взаимосвязаны друг с другом планетарным круговоротом химических элементов и химических соединений; нарушение этого круговорота может привести к глобальной катастрофе и даже к гибели всего живого.

Следовательно, 1-5 уровни организации характерны для отдельно взятого организма, а 6-8 - для совокупности организмов. Необходимо помнить, что человек - это составная часть живого вещества на планете Земля, но его деятельность из-за наличия разума значительно отличается от деятельности других организмов, и, тем не менее, он составная часть природы, а не ее «царь».

Краткая характеристика химического состава живого вещества

Живое вещество представляет собой сложную систему биоорганических, органических и неорганических соединений. В составе живого вещества обнаружены практически все устойчивые химические элементы, известные человеку, но в разных количествах. Эти подразделяют на биогенные и небиогенные, исходя из их роли в живых организмах.

Основу живого вещества составляют биоорганические и органические соединения. К биоорганическим веществам относят , нуклеиновые кислоты, витамины, и . Эти вещества называют биоорганическими потому, что эти соединения вырабатываются в организмах и без этих веществ жизнь принципиально невозможна (особенно это относится к белкам и нуклеиновым кислотам). Примером органических веществ, входящих в состав живого вещества, являются органические кислоты (яблочная, уксусная, молочная и др.), мочевина и другие химические соединения.

Общая характеристика клеточных организмов, их классификация по наличию ядра в клетке

Клеточные организмы преобладают над неклеточными и имеют сложную классификацию. При изучении строения клетки было обнаружено, что большинство клеточных форм организмов в составе клеток обязательно содержит особый органоид - ядро. Однако в клетках некоторых организмов ядро отсутствует. Поэтому клеточные организмы разделяют на две большие группы - ядерные (или эукариоты) и безъядерные (или прокариоты). В данном подразделе рассмотрим прокариоты.

Прокариотами (безъядерными) называют организмы, клетки которых не имеют отдельно сформированного ядра.

К безъядерным организмам относятся бактерии и сине-зеленые водоросли, которые образуют царство Дробянки, входящее в надцарство Доядерные, или Прокариоты. В практическом отношении наибольшее значение имеют бактерии.

Тело бактерий состоит из одной клетки разной формы, которая имеет оболочку и цитоплазму. Ярко выраженные органоиды отсутствуют; в клетке содержится одна молекула ДНК; она замкнута в кольцо, место ее нахождения в цитоплазме называется нуклеоидом.

По форме клетки бактерии разделяют на кокки (шарообразные), бациллы (палочкообразные), вибрионы (дугообразно изогнутые), спириллы (изогнутые в форме спирали).

Бактерии размножаются обычным делением (в благоприятных условиях каждое деление осуществляется за 20-30 минут). При наступлении неблагоприятных условий клетка бактерии превращается в спору, обладающую высокой устойчивостью к воздействию различных факторов - температуры, влажности, радиации. Попадая в благоприятные условия, споры набухают, их оболочки разрываются и бактериальные клетки становятся жизненно активными.

По отношению к кислороду различают анаэробные (живут в средах, где нет молекулярного кислорода) и аэробные (для их жизни необходим О 2), существуют также бактерии, которые могут жить и в аэробной, и в анаэробной среде.

Вид, его критерии и экологическая характеристика

Живое вещество в природе существует в виде отдельных дискретных таксономических единиц - видов (биологических видов).

Биологический вид (вид) - совокупность особей, обладающих общими морфофизиологическими признаками, биохимическим, генетическим (наследственным) сходством, свободно скрещивающихся друг с другом и дающих плодовитое потомство, приспособленных к сходным условиям существования, занимающих в природе определенный ареал (область распространения), т. е. занимающих одну и ту же экологическую нишу.

Виды образованы популяциями и подвидами (последнее характерно не для всех видов). Биологический вид характеризуется следующими критериями:

1) генетическим, т.е. все особи данного вида обладают одинаковым набором хромосом;

2) биохимическим, т. е. для всех особей этого вида характерны одинаковые химические соединения ( , нуклеиновые кислоты и др.), которые отличаются от аналогичных соединений других видов;

3) морфофизиологическим, т. е. организмы одного вида имеют общие признаки внешнего и внутреннего строения и характеризуются одинаковыми процессами, обеспечивающими их жизнедеятельность;

4) экологическим, т. е. особи данного вида вступают в одинаковые (отличные от других видов) взаимоотношения с природной средой;

5) историческим - особи данного вида имеют одинаковое происхождение и в процессе внутриутробного развития проходят одинаковый цикл этого развития согласно биогенетическому закону;

6) географическим - особи данного вида проживают на определенной территории и приспособлены к существованию на данной территории.

В науке «экология» широко используют следующие разновидности термина «вид».

1. Вид вредный - наносящий человеку хозяйственный урон или вызывающий заболевания; понятие относительное, так как любой вид, живущий на планете, занимает определенную экологическую нишу и выполняет определенную экологическую роль; например, волк может наносить большой урон хозяйственной деятельности человека, но он является «санитаром» природы, играет большую роль в «отбраковке» нежизнеспособных особей тех видов, которыми он питается.

2. Вымерший вид - это вид, который исчез в результате процессов эволюции, например, птеродактиль.

3. Вымирающий вид - такой вид, свойства которого не соответствуют современным условиям существования и генетические возможности к приспособлению к жизни в новых условиях практически исчерпаны; такие виды могут сохраниться только в результате полного его окультивирования (заносится в Красную книгу).

4. Исчезающий вид - вид организмов, находящихся под угрозой вымирания за счет того, что численность сохранившихся особей недостаточна для воспроизводства вида, но генетически вид имеет благоприятные возможности для приспособления к условиям внешней среды (заносится в Красную книгу как вид, находящийся под угрозой).

5. Охраняемый вид - вид, преднамеренное нанесение вреда особям которого и нарушение среды его обитания запрещено определенными законодательными актами разного ранга (международными, государственными, местными), например соболь и др.

Структура вида состоит в том, что он образован отдельными особями, объединенными в популяции и подвиды. Наличие подвидов характерно только для тех видов, которые имеют большие ареалы, характеризующиеся разнообразными условиями.

Популяция - группа особей данного вида, способных к скрещиванию и производству полноценного потомства, проживающих на данной территории, имеющей естественные границы с другими территориями, что затрудняет скрещивание особей данной популяции с особями другой. Следует помнить, что экологической единицей вида является популяция.

Популяции разных видов, проживающих на данной территории, образуют биоценоз, в котором эти популяции связаны друг с другом различными связями, в том числе и пищевыми.

Неорганические вещества и их роль в живом веществе

Живое вещество, как и любое другое вещество, образовано атомами химических элементов, входящих в состав неорганических и органических соединений, совокупность которых образует живое вещество, качественно отличающееся и от неорганических, и от органических индивидуальных химических соединений.

Неорганическими называют вещества, в составе которых отсутствуют атомы углерода (кроме самого углерода, его оксидов, угольной кислоты, ее солей, родана, родановодорода, роданидов, циана, циановодорода, цианидов).

В состав организмов входят вода, некоторые соли натрия, калия, кальция и других химических элементов.

Краткая характеристика роли некоторых оксидов, гидроксидов и солей в живом веществе

Из оксидов в организмах большое значение имеет углекислый газ (углекислота, оксид углерода (IV), диоксид (двуокись) углерода). Это вещество является одним из продуктов дыхания (для всех организмов!). При растворении в воде (например, в цитоплазме, плазме крови и т. д.) углекислый газ образует угольную кислоту, которая при диссоциации распадается на гидрокарбонат-ионы (НСО 3) и карбонат-ионы (СО 2- 3), образующие (совместно) карбонатную буферную систему, стабилизирующую реакцию среды. Избыток СO 2 удаляется из организма в результате процессов, протекающих при (у всех организмов: и у растений, и у животных).

Важнейшими гидроксидами, содержащимися в живом веществе, являются угольная (Н 2 СO 3), фосфорная (Н 3 РO 4) и некоторые другие кислоты. Как указано выше (на примере угольной кислоты), эти гидроксиды способствуют созданию буферных систем в водных растворах, что приводит к стабилизации реакции среды в протоплазме или в других жидких средах, содержащихся в организме. Фосфорная кислота играет огромную роль в образовании различных фосфорсодержащих соединений (например, в образовании АДФ из АМФ или АТФ из АДФ; АТФ - аденозинтрифосфат, АДФ - аденозиндифосфат, АМФ - аденозинмонофосфат; эти вещества играют большую роль в процессах диссимиляции и ассимиляции).

Важна для организмов и хлороводородная (соляная) кислота (НСI). Она содержится в желудочном соке или в растворах, которые способствуют перевариванию пищи (например, в желудке человека).

В организмах находятся в диссоциированном состоянии, т. е. в виде ионов. Рассмотрим биологическую роль некоторых анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов) в живом веществе.

Краткая характеристика биологической роли катионов

В живом веществе наибольшее значение имеют следующие катионы: К + , Са 2+ , Na + , Mg 2+ , Fе 2+ , Мn 2+ и некоторые другие.

1. Катионы натрия (Nа +). Эти ионы создают определенное осмотическое давление (Осмотическое давление возникает в водных растворах и является силой, под воздействием которой осуществляется осмос, т.е. односторонняя диффузия веществ через полупроницаемую мембрану). Кроме того, совместно с катионами калия (К+) за счет различной проницаемости клеточной мембраны, они создают мембранное равновесие, при котором возникает разность биохимических потенциалов, что обеспечивает проводимость клеток и тканей организма; участвуют в водном и ионном обмене организма в целом. В организм (клетку) поступают в виде водного раствора хлорида натрия. У животных и человека в результате потоотделения может теряться большое количество хлорида натрия, что резко снижает их работоспособность. Данные ионы совместно с некоторыми органическими и неорганическими анионами регулируют кислотно-щелочное равновесие (например, с ионами НСO — 3 , СН 3 СОО — и др.).

2. Катионы К + . Эти ионы совместно с ионами Nа + создают мембранное равновесие. Они активизируют белкового синтеза, а в организмах высших животных и человека влияют на биоритмы сердца. Ионы К + входят в состав макроудобрений - калийных и существенно влияют на продуктивность сельскохозяйственных растений.

3. Катионы Са 2+ . Данные ионы являются антагонистами ионов К + (т. е. проявляют противоположное действие по сравнению с последними). Они входят в состав мембранных структур, образуют пектиновые вещества, которые образуют межклеточное вещество в растительных организмах. Эти ионы в составе солей кальция участвуют в образовании важнейшей соединительной ткани - костной, которая образует скелет позвоночных животных и человека и некоторых др. организмов (например, кишечнополостных и др.). Осуществляют регуляцию процессов образования клеток, участвуют в реализации мышечных сокращений, играют большую роль в свертывании крови и в др. процессах.

4. Катионы Мg 2+ . Роль этих ионов аналогична (в ряде случаев) роли ионов Са 2+ и они содержатся в организмах в определенных соотношениях. Кроме того, ионы Мg 2+ входят в состав важнейшего фотосинтезирующего пигмента растений - хлорофилла, активизируют синтез ДНК и участвуют в реализации энергетического обмена.

5. Ионы Fе 2+ . Играют большую роль в жизни многих животных, так как входят в состав важнейшего дыхательного пигмента - гемоглобина, участвующего в процессе дыхания. Они входят в состав мышечного белка - миоглобина, принимают участие в синтезе хлорофилла, т.е. ионы Fе 2+ являются основой соединений, посредством которых реализуются многие окислительно-восстановительные процессы.

6. Ионы Си 2+ , Мn 2+ , Сг 3+ и ряд других ионов также принимают участие в окислительно-восстановительных процессах, реализующихся в различных организмах (эти ионы входят в состав сложных металлоорганических соединений).

Краткая характеристика биологической роли некоторых анионов

Наибольшее значение имеют анионы Н 2 РО — 4 , НРО 2- 4 , Сl — , I — , РО 3- 4 , Вг — , F — , НСО — 3 , NO — 3 , SО 2- 4 и ряд др. Кратко рассмотрим роль некоторых из этих ионов в различных организмах.

1. Нитрат- и нитрит-ионы (NO — 3 , NO — 2 , соответственно).

Ионы, содержащие азот, играют большую роль в организмах растений, так как в своем составе содержат связанный азот и используются (наряду с катионами аммония - NH + 4) для синтеза азотсодержащих «веществ жизни» - белков и нуклеиновых кислот. При поступлении избытка этих ионов в организм растения они накапливаются в них и, попадая (в составе пищи) в организм человека и животных, могут вызывать нарушения в обмене веществ этих организмов («нитратное и нитритное отравление»). Это делает необходимым оптимальное использование азотных удобрений при их внесении в почву.

2. Гидро- и дигидрофосфат-ионы (НРО 2- 4 , Н 2 РО 4 - соответственно).

Эти ионы участвуют в обмене веществ и являются необходимыми при синтезе нуклеиновых кислот, моно-, ди- и триаденозин-фосфатов, играющих большую роль в энергетическом обмене и синтезе органических веществ в различных организмах (растительных, животных и др.). Данные ионы участвуют в поддержании кислотно-основного равновесия, сохраняя в определенных пределах постоянство реакции среды.

3. Сульфат-ионы (SO 2 4) - источник серы, необходимый для синтеза серосодержащих природных альфа-аминокислот, используемых при получении белков. Необходимы для процессов синтеза некоторых витаминов, ферментов (в организмах растений). В организмах животных сульфат-ионы являются продуктом реакций обезвреживания химических соединений, образующихся в печени.

4. Галогенид-ионы (Сl — - хлорид-ионы, Вг - бромид-ионы, I — - иодид-ионы, F — - фторид-ионы). Они являются противоионами для катионов (особенно Сl —), то есть создают нейтральную систему с катионами. Система ионов (катионов и анионов) создает вместе с водой осмотическое давление и тургор; хлорид-ионы относятся к макроэлементам для животных, а остальные галогенид-ионы являются микроэлементами, т.е. необходимы любым организмам в небольших (микро-) количествах. Значение иодид-ионов состоит в том, что они входят в состав важнейшего гормона - тироксина, а избыток и недостаток этих ионов приводит к появлению различных заболеваний у человека (миксидема и базедова болезнь). Фторид-ионы влияют на обмен в костной ткани зубов, бромид-ионы входят в состав химических соединений, содержащихся в гипофизе.

Общая характеристика и классификация органических соединений, входящих в состав живого вещества, и их экологическая роль

Вещества, в состав которых входят атомы углерода (исключая углерод, его оксиды, угольную кислоту, ее соли, родан, родано-водород, роданиды, циан, циановодород, цианиды, карбонилы и карбиды), называются органическими.

Органические вещества имеют очень сложную классификацию. Некоторые из этих веществ не содержатся в организмах (ни в живых, ни в мертвых). Они были получены искусственным путем и в природе не встречаются. Ряд органических соединений не «усваивается» организмами, т.е. не разлагается в природе под воздействием редуцентов и детритофагов. К таким соединениям относят полиэтилен, СМС (синтетические моющие средства), некоторые ядохимикаты и др. Поэтому при использовании органических веществ, полученных человеком химическим путем, необходимо учитывать их способность подвергаться различным превращениям в природных условиях, т. е. «усвоение» этих веществ биосферой.

Органические вещества, содержащиеся в организме, имеют большое экологическое значение, недостаток, избыток или отсутствие того или иного вещества приводят либо к различным заболеваниям, либо к гибели данного организма. Наибольшее значение имеют , нуклеиновые кислоты, углеводы, жиры и витамины.

Вещественный состав биосферы разнообразен. Вернадский выделяет семь глубоко разнородных частей. В настоящее время предлагается следующие основные

· Живое вещество, образованное совокупностью организмов;

· Костное вещество – неживое, образуемое без участия живых организмов (твердое, жидкое, газообразное это могут быть) основные породы, лава вулканов, метеориты);

· Биокостное вещество – совокупность живого и костного, т.е. костное вещество, преобразованное живыми организмами (вода, почва, ил, кора выветривания)

· Биогенное вещество -- это вещества, необходимые для существования живых организмов, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, известняки )

· Вещество радиоактивного распада

· Рассеянные атомы земного вещества и космических излучений

· Вещества космического происхождения в форме метеоритов и космической пыли.

Живое происходит только от живого, между ними проходит резкая граница, хотя они постоянно взаимодействуют.

Одним из центральных звеньев концепции биосферы является учение о живом веществе. Вернадский формулирует определение живого вещества. Вернадский назвал живое вещество формой чрезвычайной активности.

Живое вещество биосферы – это совокупность е живых организмов. Главное предназначение живого вещества – накопление свободной энергии. По энергетическим запасам с живым веществом может соперничать только лава, образующаяся при извержении вулканов

Отметим основные, по сути уникальные,свойства живого вещества:

1. Способность быстро занимать все свободное пространство . Вернадский назвал это свойство «всюдностью жизни». Способность быстрого освоения пространства связана с интенсивностью размножения.

2. Движение не только пассивное (под действием сил тяготения, гравитационных сил), но и активное (против течении, силы тяжести, движения воздушных потоков)

3. Высокая устойчивость при жизни, быстрое разложение после смерти

4. Высокая приспособительная способность (адаптация) к различным условиям и с связи с этим освоение всех сред жизни

5. Высокая скорость протекания реакций. Скорость переработки вещества организмами в процессе жизнедеятельности. Потребление пищи в 100-200 раз превышает массу организма

6. Высокая скорость обновления живого вещества Живое вещество биосферы обновляется через 8 лет, при этом суши-14 лет, океана –33 дня. В результате этого свойства общая масса живого вещества прошедшего через биосферу примерно в 12 раз превышает массу Земли. Небольшая часть его законсервирована в виде органических остатков, остальная включена в процессы круговорота.

Всю деятельность живого вещества в биосфере можно свести к нескольким основополагающим функциям. Вернадский выделял 9 , но в настоящее время название этих функций несколько изменено и некоторые из них объединены. Классификация предложена А.В.Лапо (1987)

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием.

2. Газовая . Способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. Биосфера осуществляет два глобальных процесса, определяющих газовый состав атмосферы: выделение кислорода и поглощение углекислого газа в ходе фотосинтеза, а также поглощение кислорода и выделение углекислого газа при дыхании. Эти процессы обеспечивают относительное постоянство в атмосфере двух газов, определяющих уникальные условия Земли. Так, благодаря углекислому газу в атмосфере Земли наблюдается так называемый парниковый эффект значительно смягчающий суточные колебания температур. Кислород играет не только роль важнейшего окислителя. На высотах около тридцати километров, он активно поглощает губительные ультрафиолетовые лучи. Современный уровень содержания в атмосфере СО2 составляет0,03% О2-21%В развитии биосферы отмечают два переломных периода(точки Пастера). 1 точка Пастера – когда содержание в атмосфере кислорода достигло 1% от современного уровня. Это обусловило появление аэробных организмов, т.е. способных жить в среде, содержащих кислород. Это произошло 1,2 млрд.лет назад. 2 точка Пастера – 10% от современного уровня. Это создало условия для создания озонового слоя в верхних слоях атмосферы и создались условия для выхода организмов на сушу(до этого защитным экраном от губительных ультрафиолетовых лучей была вода.)

3. Окислительно-восстановительная . Интенсификация процессов окисления, благодаря обогащению среды кислородом, и восстановления в процессе жизнедеятельности организмов. Благодаря ферментам, окислительно-восстановительные реакции в живых организмах протекают со скоростями, значительно выше, чем скорости реакций, протекающие в геологических оболочках планеты.

4. Концентрационная. Способность живых организмов накапливать в своем теле химические элементы. Результат этой функции-залежи полезных ископаемых. Содержание углерода в угле по концентрации самое высокое. Нефть – концентрат углерода и водорода, под высоким давлением. Фосфор накапливается позвоночными животными в костях (Аппатиты). Меловые отложения имеют животное происхождение. Они образованы скоплением микроскопических известковых раковин морских амеб. В течение миллионов лет меловые отложения претерпевают постепенную кристаллизацию, превращаясь в известняки и мрамор.

5. Деструктивная . Разрушение организмами и продуктами их жизнедеятельностикостных веществ и остатков органических веществ. Связана с круговоротом веществ (грибы и бактерии), в результате происходит минерализация органического вещества и превращение его в косное.

6. Транспортная . Перенос вещества и энергии в результате активной формы движения организмов. (Миграции и кочевки).

7. Средообразующая . Создание природной среды и поддержание в относительно стабильном состоянии ее параметров. Почвообразовательный процесс, гумуса.

8. Рассеивающая . Рассеивание энергии по трофическим уровням, гибели организмов при перемещениях в пространстве, смене покровов.

Весьма важна информационная функция – живые организмы и их сообщества накапливают определенную информацию, закрепляют ее в наследственных структурах и передают последующим поколениям.

«На земной поверхности нет химической силы , более постоянно действующей , а потому и более могущест­венной по своим конечным последствиям , чем живые организ­мы , взятые в целом» , - писал В. И. Вернадский о живом ве­ществе биосферы.

Живое вещество, по словам Вернадского, выполняет косми­ческую функцию, связывая Землю с космосом и осуществляя процесс фотосинтеза. Используя солнечную энергию, живое ве­щество выполняет гигантскую химическую работу.

По Вернадскому, который впервые рассмотрел функции жи­вого вещества в своей знаменитой книге «Биосфера», таких функций девять: газовая, кислородная, окислительная, кальцие­вая, восстановительная, концентрационная, функция разруше­ния органических соединений, функция восстановительного раз­ложения, функция метаболизма и дыхания организмов.

В настоящее время с учетом новых исследований различают следующие функции.

Энергетическая функция

Поглощение солнечной энергии при фотосинтезе и химической энергии при разложении энергонасыщенных ве­ществ, передача энергии по пищевым цепям.

В результате осуществляется связь биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. За счет накопленной солнечной энергии протекают все жизненные явления на Земле. Недаром Вернадский назвал зеле­ные хлорофилльные организмы главным механизмом биосферы.

Поглощенная энергия распределяется внутри экосистемы между живыми организмами в виде пищи. Частично энергия рассеивается в виде тепла, а частично накапливается в отмер­шем органическом веществе и переходит в ископаемое состоя­ние. Так образовались залежи торфа, каменного угля, нефти и других горючих полезных ископаемых.

Деструктивная функция

Эта функция состоит в разложении, минерализа­ции мертвого органического вещества, химическом разложении горных пород, вовлечении образовавшихся минералов в биоти­ческий круговорот, т.е. обусловливает превращение живого ве­щества в косное. В результате образуются также биогенное и биокосное вещество биосферы.

Особо следует сказать о химическом разложении горных по­род. «Мы не имеем на Земле более могучего дробителя мате­рии , чем живое вещество» , - писал Вернадский. Пионеры

жизни на скалах - бактерии, синезеленые водоросли, грибы и лишайники - оказывают на горные породы сильнейшее хими­ческое воздействие растворами целого комплекса кислот - угольной, азотной, серной и разнообразных органических. Раз­лагая с их помощью те или иные минералы, организмы избира­тельно извлекают и включают в биотический круговорот важ­нейшие питательные элементы - кальций, калий, натрий, фос­фор, кремний, микроэлементы.

Концентрационная функция

Так называется избирательное накопление в ходе жизнедеятельности определенных видов веществ для построе­ния тела организма или удаляемых из него при метаболизме. В результате концентрационной функции живые организмы из­влекают и накапливают биогенные элементы окружающей сре­ды. В составе живого вещества преобладают атомы легких эле­ментов: водорода, углерода, азота, кислорода, натрия, магния, кремния, серы, хлора, калия, кальция. Концентрация этих эле­ментов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность хими­ческого состава биосферы и ее существенное отличие от состава неживого вещества планеты. Наряду с концентрационной функ­цией живого организма вещества выделяется противоположная ей по результатам - рассеивающая . Она проявляется через трофическую и транспортную деятельность организмов. Напри­мер, рассеивание вещества при выделении организмами экскре­ментов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рас­сеивается, например, через кровососущих насекомых.

Средообразующая функция

Преобразование физико-химических параметров среды (литосферы, гидросферы, атмосферы) в результате про­цессов жизнедеятельности в условиях, благоприятных для суще­ствования организмов. Эта функция является совместным ре­зультатом рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья био­логического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для живых организмов эле­ментов. Очень важно отметить, что в результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первич­ной атмосферы, изменился химический состав вод первичного океана, образовалась толща осадочных пород в литосфере, на поверхности суши возник плодородный почвенный покров. «Ор­ганизм имеет дело со средой , к которой не только он приспо­соблен , но которая приспособлена к нему» , - так характеризо­вал Вернадский средообразующую функцию живого вещества.

Рассмотренные четыре функции живого вещества являются главными, определяющими функциями. Можно выделить еще некоторые функции живого вещества, например:

- газовая функция обусловливает миграцию газов и их пре­вращения, обеспечивает газовый состав биосферы. Преобладаю­щая масса газов на Земле имеет биогенное происхождение. В про­цессе функционирования живого вещества создаются основные га­зы: азот, кислород, углекислый газ, сероводород, метан и др. Хорошо видно, что газовая функция является совокупностью двух основопо­лагающих функций - деструктивной и средообразующей;

- окислительно - восстановительная функция заключается в химическом превращении главным образом тех веществ, кото­рые содержат атомы с переменной степенью окисления (соеди­нения железа, марганца, азота и др.). При этом на поверхности Земли преобладают биогенные процессы окисления и восста­новления. Обычно окислительная функция живого вещества в биосфере проявляется в превращении бактериями и некоторы­ми грибами относительно бедных кислородом соединений в поч­ве, коре выветривания и гидросфере в более богатые кислоро­дом соединения. Восстановительная функция осуществляется при образовании сульфатов непосредственно или через биоген­ный сероводород, производимый различными бактериями. И здесь мы видим, что данная функция является одним из про­явлений средообразующей функции живого вещества;

- транспортная функция - перенос вещества против си­лы тяжести и в горизонтальном направлении. Еще со времен Ньютона известно, что перемещение потоков вещества на нашей планете определяется силой земного тяготения. Неживое веще­ство само по себе перемещается по наклонной плоскости исклю­чительно сверху вниз. Только в этом направлении движутся ре­ки, ледники, лавины, осыпи.

Живое вещество - единственный фактор, обусловливающий обратное перемещение вещества - снизу вверх, из океана - на континенты.

За счет активного передвижения живые организмы могут пе­ремещать различные вещества или атомы в горизонтальном на­правлении, например за счет различных видов миграций. Пере­мещение, или миграцию, химических веществ живым веществом Вернадский назвал биогенной миграцией атомов или вещества .

Масса живого вещества составляет лишь 0,01% от массы всей биосферы. Тем не менее, живое вещество биосферы – это главнейший ее компонент.

Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), и особенно на границах трех оболочек – атмосферы, гидросферы и литосферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал «пленками жизни». Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.

Все системы, изучаемые экологией, включают в себя биотические компоненты, в сумме образующие живое вещество.

Термин "живое вещество" введён в литературу В. И. Вернадским, под которым он понимал совокупность всех живых организмов, выраженную через массу, энергию и химический состав. Жизнь на Земле – самый выдающийся процесс на её поверхности, получающий живительную энергию Солнца и вводящий в движение едва ли не все химические элементы таблицы Менделеева.

По современным оценкам, общая масса живого вещества в биосфере составляет около 2400 млрд. тонн (табл.).

Таблица Общая масса живого вещества в биосфере

Масса живого вещества поверхности континентов в 800 раз превышает биомассу Мирового океана. На поверхности континентов растения резко преобладают по своей массе над животными. В океане мы наблюдаем обратное соотношение: 93,7 % биомассы моря приходится на долю животных. Это связано главным образом с тем, что в морской среде существует наиболее благоприятные условия для питания животных. Мельчайшие растительные организмы, составляющие фитопланктон и обитающие в освещенной зоне морей и океанов, быстро поедаются морскими животными и, таким образом, переход органических веществ из растительной формы в животную резко сдвигает биомассу в сторону преобладания животных.

Всё живое вещество по своей массе занимает ничтожное место по сравнению с любой из верхних геосфер земного шара. Например, масса атмосферы больше в 2150, гидросферы – в 602000, а земной коры – в 1670000 раз.

Однако по своему активному воздействию на окружающую среду живое вещество занимает особое место и качественно резко отличается от других неорганических природных образований, входящих в состав биосферы. Прежде всего, это связано с тем, что живые организмы благодаря биологическим катализаторам (ферментам) совершают, по выражению академика Л.С. Берга, с физико-химической точки зрения что-то невероятное. Например, они способны фиксировать в своём теле молекулярный азот атмосферы при обычных для природной среды значениях температуры и давления.

В промышленных же условиях связывание атмосферного азота до аммиака (NH 3) требует температуры порядка 500 о С и давления 300-500 атмосфер. В живых организмах на несколько порядков увеличиваются скорости химических реакций в процессе обмена веществ.

В.И. Вернадский в связи с этим назвал живое вещество формой чрезвычайно активированной материи.

К основным свойствам живого можно отнести:

1. Единство химического состава. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды - гомеостаза.

4. Обмен веществ и энергии. Живые организмы - открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития - онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул,клетоки других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

К основным уникальным особенностям живого вещества , обусловливающим его высокую преобразующую деятельность , можно отнести:

1. Способность быстро занимать свободное пространство , что связано как с интенсивным размножением, так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ (всюдность жизни ).

2. Движение не только пассивное (под действием силы тяжести), но и активное . Например, против течения воды, силы тяжести, движения воздушных потоков.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной), но и крайне трудных по физико-химическим параметрам.

5. Феноменально высокая скорость протекания химических реакций . Она на несколько порядков значительнее, чем в неживой природе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых перерабатывают за день количество вещества, которое в 100 – 200 раз превышает вес их тела.

6. Высокая скорость обновления живого вещества . Подсчитано, что в среднем для биосферы она составляет около 8 лет (для суши 14 лет, а для океана, где преобладают организмы с коротким периодом жизни – 33 дня).

7. Разнообразие форм, размеров и химических вариантов , значительно превышающее многие контрасты в неживом, косном веществе.

8. Индивидуальность (в мире нет одинаковых видов и даже особей).

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нём больших запасов энергии. В.И. Вернадский отмечал, что по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов

Функции живого вещества . Всю деятельность живого вещества в биосфере можно, с определённой долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление о его преобразующей биосферно-геологической деятельности.

1. Энергетическая . Эта одна из важнейших функций связана с запасанием энергии в процессе фотосинтеза, передачей её по цепям питания и рассеиванием в окружающем пространстве.

2. Газовая – связана со способностью изменять и поддерживать определённый газовый состав среды обитания и атмосферы в целом.

3. Окислительно-восстановительная – связана с ростом под влиянием живого вещества интенсивности процессов как окисления и восстановления.

4. Концентрационная – способность организмов концентрировать в своём теле рассеянные химические элементы, повышая их содержание на несколько порядков, по сравнению с окружающей средой, а в теле отдельных организмов – в миллионы раз. Результат концентрационной деятельности – залежи горючих ископаемых, известняки, рудные месторождения и т.п.

5. Деструктивная – разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни – грибы, бактерии (деструкторы, редуценты).

6. Транспортная – перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных.

7. Средообразующая . Эта функция в значительной мере представляет результат совместного действия других функций. С ней, в конечном счете, связано преобразование физико-химических параметров среды. Эту функцию можно, рассматривать в широком и более узком планах. В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают в относительно стабильном состоянии её параметры практически во всех геосферах. В более узком плане средообразующая функция живого вещества проявляется, например, в образовании и сохранение почв от разрушения (эрозии), в очистке воздуха и вод от загрязнений, в усилении питания источников грунтовых вод и т. п.

8. Рассеивающая функция, противоположная концентрационной. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов.

9. Информационная функция живого вещества выражается в том, что живые организмы и их сообщества накапливают информацию, закрепляют её в наследственных структурах и передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

Несмотря на огромное разнообразие форм, всё живое вещество физико-химически едино . И в этом состоит один из основных законов всего органического мира – закон физико-химического единства живого вещества. Из него следует, что нет такого физического или химического агента, который был бы гибелен для одних организмов и абсолютно безвреден для других. Разница лишь количественная – одни организмы более чувствительны, другие менее, одни приспосабливаются быстрее, другие медленнее. При этом приспособление идёт в ходе естественного отбора, т.е. за счёт гибели тех индивидов, которые не смогли адаптироваться к новым условиям.

Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путём обмена веществ между живым веществом и окружающей средой.