1 эмпирические методы. Методы эмпирического исследования (empirical research methods). Методы эмпирического исследования

Эмпирический метод основан на чувственном восприятии и измерениях сложными приборами. Эмпирические методы – важная часть научных исследований, наравне с теоретической. Без этих методик ни одна наука, будь то химия, физика, математика, биология – не смогли развиваться.

Что значит эмпирический метод?

Эмпирический или чувственный метод– это научное познание окружающей действительности опытным путем, предполагающим взаимодействие с изучаемым предметом при помощи экспериментов и наблюдений. Эмпирические методы исследования помогают выявить объективные законы, по которым происходит развитие тех или иных явлений. Это комплексные и сложные шаги, и в результате их происходят новые научные открытия.

Виды эмпирических методов

Эмпирическое познание любой науки, предмета строится на стандартных, зарекомендовавших себя с течением времени методов, одинаковых для всех дисциплин, но в каждой конкретной области обладающих своей спецификой, характерной для науки. Эмпирические методы, виды:

  • наблюдение:
  • эксперимент;
  • измерение;
  • беседа;
  • анкетирование;
  • опрос;
  • беседа.

Эмпирические методы – достоинства и недостатки

Методы эмпирического познания в отличие от теоретических обладают минимальной возможностью ошибок, недостатков при условии, что эксперимент повторялся многократно и давал схожие результаты. Любой эмпирический метод задействует органы чувств человека, которые являются надежным инструментом познания окружающего мира – и в этом главное достоинство этого метода.

Методы эмпирического уровня

Эмпирические методы научного познания важны для науки не меньше, чем теоретические предпосылки. Опытным путем выстраиваются закономерности, подтверждаются или отрицаются гипотезы, поэтому эмпирический метод как совокупность способов основанных на чувственном восприятии и данных полученных измерительными приборами помогает раздвигать горизонты науки и получать новые результаты.

Эмпирические методы исследования в педагогике

Эмпирические методы педагогического исследования базируются на все тех же основных составляющих:

  • педагогическое наблюдение – берется определенная задача, условие, в которой надо понаблюдать за учениками и зарегистрировать результаты наблюдения;
  • опросы (анкетирование, беседа, интервьюирование) – помогают получить информацию на определенную тематику, личностные особенности учеников;
  • изучение работ учащихся (графических, письменных по разным дисциплинам, творческих) – дают сведения об индивидуальности ученика, его наклонности к тому или иному предмету, успешности в усвоении знаний;
  • изучение школьной документации (дневников, классных журналов, личных дел) – позволяет оценить успешность педагогического процесса в целом.

Эмпирические методы в психологии

Психологическая наука развивалась из философии и самыми базовыми инструментами познания чужой психической реальности были приняты методы, с помощью которых можно наглядно увидеть проявления психики вовне – это опыты. Физиологическая психология, благодаря которой психология в целом, продвинулась как наука была основана психологом, физиологом В. Вундтом. Его лаборатория экспериментальной психологии была открыта в 1832 г. Эмпирические методы исследования в психологии использовавшиеся Вундтом применяются в классической экспериментальной психологии:

  1. Метод наблюдения . Изучение поведенческих реакций и действий личности в естественных условиях и в условиях эксперимента с заданными переменными. Два вида наблюдения: интроспекция (самонаблюдение, взгляд внутрь) – необходимый элемент самопознания и отслеживания изменений в себе и объективное наблюдение – наблюдатель (психолог) отслеживает и регистрирует реакции, эмоции, действия за наблюдаемым человеком или группой людей.
  2. Метод эксперимента . В лаборатории (лабораторный эксперимент) – создаются специальные условия, нужные для подтверждения психологической гипотезы или отвержения ее. С помощью специальной аппаратуры, датчиков регистрируются различные физиологические параметры (пульс, дыхание, мозговая активность, реакции зрачка, изменение поведения). Естественный (природный эксперимент) проводится в привычных для человека условиях с созданием нужной ситуации.
  3. Опрос – предоставление информации человеком путем ответов на серию вопросов.
  4. Беседа – эмпирический метод основанный на вербальной коммуникации, в ходе которой психолог отмечает психологические особенности личности.
  5. Тесты – специально разработанные методики, включающие в себя ряд вопросов, неоконченных предложений, работу с изображениями. Тестирование на определенные темы помогают психологам выявить личностные особенности.

Эмпирический метод в экономике

Эмпирический или опытный метод в экономике предполагает познание реальности экономической ситуации в мире, осуществляется это с помощью инструментов:

  1. Экономическое наблюдение – осуществляется экономистами для целенаправленного восприятия экономических (хозяйственных) фактов, при этом активного воздействия на эти факты нет, наблюдение важно для построения теоретических моделей экономики.
  2. Экономический эксперимент – здесь уже включается активное воздействие на хозяйственное явление, моделируются разные условия в рамках эксперимента и изучается влияние.

Если взять отдельный сегмент экономики – товарооборот, то эмпирические методы товароведения будут следующими:

  • измерения при помощи технических устройств или органов чувств (метод-операции измерительные, органолептические;
  • обследование и мониторинг рынка (методы-действия).

Наблюдение. Наблюдение - это описательный психологический исследовательский метод, заключающийся в целенаправленном и организованном восприятии и регистрации поведения изучаемого объекта. Вместе с интроспекцией наблюдение считается старейшим психологическим методом. Научное наблюдение широко применяли и в тех областях научного знания, где особенное значение имеет фиксация особенностей поведения человека в различных условиях. Также когда либо невозможно, либо непозволительно вмешиваться в естественное течение процесса.

Наблюдение может осуществляться как непосредственно исследователем, так и посредством приборов наблюдения и фиксации его результатов. В их число входит аудио-, фото-, видеоаппаратура, в том числе карты наблюдения.

Имеет несколько вариантов.
Внешнее наблюдение - это способ сбора данных о психологии и Введении человека путем прямого наблюдения за ним со стороны.
Внутреннее наблюдение, или самонаблюдение, применяется тогда, когда психолог-исследователь ставит перед собой задачу изучить интересующее его явление в том виде, в каком оно непосредственно представлено в его сознании. Внутренне воспринимая соответствующее явление, психолог как бы наблюдает за ним (например, за своими образами, чувствами, мыслями, переживаниями) или пользуется аналогичными данными, сообщаемыми ему другими людьми, которые сами ведут интроспектирование по его заданию.

Свободное наблюдение не имеет заранее установленных рамок, программы, процедуры его проведения. Оно может менять предмет или объект наблюдения, его характер в ходе самого наблюдения в зависимости от пожелания наблюдателя.

Стандартизированное наблюдение, напротив, заранее определено и четко ограничено в плане того, что наблюдается. Оно ведется по определенной, предварительно продуманной программе и строго следует ей, независимо от того, что происходит в процессе наблюдения с объектом или самим наблюдателем.

При включенном наблюдении исследователь выступает в качестве непосредственного участника того процесса, за ходом которого он ведет наблюдение. Другой вариант включенного наблюдения: исследуя взаимоотношения людей, экспериментатор может включиться сам в общение с наблюдаемыми людьми, не прекращая в то же время наблюдать за складывающимися между ними и этими людьми взаимоотношениями.

Стороннее наблюдение в отличие от включенного не предполагает личного участия наблюдателя в том процессе, который он изучает.

Каждый из названных видов наблюдения имеет свои особенности и применяется там, где он может дать наиболее достоверные результаты. Внешнее наблюдение, например, менее субъективно, чем самонаблюдение, и обычно применяется там, где признаки, за которыми необходимо наблюдать, легко могут быть выделены и оценены извне. Внутреннее наблюдение незаменимо и часто выступает как единственно доступный метод сбора психологических данных в тех случаях, когда отсутствуют надежные внешние признаки интересующего исследователя явления.

Свободное наблюдение целесообразно проводить в тех случаях, когда невозможно точно определить, что следует наблюдать, когда признаки изучаемого явления и его вероятный ход заранее не известен исследователю. Стандартизированное наблюдение, напротив, лучше использовать тогда, когда у исследователя имеется точный и достаточно полный перечень признаков, относимых к изучаемому феномену.

Включенное наблюдение полезно в том случае, когда психолог может дать правильную оценку явлению, лишь прочувствовав его на самом себе. Однако если под влиянием личного участия исследователя его восприятие и понимание события может быть искажено, то лучше обращаться к стороннему наблюдению, применение которого позволяет более объективно судить о наблюдаемом.

Наблюдение по систематичности делится на:
- Несистематическое наблюдение, при котором необходимо создать обобщенную картину поведения индивида или группы индивидов в определенных условиях и не ставится цель фиксировать причинные зависимости и давать строгие описания явлений.
- (Систематическое наблюдение, проводящееся по определённому плану и при котором исследователь регистрирует особенности появления и классифицирует условия внешней среды.

Систематическое наблюдение проводится в ходе полевого исследования. Результат: создание обобщенной картины поведения Индивида либо группы в определенных условиях. Систематическое наблюдение проводится по определенному плану. Результат: регистрация особенностей поведения (переменные) и классификация условий внешней среды.

По фиксируемым объектам наблюдение бывает:
- Сплошное наблюдение. Исследователь старается фиксировать все особенности поведения.
- Выборочное наблюдение. Исследователь фиксирует лишь определенные типы поведенческих актов или параметры поведения.

Наблюдение имеет ряд преимуществ:
- Наблюдение позволяет непосредственно охватить и зафиксировать, акты поведения.
- Наблюдение позволяет одновременно охватить поведение ряда лиц по отношению друг к другу или к определённым задачам, предметам и т.д.
- Наблюдение позволяет произвести исследование независимо от готовности наблюдаемых субъектов.
- Наблюдение позволяет достичь многомерности охвата, то есть фиксации сразу по нескольким параметрам - например, вербального и невербального поведения.
- Оперативность получения информации.
- Относительная дешевизна метода.

Однако вместе с тем выделяются и недостатки. К недостаткам наблюдения относят:
- Многочисленность иррелевантных, мешающих факторов, результаты наблюдения могут повлиять:
- настроение наблюдателя;
- социальное положение наблюдателя по отношению к наблюдаемому;
- предубеждение наблюдателя;
- комплексность наблюдаемых ситуаций;
- эффект первого впечатления;
- усталость наблюдателя и наблюдаемого;
- ошибки в оценках («гало-эффект», «эффект снисходительности»» ошибка усреднения, ошибки моделирования, ошибка контрастности).
- Однократность наблюдаемых обстоятельств, приводящая к невозможности сделать обобщающее заключение исходя из единичных наблюдаемых фактов.
- Необходимость классифицировать результаты наблюдения.
- Малая репрезентативность для крупных генеральных совокупностей.
- Сложность соблюдения операциональной валидности.

Анкетирование. Анкетирование, как и наблюдение, является одним из наиболее распространенных исследовательских методов в психологии. Анкетирование обычно проводится с использованием данных наблюдения, которые (наряду с данными, полученными при помощи других исследовательских методов) используются при составлении анкет.

Существуют три основных типа анкет, применяемых в психологии:
- , составленные из прямых вопросов и направленные на выявление осознаваемых качеств испытуемых.
- анкеты селективного типа, где испытуемым на каждый вопрос анкеты предлагается несколько готовых ответов; задачей испытуемого является выбор наиболее подходящего ответа.
- анкеты-шкалы; при ответе на вопросы анкет-шкал испытуемый должен не просто выбрать наиболее правильный из готовых ответов, а проанализировать (оценить в баллах) правильность из предложенных ответов.

Анкеты-шкалы являются наиболее формализованным типом анкет, так как они позволяют проводить более точный количественный анализ данных анкетирования.

Бесспорным достоинством метода анкетирования является быстрое получение массового материала.

Недостатком метода анкетирования является то, что он позволяет вскрывать, как правило, только самый верхний слой факторов: материалы при помощи анкет и вопросников (составленных из прямых вопросов к испытуемым) не могут дать исследователю представления о многих закономерностях и причинных зависимостях, относящихся к психологии. Анкетирование - это средство первой ориентировки, средство предварительной разведки. Чтобы компенсировать отмеченные недостатки анкетирования, применение этого метода следует сочетать с использованием более содержательных исследовательских методов, а также проводить повторные анкетировании, маскировать от испытуемых подлинные цели опросов и т.д.

Беседа - специфичный для психологии метод исследования человеческого поведения, так как в других естественных науках коммуникация между субъектом и объектом исследования невозможна.

Метод беседы - это диалог между двумя людьми, в ходе которого один человек выявляет психологические особенности другого.

Беседа включается как дополнительный метод в структуру эксперимента на первом этапе, когда исследователь собирает первичную информацию об испытуемом, дает ему инструкцию, мотивирует и т.д., и на последнем этапе - в форме постэкспериментального Интервью.

Соблюдение всех необходимых условий проведения беседы включает сбор предварительных сведений об испытуемых, делает этот метод очень эффективным средством психологического исследования. Поэтому желательно, чтобы беседа проводилась с учетом данных, полученных при помощи таких методов, как наблюдение и анкетирование. В этом случае в ее цели может входить проверка предварительных выводов, вытекающих из результатов психологического анализа и полученных при использовании данных методов первичной ориентировки в исследуемых психологических особенностях испытуемых.

Опрос представляет собой метод, при использовании которого человек отвечает на ряд задаваемых ему вопросов. Есть несколько вариантов опроса и каждый из них имеет свои достоинства и недостатки.

Устный опрос применяется в тех случаях, когда желательно вести наблюдение за поведением и реакциями человека, отвечающего на вопросы. Этот вид опроса позволяет глубже, чем письменный, проникнуть в психологию человека, однако требует специальной подготовки, обучения и, как правило, больших затрат времени на проведение исследования. Ответы испытуемых, получаемые при устном опросе, существенно зависят и от личности того человека, который ведет опрос, и от индивидуальных особенностей того, кто отвечает на вопросы, и от поведения обоих лиц в ситуации опроса.

Письменный опрос позволяет охватить большее количество людей. Наиболее распространенная его форма - анкета. Но ее недостатком является то, что, применяя анкету, нельзя заранее учесть реакции отвечающего на содержание ее вопросов и, исходя из этого, изменить их.

Свободный опрос - разновидность устного или письменного опроса, при котором перечень задаваемых вопросов и возможных ответов на них заранее не ограничен определенными рамками. Опрос данного типа позволяет достаточно гибко менять тактику исследования, содержание задаваемых вопросов, получать на них нестандартные ответы.

Стандартизированный опрос - вопросы и характер возможных ответов на них определены заранее и обычно ограничены достаточно узкими рамками, что делает его более экономичным во времени и в материальных затратах, чем свободный опрос.

Тесты являются специализированными методами психодиагностического обследования, применяя которые можно получить точную количественную или качественную характеристику изучаемого явления. От других методов исследования тесты отличаются тем, что предполагают четкую процедуру сбора и обработки первичных данных, а также своеобразие их последующей интерпретации С помощью тестов можно изучать и сравнивать между собой психологию разных людей, давать дифференцированные и сопоставимые оценки.

Тест-опросник основан на системе заранее продуманных, тщательно отобранных и проверенных с точки зрения их валидности и надежности вопросов, по ответам на которые можно судить о психологических качествах испытуемых.

Тест-задание предполагает оценку психологии и поведения человека на базе того, что он делает. В тестах этого типа испытуемому предлагается серия специальных заданий, по итогам выполнения которых судят о наличии или отсутствии и степени развития у него изучаемого качества.

Тест-опросник и тест-задание применимы к людям разного возраста, принадлежащим к различным культурам, имеющим разный уровень образования, разные профессии и неодинаковый жизненный опыт. Это - их положительная сторона.

Недостаток тестов состоит в том, что при их использовании и. ш.пуемый по желанию может сознательно повлиять на получаемые результаты, особенно если он заранее знает, как устроен тест и каким образом по его результатам будут оценивать психологию и поведение. Кроме того, тест-опросник и тест-задание неприменимы в тех случаях, когда изучению подлежат психологические свойства н характеристики, в существовании которых испытуемый не может быть, полностью уверен, не осознает или сознательно не хочет принимать их наличие у себя. Такими характеристиками являются, например, многие отрицательные личностные качества и мотивы поведения. В этих случаях обычно применяется третий тип тестов - проективные.

Проективные тесты. В основе проективных тестов лежит механизм проекции, согласно которому неосознаваемые собственные качества, особенно недостатки, человек склонен приписывать другим людям. Проективные тесты предназначены для изучения психологических и поведенческих особенностей людей, вызывающих негативное отношение. Применяя тесты подобного рода, о психологии испытуемого судят на основании того, как он воспринимает и оценивает ситуации, психологию и поведение людей, какие личностные свойства, мотивы положительного или отрицательного характера он им приписывает.

Пользуясь проективным тестом, психолог с его помощью вводит испытуемого в воображаемую, сюжетно неопределенную ситуацию, подлежащую произвольной интерпретации.

Тесты проективного типа предъявляют повышенные требования к уровню образованности и интеллектуальной зрелости испытуемых и в этом состоит основное практическое ограничение их применимости. Кроме того, такие тесты требуют большой специальном подготовки и высокой профессиональной квалификации со стороны самого психолога.

Эксперимент. Специфика эксперимента как метода психологического исследования заключается в том, что в нем целенаправленно и продуманно создается искусственная ситуация, в которой изучаемое свойство выделяется, проявляется и оценивается лучше всего. Основное достоинство эксперимента состоит в том, что он позволяет надежнее, чем все остальные методы, делать выводы о причинно-следственных связях исследуемого явления с другими феноменами, научно объяснять происхождение явления и его развитие.

Имеются две основные разновидности эксперимента: естественный и лабораторный.

Естественный эксперимент организуется и проводится в обычных жизненных условиях, где экспериментатор практически не вмешивается в ход происходящих событий, фиксируя их в том виде, как они разворачиваются сами по себе.

Лабораторный эксперимент предполагает создание некоторой искусственной ситуации, в которой изучаемое свойство можно лучше всего изучить.

Данные, получаемые в естественном эксперименте, лучше всего соответствуют типичному жизненному поведению индивида, реальной психологии людей, но не всегда точны из-за отсутствия у экспериментатора возможности строго контролировать влияние всевозможных факторов на изучаемое свойство. Результаты лабораторного эксперимента, напротив, выигрывают в точности, но зато уступают в степени естественности - соответствия жизни.

Моделирование как метод применяется в том когда исследование интересующего ученого явления путем простого наблюдения, опроса, теста или эксперимента затруднено или невозможно в силу сложности или труднодоступности. Тогда прибегают к созданию искусственной модели изучаемого феномена, повторяющей его основные параметры и предполагаемые свойства. На этой модели детально исследуют данное явление и делают выводы о природе.

Модели могут быть техническими, логическими, математическими, кибернетическими.

Математическая модель представляет собой выражение или формулу, включающую переменные и отношения между ними, воспроизводящие элементы и отношения в изучаемом явлении.

Техническое моделирование предполагает создание прибора или устройства, по своему действию напоминающего то, что подлежит изучению.

Кибернетическое моделирование основано на использовании в качестве элементов модели понятий из области информатики и кибернетики.

Логическое моделирование основано на идеях и символике, применяемой в математической логике. Наиболее известными примерами математического моделирования в психологии являются формулы, выражающие собой законы Бугера - Вебера, Вебера - Фехнера и Стивенса. Логическое моделирование широко используется при изучении мышления человека и его сравнении с решением задач вычеслительной машиной.

Кроме вышеперечисленных методов, предназначенных для сборе первичной информации, в психологии широко применяются различные способы и приемы обработки этих данных, их логического и математического анализа для получения вторичных результатов, т.е. фактов и выводов, вытекающих из интерпретации переработанной первичной информации. Для этой цели применяются, в частности, разнообразные методы математической статистики, без которых зачастую невозможно получить достоверную информацию об изучаемых явлениях, а также методы качественного анализа.

К методам эмпирического исследования в науке и технике относятся, наряду с некоторыми другими, наблюдение, сравнение, измерение и эксперимент.

Под наблюдением понимается систематическое и целенаправленное восприятие интересующего нас почему-то объекта: вещи, явления, свойства, состояния, аспектов целого - как материальной, так и идеальной природы.

Это наиболее простой метод, выступающий, как правило, в составе других эмпирических методов, хотя в ряде наук он выступает самостоятельно или в роли главного (как в наблюдении погоды, в наблюдательной астрономии и др.). Изобретение телескопа позволило человеку распространить наблюдение на ранее недоступную область мегамира, создание микроскопа ознаменовало вторжение в микромир. Рентгеновский аппарат, радиолокатор, генератор ультразвука и много других технических средств наблюдения привели к невиданному росту научной и практической ценности этого метода исследова- ния. Существуют также способы и методики самонаблюдения и самоконтроля (в психологии, медицине, физкультуре и спорте и др.).

Само понятие наблюдения в теории познания обобщенно выступает в форме понятия "созерцания", оно связано с категориями деятельности и активности субъекта.

Чтобы быть плодотворным и продуктивным, наблюдение должно удовлетворять следующим требованиям: -

быть преднамеренным, то есть вестись для решения вполне определенных задач в рамках общей цели (целей) научной деятельности и практики; -

планомерным, то есть состоять из наблюдений, идущих по определенному плану, схеме, вытекающих из характера объекта, а также целей и задач исследования; -

целенаправленным, то есть фиксировать внимание наблюдателя лишь на интересующих его объектах и не останавливаться на тех, которые выпадают из задач наблюдения. Наблюдение, направленное на восприятие отдельных деталей, сторон, аспектов, частей объекта называют фиксирующим, а охватывающее целое при условии повторного наблюдения (возвратного) - флуктуирующим. Соединение этих видов наблюдения в итоге и дает целостную картину объекта; -

быть активным, то есть таким, когда наблюдатель целенаправленно ищет нужные для его задач объекты среди некоторого их множества, рассматривает отдельные интересующие его стороны свойства, аспекты этих объектов, опираясь при этом на запас собственных знаний, опыта и навыков; -

систематическим, то есть таким, когда наблюдатель ведет свое наблюдение непрерывно, а не случайно и спорадически (как при простом созерцании), по определенной, продуманной заранее схеме, в разнообразных или же строго оговоренных условиях.

Наблюдение как метод научного познания и практики дает нам факты в форме совокупности эмпирических утверждений об объектах. Эти факты образуют первичную информацию об объектах познания и изучения. Заметим, что в самой действительности никаких фактов нет: она просто существует. Факты - в головах людей. Описание научных фактов происходит на основе определенного научного языка, идей, картин мира, теорий, гипотез и моделей. Именно они и определяют первичную схематизацию представления о данном объекте. Собственно, именно при таких условиях и возникает "объект науки" (который не надо путать с объектом самой действительности, так как второй есть теоретическое описание первого!).

Многие ученые специально развивали у себя способность к наблюдению, то есть наблюдательность. Ч.Дарвин говорил, что он обязан своими успехами тому, что усиленно развивал в себе это качество.

Сравнение - это один из наиболее распространенных и универсальных методов познания. Известный афоризм: "Все познается в сравнении" - лучшее тому доказательство. Сравнением называют установление сходства (тождества) и различия предметов и явлений разного рода, их сторон и др., во- обще - объектов исследования. В результате сравнения устанавливается то общее, что присуще двум и более объектам - в данный момент или в их истории. В науках исторического характера сравнение было развито до уровня основного метода исследования, который получил название сравнительно- исторического. Выявление общего, повторяющегося в явлениях, как известно, - ступень на пути к познанию закономерного.

Для того, чтобы сравнение было плодотворным, оно должно удовлетворять двум основным требованиям: сравниваться должны лишь такие стороны и аспекты, объекты в целом, между которыми существует объективная общность; сравнение должно идти по наиболее важным, существенным в данной исследовательской или другой задаче признакам. Сравнение по несущественным признакам может привести лишь к заблуждениям и ошибкам. В этой связи надо осторожно относиться к умозаключениям "по аналогии". Французы даже говорят, что "сравнение - не доказательство!".

Интересующие исследователя, инженера, конструктора объекты могут сравниваться или непосредственно или опосредованно - через третий объект. В первом случае получают качественные оценки типа: больше - меньше, светлее - темнее, выше - ниже, ближе - дальше и др. Правда, и здесь можно получить простейшие количественные характеристики: "выше в два раза", "тяжелее в два раза" и др. Когда же имеется еще и третий объект в роли эталона, мерки, масштаба, то получают особо ценные и более точные количественные характеристики. Такое сравнение через посредствующий объект называю измерением. Сравнение подготавливает основу и для ряда теоретических методов. Само оно опирается часто на умозаключения по аналогии, о которых мы будем говорить дальше.

Измерение исторически развивалось из наблюдений и сравнения. Однако в отличие от простого сравнения оно более результативно и точно. Современное естествознание, начало которому было положено Леонардо да Винчи, Галилеем и Ньтоном. Своим расцветом обязано применению измерений. Именно Галилей провозгласил принцип количественного подхода к явлениям, согласно которому описание физических явлений должно опираться на величины, имеющие количественную меру - число. Он говорил, что книга природы написана на языке математики. Инженерия, проектирование и конструирование в своих методах продолжают эту же линию. Мы будем здесь рассматривать измерение в отличие от других авторов, объединяющих измерение с экспериментом, как самостоятельный метод.

Измерение - это процедура определения численного значения некоторой характеристики объекта посредством сравнения ее с единицей измерения, принятой как стандарт данным исследователем или всеми учеными и практиками. Как известно, существуют международные и национальные единицы измерения основных характеристик различных классов объектов, такие как час, метр, грамм, вольт, бит и др.; день, пуд, фунт, верста, миля и др. Измерение предполагает наличие следующих основных элементов: объ- екта измерения, единицы измерения, то есть масштаба, мерки, эталона; измерительного устройства; метода измерения; наблюдателя.

Измерения бывают прямые и косвенные. При прямом измерении результат получается непосредственно из самого процесса измерения (например, используя меры длины, времени, веса и т.д.). При косвенном измерении искомая величина определяется математическим путем на основе других величин, полученных ранее прямым измерением. Так получают, например, удельный вес, площадь и объем тел правильной формы, скорость и ускорение тела, мощность и др.

Измерение позволяет находить и формулировать эмпирические законы и фундаментальные мировые константы. В связи с этим оно может служить источником формирования даже целых научных теорий. Так, многолетние измерения движения планет Тихо де Браге позволили потом Кеплеру создать обобщения в виде известных трех эмпирических законов движения планет. Измерение атомных весов в химии явилось одной из основ формулирования Менделеевым своего знаменитого периодического закона в химии и т.п. Измерение дает не только точные количественные сведения о действительности, но и позволяет вносить новые качественные соображения в теорию. Так произошло в итоге с измерением скорости света Майкельсоном в ходе развития Эйнштейновской теории относительности. Примеры можно продолжить.

Важнейшим показателем ценности измерения является его точность. Благодаря ей могут быть открыты факты, которые не согласуются с ныне существующими теориями. В свое время, например, отклонения в величине перигелия Меркурия от расчетного (то есть согласного с законами Кеплера и Ньютона) на 13 секунд в столетие смогли объяснить, только создав новую, релятивистскую концепцию мира в общей теории относительности.

Точность измерений зависит от имеющихся приборов, их возможностей и качества, от применяемых методов и самой подготовки исследователя. На измерения часто тратятся большие средства, нередко их готовят длительное время, в них участвует множество людей, а результат может оказаться или нулевым или неубедительным. Нередко, к полученным результатам исследователи бывают не готовы, потому что разделяют определенную концепцию, теорию, а она не может включить этот результат. Так, в начале XX века ученый Ландольт очень точно проверил закон сохранения веса веществ в химии и убедился в его справедливости. Если бы его методика была бы усовершенствована (и точность увеличена на 2 - 3 порядка), то можно было бы вывести известное соотношение Эйнштейна между массой и энергией: E = mc . Но было ли бы это убедительным для научного мира того времени? Вряд ли! Наука еще не была готова к этому. В XX веке, когда, определяя массы радиоактивных изотопов по отклонению ионного пучка, английский физик Ф. Ас- тон подтвердил теоретический вывод Эйнштейна, это было воспринято в науке как естественный результат.

Следует иметь в виду, что существуют определенные требования к уровню точности. Он должен находиться в соответствии с природой объек- тов и с требованиями познавательной, проектировочной, конструкторской или инженерной задачи. Так, в технике и строительстве постоянно имеют дело с измерением массы (то есть веса), длиной (размером) и др. Но в большинстве случаев прецизионная точность здесь не требуется, более того, она выглядела бы вообще смешно, если бы, скажем, вес опорной колонны для здания проверялся до тысячных или ещё меньших долей грамма! Существует и проблема измерения массовидного материала, связанного со случайными отклонениями, как это бывает в больших совокупностях. Подобные явления характерны для объектов микромира, для биологических, социальных, экономических и других подобных объектов. Здесь применимы поиски статистического среднего и методы, специально ориентированные на обработку случайного и его распределений в виде вероятностных методов и др.

Для исключения случайных и систематических ошибок измерения, выявления ошибок и погрешностей, связанных с природой приборов и самого наблюдателя (человека), развита специальная математическая теория ошибок.

Особое значение в XX веке приобрели в связи с развитием техники методы измерения в условиях быстрого протекания процессов, в агрессивных средах, где исключается присутствие наблюдателя, и т.п. На помощь здесь пришли методы авто- и электрометрии, а также компьютерной обработки информации и управления процессами измерения. В их разработке выдающуюся роль сыграли разработки ученых Новосибирского института автоматики и электрометрии СО РАН, а также НГТУ (НЭТИ). Это были результаты мирового класса.

Измерение, наряду с наблюдением и сравнением, широко используется на эмпирическом уровне познания и деятельности человека вообще, оно входит в состав наиболее развитого, сложного и значимого метода - экспериментального.

Под экспериментом понимается такой метод изучения и преобразования объектов, когда исследователь активно воздействует на них путем создания искусственных условий, необходимых для выявления каких-либо интересующих его свойств, характеристик, аспектов, сознательно изменяя течение естественных процессов, ведя при этом регулирование, измерения и наблюдения. Основным средством создания таких условий являются разнообразные приборы и искусственные устройства, о которых мы еще поговорим ниже. Эксперимент представляет собой наиболее сложный, комплексный и эффективный метод эмпирического познания и преобразования объектов разного рода. Но сущность его не в сложности, а в целенаправленности, преднамеренности и вмешательстве путем регулирования и управления в течение изучаемых и преобразуемых процессов и состояний объектов.

Основателем экспериментальной науки и экспериментального метода считается Галилей. Опыт как главный путь для естествознания обозначил впервые в конце XVI, начале XVII века английский философ Френсис Бэкон. Опыт - главный путь и для инженерии, технологий.

Отличительными признаками эксперимента считают возможность изучения и преобразования того или иного объекта в относительно чистом виде, когда все побочные факторы, затемняющие суть дела, устраняются почти целиком. Это даёт возможность исследования объектов действительности в экстремальных условиях, то есть при сверхнизких и сверхвысоких температурах, давлениях и энергиях, величинах скорости процессов, напряженности электрических и магнитных полей, энергиях взаимодействия и др.

В этих условиях можно получить неожиданные и удивительные свойства у обычных объектов и, тем самым, глубже проникнуть в их сущность и механизмы преобразований (экстремальный эксперимент и анализ).

Примерами явлений, открытых в экстремальных условиях, являются сверхтекучесть и сверхпроводимость при низких температурах. Важнейшим достоинством эксперимента является его повторяемость, когда наблюдения, измерения, испытания свойств объектов проводятся многократно при варьировании условий, чтобы повысить точность, достоверность и практическую значимость ранее полученных результатов, убедиться вообще в существовании нового явления.

К эксперименту обращаются в следующих ситуациях: -

когда пытаются обнаружить у объекта ранее неизвестные свойства и характеристики - это исследовательский эксперимент; -

когда проверяют правильность тех или иных теоретических положений, выводов и гипотез - проверочный к теории эксперимент; -

когда проверяют правильность ранее произведенных экспериментов - проверочный (к экспериментам) эксперимент; -

учебно-демонстрационный эксперимент.

Любой из этих видов эксперимента может быть проведен как непосредственно с обследуемым объектом, так и с его заместителем - моделями разного рода. Эксперименты первого типа называют натурными, второго - модельными (моделирование). Примерами экспериментов второго типа являются исследования гипотетической первичной атмосферы Земли на моделях из смеси газов и паров воды. Опыты Миллера и Абельсона подтвердили возможность образования при электрических разрядах в модели первичной атмосферы органических образований, соединений, а это, в свою очередь, стало проверкой теории Опарина и Холдейна о происхождении жизни. Другим примером являются модельные эксперименты на компьютерах, получающие все большее распространение во всех науках. В этой связи физики сегодня говорят о возникновении "вычислительной физики" (работа компьютера базируется на математических программах и вычислительных операциях).

Достоинством эксперимента является возможность изучения объектов в более широком диапазоне условий, чем это допускает оригинал, что особенно заметно в медицине, где нельзя вести опыты, нарушающие здоровье человека. Тогда прибегают к помощи живых и неживых моделей, повторяющих или имитирующих особенности человека и его органов. Эксперименты можно вести как над вещественно-полевыми и информационными объектами, так и с их идеальными копиями; в последнем случае перед нами мысленный эксперимент, в том числе вычислительный как идеальная форма реального эксперимента (компьютерное моделирование эксперимента).

В настоящее время усиливается внимание к социологическим экспериментам. Но здесь существуют особенности, ограничивающие возможности подобных экспериментов согласно законам и принципам гуманности, которые находят отражение в концепциях и соглашениях ООН и международного права. Так, никто, кроме преступников, не станет планировать экспериментальные войны, эпидемии и т.п., чтобы изучить их последствия. В этой связи сценарии ракетно-ядерной войны и следствия из нее в виде "ядерной зимы" проигрывались на компьютерах у нас и в США. Вывод из этого эксперимента: ядерная война принесет неизбежно гибель всего человечества и всего живого на Земле. Велико значение экономических экспериментов, но и здесь безответственность и политическая ангажированность политиков может привести и приводит к катастрофическим результатам.

Наблюдения, измерения и эксперименты в основном базируются на различных приборах. Что же такое прибор с точки зрения его роли для исследования? В широком смысле слова под приборами понимают искусственные, технические средства и разного рода устройства, которые позволяют вести исследование какого-либо интересующего нас явления, свойства, состояния, характеристики с количественной и/или качественной стороны, а также создавать строго определенные условия для их обнаружения, реализации и регулирования; устройства, позволяющие вместе с тем вести наблюдение и измерение.

Не менее важно при этом выбрать систему отсчета, создать ее специально в приборе. Под системами отсчета понимают объекты, которые мысленно принимают за исходные, базисные и физически покоящиеся, неподвижные. Наиболее понятно это видно при измерении при помощи разных шкал для отсчета. В астрономических наблюдениях - это Земля, Солнце, другие тела, неподвижные (условно) звезды и др. Физики называют "лабораторной" ту систему отсчета, объект, которые совпадают с местом наблюдения и измерения в пространственно-временном смысле. В самом приборе система отсчета - это важная часть измерительного устройства, условно про- градуированная на шкале отсчета, где наблюдателем фиксируется, например, отклонение стрелки или светового сигнала от начала шкалы. В цифровых системах измерения мы все равно имеем начало отсчета, известное наблюдателю на основе знания особенностей применяемого здесь счетного множества единиц измерения. Простые и понятные шкалы, например, у линеек, часов с циферблатом, у большинства электро- и теплоизмерительных приборов.

В классический период науки среди требований к приборам были, во- первых, чувствительность к воздействию внешнего измеряемого фактора для измерения и регулирования условий эксперимента; во-вторых, так называемая "разрешающая способность" - то есть границы точности и поддержания заданных условий для изучаемого процесса в экспериментальном устройстве.

При этом молчаливо считалось, что в ходе прогресса науки их все удастся улучшить и увеличить. В XX веке, благодаря развитию физики микромира, нашли, что существует нижний предел делимости вещества и поля (кванты и др.), имеется нижнее значение величины электрического заряда и т. п. Все это вызвало пересмотр прежних требований и привлекло особое внимание к системам физических и других единиц, известных каждому из школьного курса физики.

Важным условием объективности описания объектов считалась также принципиальная возможность абстрагироваться, отвлечься от систем отсчета путем или выбора так называемой "естественной системы отсчета", или путем обнаружения таких свойств у объектов, которые не зависят от выбора систем отсчета. В науке их называют "инвариантами"В самой природе не так уж и много подобных инвариантов: это вес атома водорода (и он стал мерой, единицей для измерения веса других химических атомов), это электрический заряд, так называемое "действие" в механике и в физике (его размерность - энергия х время), Планковский квант действия (в квантовой механике), гравитационная постоянная, скорость света и др. На рубеже XIX и XX веков наука выяснила, казалось, парадоксальные вещи: масса, длина, время - относительны, они зависят от скорости движения частиц вещества и полей и, конечно, от положения наблюдателя в системе отсчета. В специальной теории относительности в итоге был найден особый инвариант - "четырехмерный интервал".

Значение и роль исследований систем отсчета и инвариантов в течение всего XX века нарастало, особенно при изучении экстремальных условий, характера и скорости протекания процессов, таких как сверхвысокие энергии, низкие и сверхнизкие температуры, быстропротекающие процессы и т.п. Остается важной и проблема точности измерения. Все приборы, применяемые в науке и технике, можно разделить на наблюдательные, измерительные и экспериментальные. Их несколько видов и подвидов по их назначению и функциям в исследовании:

1. Измерительные проборы разного рода с двумя подвидами:

а) прямого измерения (линейки, мерные сосуды и др.);

б) косвенного, опосредованного измерения (например, пирометры, измеряющие температуру тела через измерение энергии излучения; тензометри- ческие приборы и датчики - давление через электрические процессы в самом приборе; и др.). 2.

Усиливающие естественные органы человека, но не меняющие сущности и природы наблюдаемой и измеряемой характеристики. Таковы оптические приборы (от очков до телескопа), многие акустические приборы и др. 3.

Преобразующие естественные процессы и явления из одного вида в другой, доступный наблюдателю и/или его наблюдательным и измерительным устройствам. Таковы рентгеновский аппарат, сцинтилляционные датчики и т. п.

4. Экспериментальные приборы и устройства, а также их системы, включающие наблюдательные и измерительные приборы как свою неотъемлемую часть. Диапазон таких приборов простирается до размеров гигантских ускорителей частиц, вроде Серпуховского. В них процессы и объекты разного рода относительно изолированы от среды, они регулируются, управляются, а явления выделяются в максимально чистом виде (то есть, без других, посторонних явлений и процессов, помех, возмущающих факторов и т.п.).

5. Демонстрационные приборы, которые служат для наглядного показа разных свойств, явлений и закономерностей разного рода при обучении. К ним можно отнести также испытательные стенды и тренажеры разного рода, поскольку они обладают наглядностью, а также часто имитируют те или иные явления, как бы обманывая обучающихся.

Различают также приборы и устройства: а) исследовательского назначения (для нас здесь они главное) и, б) массового потребительского назначения. Прогресс приборостроения - это забота не только ученых, но также конструкторов и инженеров-приборостроителей в первую очередь.

Можно различить также приборы-модели, как бы продолжение всех предыдущих в виде их заместителей, а также уменьшенные копии и макеты реальных приборов и устройств, природных объектов. Примером моделей первого рода будут кибернетические и компьютерные имитации реальных, позволяющие изучать и проектировать реальные объекты, часто в широком диапазоне сходных в чем-то систем (в управлении и связи, проектировании систем и коммуникаций, сетей разного рода, в САПР). Примеры моделей второго рода - вещественные модели моста, самолета, плотины, балки, машины и ее узлов, любого устройства.

В широко смысле прибор - это не только некоторое искусственное образование, но это и среда, в которой протекает какой-нибудь процесс. В роли последней может выступать и компьютер. Тогда говорят, что перед нами вычислительный эксперимент (при оперировании числами).

У вычислительного эксперимента как метода большое будущее, так как часто экспериментатор имеет дело с многофакторными и коллективными процессами, где нужна огромная статистика. Экспериментатор также имеет дело с агрессивными средами и процессами, опасными для человека и живого вообще (в связи с последним существуют экологические проблемы научного и инженерного эксперимента).

Развитие физики микромира показало, что в своем теоретическом описании объектов микромира мы в принципе не можем избавиться от влияния прибора на искомый ответ. Более того, здесь мы в принципе не можем одновременно измерять координаты и импульсы микрочастицы и др.; после измерения приходится строить взаимодополнительные описания поведения частицы за счет показаний разных приборов и неодновременных описаний данных измерений (принципы неопределенностей В.Гейзенберга и принцип дополнительности Н. Бора).

Прогресс в приборостроении нередко создает подлинную революцию в той или иной науке. Классическими являются примеры открытий, сделанными благодаря изобретению микроскопа, телескопа, рентгеновского аппарата, спектроскопа и спектрометра, создания спутниковых лабораторий, вынос приборов в космос на спутниках и т.п. Расходы на приборы и эксперименты во многих НИИ составляют часто львиную долю их бюджетов. Сегодня много примеров, когда эксперименты не по карману целым немаленьким странам, и поэтому они идут на научную кооперацию (как ЦЕРН в Швейцарии, в космических программах и др.).

В ходе развития науки роль приборов нередко искажается, преувеличивается. Так в философии, в связи с особенностями эксперимента в микромире, о чем говорилось чуть выше, возникла идея, что в этой области все наши знания целиком приборного происхождения. Прибор, как бы продолжая субъекта познания, вмешивается в объективный ход событий. Отсюда делается вывод: все наше знание об объектах микромира субъективно, оно приборного происхождения. В итоге в науке XX века возникло целое направление философии - приборный идеализм или операционализм (П.Бриджмен). Конечно, последовала ответная критика, но подобная идея встречается среди ученых до сих пор. Во многом она возникла из-за недооценки теоретического знания и познания, а также его возможностей.

Научное познание можно разделить на два уровня: теоретический и эмпирический. Первый основывается на умозаключениях, второй - на опытах и взаимодействии с исследуемым объектом. Несмотря на различную природу, эти методы обладают одинаково большим значением для развития науки.

Эмпирические исследования

В основе эмпирического познания лежит непосредственное практическое взаимодействие исследователя и изучаемого им объекта. Оно состоит из экспериментов и наблюдений. Эмпирическое и теоретическое познание противоположны - в случае с теоретическими исследованиями человек обходится лишь собственными представлениями о предмете. Как правило, такой способ является уделом гуманитарных наук.

Эмпирические же исследования не могут обойтись без приборов и приборных установок. Это средства, связанные с организацией наблюдений и экспериментов, но помимо них есть еще и понятийные средства. Их используют в качестве специального научного языка. Он обладает сложной организацией. Эмпирическое и теоретическое познание ориентированы на исследование явлений и возникающих между ними зависимостей. Проводя эксперименты, человек может выявить объективный закон. Этому также способствует изучение явлений и их корреляции.

Эмпирические методы познания

Согласно научному представлению эмпирическое и теоретическое познание состоит из нескольких методов. Это совокупность шагов, необходимых для решения определенной задачи (в данном случае речь идет о выявлении неизвестных прежде закономерностей). Первый эмпирический метод — это наблюдение. Оно представляет собой целенаправленное исследование предметов, которое в первую очередь опирается на различные органы чувств (восприятия, ощущения, представления).

На своем начальном этапе наблюдение дает представление о внешних характеристиках объекта познания. Однако конечная цель этого заключается в определении более глубоких и внутренних свойств предмета. Распространенное заблуждение заключается в идее о том, что научное наблюдение представляет собой пассивное далеко не так.

Наблюдение

Эмпирическое наблюдение отличается детальным характером. Оно может быть как непосредственным, так и опосредованным разными техническими устройствами и приборами (например, фотокамерой, телескопом, микроскопом и т. д.). По мере развития науки наблюдение становится все более комплексным и сложным. У этого метода есть несколько исключительных качеств: объективность, определенность и однозначность замысла. При использовании приборов дополнительную роль играет расшифровка их показаний.

В социальных и гуманитарных науках эмпирическое и теоретическое познание приживается неоднородно. Наблюдение в этих дисциплинах отличается особенной сложностью. Оно становится зависимым от личности исследователя, его принципов и жизненных установок, а также степени заинтересованности в предмете.

Наблюдение не может осуществляться без определенной концепции или идеи. Оно должно основываться на некой гипотезе и регистрировать определенные факты (при этом показательными будут только связанные между собой и репрезентативные факты).

Теоретические и эмпирические исследования отличаются друг от друга в деталях. Например, у наблюдения есть свои конкретные функции, которые не характерны для других методов познания. В первую очередь это обеспечение человека информацией, без которой невозможно дальнейшее исследование и выдвижение гипотез. Наблюдение - это топливо, на котором работает мышление. Без новых фактов и впечатлений не будет и новых знаний. Кроме того, именно с помощью наблюдения можно сопоставить и проверить истинность результатов предварительных теоретических исследований.

Эксперимент

Разные между собой теоретические и эмпирические методы познания отличаются еще и степенью своего вмешательства в изучаемый процесс. Человек может наблюдать за ним строго со стороны, а может проанализировать его свойства на собственном опыте. Эту функцию осуществляет один из эмпирических методов познания - эксперимент. По важности и вкладу в итоговый результат исследований он ничуть не уступает наблюдению.

Эксперимент — это не только целенаправленное и активное вмешательство человека в протекание исследуемого процесса, но и его изменение, а также воспроизведение в специально подготовленных условиях. Данный метод познания требует гораздо больше усилий, чем наблюдение. Во время эксперимента объект изучения изолируется от любого постороннего влияния. Создается чистая и незамутненная среда. Условия эксперимента полностью задаются и контролируются. Поэтому этот метод, с одной стороны, соответствует естественным законам природы, а с другой стороны, отличается искусственной, определенной человеком сущностью.

Структура эксперимента

Все теоретические и эмпирические методы имеют определенную идейную нагрузку. Не является исключением и эксперимент, который осуществляется в несколько стадий. В первую очередь происходят планирование и пошаговое построение (определяются цель, средства, тип и т. д.). Затем наступает этап осуществления эксперимента. При этом он происходит под совершенным контролем человека. По завершении активной фазы наступает очередь интерпретации результатов.

И эмпирическое, и теоретическое познание отличается определенной структурой. Для того чтобы состоялся эксперимент, требуются сами экспериментаторы, объект эксперимента, приборы и другое необходимое оборудование, методика и гипотеза, которая подтверждается или опровергается.

Приборы и установки

С каждым годом научные исследования становятся все сложнее. Им требуется все более современная техника, которая позволяет изучать то, что недоступно простым человеческим органам чувств. Если раньше ученые ограничивались собственным зрением и слухом, то теперь в их распоряжении есть невиданные прежде экспериментальные установки.

В ходе использования прибора он может оказать негативное воздействие на изучаемый объект. По этой причине результат эксперимента иногда расходится с его первоначальными целями. Некоторые исследователи пытаются нарочно достичь таких результатов. В науке подобный процесс называется рандомизацией. Если эксперимент принимает случайный характер, то его последствия становятся дополнительным объектом анализа. Возможность рандомизации — это еще одна черта, которой отличается эмпирическое и теоретическое познание.

Сравнение, описание и измерение

Сравнение - третий эмпирический метод познания. Эта операция позволяет выявлять различия и сходства объектов. Эмпирический, теоретический анализ не может осуществляться без глубоких знаний о предмете. В свою очередь, многие факты начинают играть новыми красками, после того как исследователь сопоставляет их с другой известной ему фактурой. Сравнение объектов проводится в рамках признаков, существенных для конкретного эксперимента. При этом предметы, которые сопоставляются по одной черте, могут быть несравнимыми по другим своим характеристикам. Данный эмпирический прием основывается на аналогии. Он лежит в основе важного для науки

Методы эмпирического и теоретического познания могут комбинироваться между собой. Но почти никогда исследование не обходится без описания. Эта познавательная операция фиксирует результаты ранее проведенного опыта. Для описания используются научные системы обозначения: графики, схемы, рисунки, диаграммы, таблицы и т. д.

Последний эмпирический метод познания - измерение. Оно осуществляется посредством специальных средств. Измерение необходимо для определения числового значения искомой измеряемой величины. Такая операция обязательно проводится согласно принятым в науке строгим алгоритмам и правилам.

Теоретическое познание

В науке теоретическое и эмпирическое знание имеет разные фундаментальные опоры. В первом случае это отстраненное использование рациональных методов и логических процедур, а во втором - прямое взаимодействие с объектом. Теоретическое познание использует интеллектуальные абстракции. Одним из важнейших его методов является формализация - отображение знания в символическом и знаковом виде.

На первом этапе выражения мышления используется привычный человеческий язык. Он отличается сложностью и постоянной изменчивостью, из-за чего не может быть универсальным научным инструментом. Следующая ступень формализации связана с созданием формализованных (искусственных) языков. У них есть конкретное предназначение - строгое и точное выражение знания, которого нельзя достичь с помощью естественной речи. Такая система символов может принимать формат формул. Он очень популярен в математике и других где нельзя обойтись без цифр.

С помощью символики человек исключает неоднозначное понимание записи, делает ее короче и яснее для дальнейшего использования. Без быстроты и простоты в применении своих инструментов не может обойтись ни одно исследование, а значит, и все научное познание. Эмпирическое и теоретическое изучение одинаково нуждается в формализации, но именно на теоретическом уровне она принимает исключительно важное и фундаментальное значение.

Искусственный язык, созданный в узких научных рамках, становится универсальным средством обмена мыслей и коммуникации специалистов. В этом заключается принципиальная задача методологии и логики. Эти науки необходимы для передачи информации в понятном, систематизированном виде, избавленном от недостатков естественного языка.

Значение формализации

Формализация позволяет уточнять, анализировать, разъяснять и определять понятия. Эмпирический и теоретический уровни познания не могут обойтись без них, поэтому система искусственных символов всегда играла и будет играть большую роль в науке. Обыденные и выражаемые в разговорном языке понятия кажутся очевидными и ясными. Однако в силу своей неоднозначности и неопределенности они не подходят для научных исследований.

Особенно важна формализация при анализе предполагаемых доказательств. Последовательность формул, основанных на специализированных правилах, отличается необходимой для науки точностью и строгостью. Кроме того, формализация необходима для программирования, алгоритмизации и компьютеризации знаний.

Аксиоматический метод

Еще один метод теоретического исследования - аксиоматический метод. Он является удобным способом дедуктивного выражения научных гипотез. Теоретические и эмпирические науки невозможно представить без терминов. Очень часто они возникают благодаря построению аксиом. Например, в эвклидовой геометрии в свое время были сформулированы основополагающие термины угла, прямой, точки, плоскости и т. д.

В рамках теоретического познания ученые формулируют аксиомы - постулаты, которые не требуют доказательства и являются исходными утверждениями для дальнейшего построения теорий. Примером такого положения может послужить идея о том, что целое всегда больше части. С помощью аксиом строится система вывода новых терминов. Следуя правилам теоретического познания, ученый может из ограниченного числа постулатов получить уникальные теоремы. В то же время намного эффективнее применяется для преподавания и классификации, чем для открытия новых закономерностей.

Гипотетико-дедуктивный метод

Хотя теоретические, эмпирические научные методы отличаются друг от друга, они часто используются совместно. Примером такого применения является С помощью него строятся новые системы тесно переплетенных гипотез. Ни их основе выводятся новые утверждения, касающиеся эмпирических, экспериментально доказанных фактов. Метод выведения заключения из архаичных гипотез называется дедукцией. Этот термин многим знаком благодаря романам о Шерлоке Холмсе. Действительно, популярный литературный персонаж в своих расследованиях часто пользуется дедуктивным методом, с помощью которого из множества разрозненных фактов строит стройную картину преступления.

В науке действует такая же система. У подобного способа теоретического познания есть своя четкая структура. В первую очередь происходит ознакомление с фактурой. Затем выдвигаются предположения о закономерностях и причинах изучаемого явления. Для этого используются всевозможные логические приемы. Догадки оцениваются согласно своей вероятности (из этого вороха выбирается наиболее вероятная). Все гипотезы проверяются на непротиворечивость логике и совместимость с основными научными принципами (например, законами физиками). Из предположения выводятся следствия, которые затем проверяются путем эксперимента. Гипотетико-дедуктивный метод - это не столько способ нового открытия, сколько метод обоснования научных знаний. Этим теоретическим инструментом пользовались такие великие умы, как Ньютон и Галилей.

Министерство образования и науки Украины

Донбасский Государственный Технический Университет

Факультет менеджмента

РЕФЕРАТ

по дисциплине: « Методология и организация научных исследований»

на тему: «Эмпирические методы исследования»


ВВЕДЕНИЕ

6. Методы предполагающие работу с полученной эмпирической информацией

7. Методологические аспекты

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Современная наука достигла своего нынешнего уровня во многом благодаря развитию своего инструментального набора – методов научного исследования. Все существующие сейчас научные методы можно разделить на эмпирические и теоретические. Главным их сходством является общая цель – установление истины, главным различием – подход к исследованию.

Учёных, которые считают эмпирическое познание главным, называют «практиками», а сторонников теоретического исследования соответственно «теоретиками». Возникновение двух противоположных школ науки, обусловлено частым несоответствием результатов теоретического исследования и практического опыта.

В истории познания сложились две крайние позиции по вопросу о соотношении эмпирического и теоретического уровней научного познания: эмпиризм и схоластическое теоретизирование. Сторонники эмпиризма сводят научное знание как целое к эмпирическому уровню, принижая или вовсе отвергая теоретическое познание. Эмпиризм абсолютизирует роль фактов и недооценивает роль мышления, абстракций, принципов в их обобщении, что делает невозможным выявление объективных законов. К тому же результату приходят и тогда, когда признают недостаточность голых фактов и необходимость их теоретического осмысления, но не умеют оперировать понятиями и принципами или делают это не критически и неосознанно.


1. Методы вычленения и исследования эмпирического объекта

К эмпирическим методам исследования относят все те методы, приемы, способы познавательной деятельности, а также формулирования и закрепления знаний, которые являются содержанием практики или непосредственным результатом её. Их можно разделить на две подгруппы: методы вычленения и исследования эмпирического объекта; методы обработки и систематизации полученного эмпирического знания, а также на соответствующие им формы этого знания. Это может быть представлено с помощью списка:

⁻ наблюдение - способ сбора информации, осуществляемого на основе регистрации и фиксации первичных данных;

⁻ изучение первичной документации – основан на исследовании документированной информации, непосредственно зафиксированной ранее;

⁻ сравнение – позволяет проводить сравнения исследуемого объекта с аналогом;

⁻ измерение – способ определения фактических численных значений показателей свойств исследуемого объекта посредством соответствующих измерительных единиц, например, ваттами, амперами, рублями, нормо-часами и т.п.;

⁻ нормативный – предусматривает использование совокупности определенных установленных нормативов, сравнение с которыми реальных показателей системы позволяет установить соответствие системы, например, принятой концептуальной модели; нормативы могут: определить состав и содержание функций, трудоемкость их выполнения, численность персонала, тип и др. выступать в качестве нормативов определяющих норм (например, затрат материальных, финансовых и трудовых ресурсов, управляемости, числа допустимых уровней управления, трудоемкости выполнения функций) и укрупненных величин, определяемых в виде отношения к какому-либо комплексному показателю (например, норматив оборачиваемости оборотных средств; все нормы и нормативы должны охватывать всю систему в целом, быть научно обоснованными, иметь прогрессивный и перспективный характер);

⁻ эксперимент - основан на исследовании изучаемого объекта в искусственно созданных для него условиях.

При рассмотрении этих методов следует учитывать, что в списке они расположены по степени нарастания активности исследователя. Разумеется, наблюдение и измерение входят во все виды экспериментов, но должны быть также рассмотрены как самостоятельные методы, широко представленные во всех науках.

2. Наблюдение эмпирического научного познания

Наблюдение является первичным и элементарным познавательным процессом на эмпирическом уровне научного познания. Как научное наблюдение оно состоит в целенаправленном, организованном, систематическом восприятии предметов и явлений внешнего мира. Особенности научного наблюдения:

Опирается на развитую теорию или отдельные теоретические положения;

Служит решению определенной теоретической задачи, постановке новых проблем, выдвижению новых или проверке существующих гипотез;

Имеет обоснованный планомерный и организованный характер;

Является систематичным, исключающим ошибки случайного происхождения;

Использует специальные средства наблюдения – микроскопы, телескопы, фотоаппараты и т. п., существенно расширяя тем самым область и возможности наблюдения.

Одно из важных условий научного наблюдения состоит в том, что собранные данные не носят только личный, субъективный характер, но при тех же условиях могут быть получены другим исследователем. Все это говорит о необходимой точности и тщательности применения этого метода, где роль конкретного ученого особенно значима. Это общеизвестно и само собой разумеется.

Однако в науке известны случаи, когда открытия совершались благодаря неточностям и даже ошибкам в результатах наблюдения. Т

Теория или принятая гипотеза позволяет проводить целенаправленное наблюдение и обнаруживать то, что без теоретических ориентиров остается незамеченным. Однако следует помнить, что исследователь, «вооруженный» теорией или гипотезой, будет достаточно тенденциозным, что, с одной стороны, делает поиск более эффективным, но с другой – может отсеять все противоречивые явления, не укладывающиеся в данную гипотезу. В истории методологии данное обстоятельство породило эмпирический подход, в котором исследователь стремился полностью освободиться от какой-либо гипотезы (теории), с тем чтобы гарантировать чистоту наблюдения и опыта.

В наблюдении активность субъекта еще не направлена на преобразование предмета изучения. Объект остается недоступным целенаправленному изменению и изучению или сознательно ограждается от возможных воздействий с целью сохранения его – естественного состояния, и это главное преимущество метода наблюдения. Наблюдение, особенно с включением измерения, может натолкнуть исследователя на предположение о необходимой и закономерной связи, однако само по себе оно совершенно недостаточно для утверждения и доказательства такой связи. Привлечение приборов и инструментов неограниченно расширяет возможности наблюдения, но не преодолевает некоторых других недостатков. В наблюдении сохраняется зависимость наблюдателя от изучаемого процесса или явления. Наблюдатель не может, оставаясь в границах наблюдения, изменять объект, управлять им и осуществлять строгий контроль над ним, и в этом смысле его активность в наблюдении носит относительный характер. Вместе с тем в процессе подготовки наблюдения и в ходе его осуществления ученый, как правило, прибегает к организационным и практическим операциям с объектом, что сближает наблюдение с экспериментом. Очевидно и другое – наблюдение представляет собой необходимую составляющую всякого эксперимента, и тогда его задачи и функции определяются в этом контексте.

3. Получение информации эмпирическим методом

эмпирический объект исследование информация

Приемы получения количественной информации представлены двумя видами операций – счетом и измерением в соответствии с объективными различиями между дискретным и непрерывным. Как метод получения точной количественной информации в операции счета определяются числовые параметры, состоящие из дискретных элементов, при этом устанавливается однозначное соответствие между элементами множества, составляющего группу, и числовыми знаками, с помощью которых ведется счет. Сами числа отражают объективно существующие количественные отношения.

Следует осознавать, что числовые формы и знаки выполняют как в научном, так и обыденном знании самые различные функции, из которых не все связаны с измерением:

Являются средствами наименования, своеобразными ярлыками или удобными идентифицирующими метками;

Являются орудием счета;

Выступают в качестве знака для обозначения определенного места в упорядоченной системе степеней некоторого свойства;

Являются средством установления равенства интервалов или разностей;

Являются знаками, выражающими количественные отношения между качествами, т. е. средствами выражения величин.

Рассматривая различные шкалы, основанные на использовании чисел, необходимо различать эти функции, которые попеременно выполняются то особой знаковой формой чисел, то числами, выступающими в качестве смысловых значений соответствующих числовых форм. С этой точки зрения очевидно, что шкалы наименований, примерами которых является нумерация спортсменов в командах, автомобилей в Госавтоинспекции, автобусных и трамвайных маршрутов и т. п., не являются ни измерением, ни даже инвентаризацией, поскольку здесь числовые формы выполняют функцию наименования, а не счета.

Серьезной проблемой остается метод измерения в социальных и гуманитарных науках. Это прежде всего трудности сбора количественной информации о многих социальных, социально-психологических явлениях, для которых во многих случаях отсутствуют объективные, инструментальные средства измерения. Затруднительны также способы выделения дискретных элементов и сам объективный анализ не только в силу особенностей объекта, но и из-за вмешательства в ненаучных ценностных факторов – предрассудков обыденного сознания, религиозного мировоззрения, идеологических или корпоративных запретов и др.. Известно, что многие так называемые оценки, например знаний учащихся, выступлений участников соревнований и конкурсов даже самого высокого уровня, часто зависят от квалификации, честности, корпоративности и иных субъективных качеств педагогов, судей, членов жюри. По-видимому, такого рода оценивание не может быть названо измерением в точном смысле слова, которое предполагает, как определяет наука об измерениях – метрология, сравнение путем физической (технической) процедуры данной величины с тем или иным значением принятого эталона – единицы измерения и получение точного количественного результата.


4. Эксперимент - базовый метод науки

И наблюдение, и измерение включены в такой сложный базовый метод науки, как эксперимент. В отличие от наблюдения эксперимент характеризуется вмешательством исследователя в положение изучаемых объектов, активным воздействием на предмет исследования различных приборов и экспериментальных средств. Эксперимент представляет собой одну из форм практики, где сочетается взаимодействие объектов по естественным законам и искусственно организованное человеком действие. Как метод эмпирического исследования этот метод предполагает и позволяет осуществлять в соответствии с решаемой проблемой следующие операции:

₋ конструктивизацию объекта;

₋ вычленение объекта или предмета исследования, его изоляцию от влияния побочных и затемняющих сущность явлений, изучение в относительно чистом виде;

₋ эмпирическую интерпретацию исходных теоретических понятий и положений, выбор или создание экспериментальных средств;

₋ целенаправленное воздействие на объект: планомерное изменение, варьирование, комбинирование различных условий в целях получения искомого результата;

₋ многократное воспроизведение хода процесса, фиксацию данных в протоколах наблюдений, их обработку и перенос на другие объекты класса, не подвергнутые исследованию.

Эксперимент проводится не стихийно, не наудачу, а для решения определенных научных проблем и познавательных задач, продиктованных состоянием теории. Он необходим как основное средство накопления в изучении фактов, составляющих эмпирический базис всякой теории, является, как и вся практика в целом, объективным критерием относительной истинности теоретических положений и гипотез.

Предметная структура эксперимента позволяет вычленить следующие три элемента: познающий субъект (экспериментатор), средства эксперимента, объект экспериментального исследования.

На этой основе можно дать разветвленную классификацию экспериментов. В зависимости от качественного различия объектов исследования можно различать физический, технический, биологический, психологический, социологический и др. Характер и разнообразие средств и условий эксперимента позволяют вычленить прямой (натуральный) и модельный, полевой и лабораторный эксперименты. Если принять во внимание цели экспериментатора, то различаются поисковые, измерительные и проверочные виды экспериментов. Наконец, в зависимости от характера стратегии можно различать эксперименты, осуществляемые методом проб и ошибок, эксперименты на основе замкнутого алгоритма (например, исследование Галилеем падения тел), эксперимент с помощью метода «черного ящика», «шаговой стратегии» и др.

Классический эксперимент строился на таких методологических предпосылках, которые в той или иной степени отражали представления Лапласа о детерминизме как однозначной причинно-следственной связи. Предполагалось, что, зная начальное состояние системы в некоторых постоянных условиях, можно предвидеть поведение этой системы в будущем; можно четко выделить изучаемое явление, реализовать его в желаемом направлении, строго упорядочить все мешающие факторы либо отвлечься от них как несущественных (например, исключить субъект из результатов познания).

Возрастающее значение вероятностно-статистических представлений и принципов в реальной практике современной науки, а также признание не только объективной определенности, но и объективной неопределенности и понимание в связи с этим детерминации как относительной неопределенности (или как ограничения неопределенности) привело к новому представлению о структуре и принципах эксперимента. Выработка новой стратегии эксперимента непосредственно вызвана переходом от изучения хорошо организованных систем, в которых можно было выделить явления, зависящие от небольшого числа переменных, к изучению так называемых диффузных или плохо организованных систем. В этих системах нельзя четко выделить отдельные явления и разграничить действие переменных различной физической природы. Это и потребовало более широко применять методы статистики, по сути дела, внесло «концепцию случая» в эксперимент. Программу эксперимента стали создавать так, чтобы предельно разнообразить многочисленные факторы и учесть их статистически.

Таким образом, эксперимент из однофакторного, жестко детерминированного, воспроизводящего однозначные связи и отношения, превратился в метод, учитывающий многие факторы сложной (диффузной) системы и воспроизводящий одно- и многозначные отношения, т. е. эксперимент приобрел вероятностно-детерминированный характер. Кроме того, сама стратегия эксперимента также часто не является жестко детерминированной и может меняться в зависимости от результатов на каждом этапе.

Материальные модели отражают соответствующие объекты в трех формах сходства: физического подобия, аналогии и изоморфизма как взаимно однозначного соответствия структур. Модельный эксперимент имеет дело с материальной моделью, которая одновременно является как объектом изучения, так и экспериментальным средством. С введением модели структура эксперимента существенно усложняется. Теперь исследователь и прибор взаимодействуют не с самим объектом, а лишь с замещающей его моделью, вследствие чего существенно усложняется операционная структура эксперимента. Усиливается роль теоретической стороны исследования, поскольку необходимо обосновать отношение подобия между моделью и объектом и возможность экстраполировать на этот объект полученные данные. Рассмотрим, в чем состоят суть метода экстраполяции и его особенности в моделировании.

Экстраполяция как процедура переноса знаний с одной предметной области на другую – не наблюдаемую и неизученную – на основании некоторого выявленного отношения между ними относится к числу операций, обладающих функцией оптимизации процесса познания.

В научном исследовании используются индуктивные экстраполяции, в которых закономерность, установленная для одного вида объектов, переносится с определенными уточнениями на другие объекты. Так, установив, например, для какого-то газа свойство сжатия и выразив его в виде количественного закона, можно экстраполировать это на другие, неисследованные газы с учетом их коэффициента сжатия. В точном естествознании также применяется экстраполяция, например при распространении уравнения, описывающего некоторый закон, на неизученную область (математическая гипотеза), при этом предполагается возможное изменение формы этого уравнения. В целом в опытных науках под экстраполяцией понимается распространение:

Качественных характеристик с одной предметной области на другую, с прошлого и настоящего на будущее;

Количественных характеристик одной области предметов на другую, одного агрегата на другой на основе специально разрабатываемых для этой цели методов;

Некоторого уравнения на иные предметные области в пределах одной науки или даже на иные области знания, что связано с их некоторой модификацией и (или) с переистолкованием смысла входящих в них компонентов.

Процедура переноса знаний, будучи лишь относительно самостоятельной, органически входит в такие методы, как индукция, аналогия, моделирование, математическая гипотеза, статистические методы и многие другие. В случае моделирования экстраполяция входит в операционную структуру этого вида эксперимента, состоящего из следующих операций и процедур:

Теоретическое обоснование будущей модели, ее сходства с объектом, т. е. операции, обеспечивающей переход от объекта к модели;

Построение модели на основе критериев подобия и цели исследования;

Экспериментальное исследование модели;

Операция перехода от модели к объекту, т. е. экстраполяция результатов, полученных при исследовании модели, на объект.

Как правило, в научном моделировании используется выясненная аналогия, конкретными случаями которой являются, например, физическое подобие и физическая аналогия. Следует отметить, что условия правомерности аналогии были разработаны не столько в логике и методологии, сколько в специальной инженерно-математической теории подобия, лежащей в основе современного научного моделирования.

Теория подобия формулирует условия, при которых обеспечивается правомерность перехода от высказываний о модели к высказываниям об объекте как в том случае, когда модель и объект принадлежат к одной и той же форме движения (физическое подобие), так и в том случае, когда они принадлежат к различным формам движения материи (физическая аналогия). Такими условиями являются выясненные и соблюдаемые при моделировании критерии подобия. Так, например, при гидравлическом моделировании, в основе которого лежат механические законы подобия, обязательно соблюдаются геометрическое, кинематическое и динамическое подобия. Геометрическое подобие предполагает постоянное соотношение между соответствующими линейными размерами объекта и модели, их площадями и объемами; кинематическое подобие основано на постоянном соотношении скоростей, ускорений и промежутков времени, в течение которых сходные частицы описывают геометрически подобные траектории; наконец, модель и объект будут динамически подобны, если отношения масс и сил будут постоянны. Можно предположить, что соблюдение указанных соотношений обусловливает получение достоверных знаний при экстраполяции данных модели на объект.

Рассмотренные эмпирические методы познания дают фактуальное знание о мире или факты, в которых фиксируются конкретные, непосредственные проявления действительности. Термин факт неоднозначен. Он может употребляться как в значении некоторого события, фрагмента действительности, так и в значении особого рода эмпирических высказываний – фактофиксирующих предложений, содержанием которых он является. В отличие от фактов действительности, которые существуют независимо от того, что о них думают люди, и поэтому не являются ни истинными, ни ложными, факты в форме предложений допускают истинностную оценку. Они должны быть эмпирически истинными, т. е. их истинность устанавливается опытным, практическим путем.

Не всякое эмпирическое высказывание получает статус научного факта, а точнее, предложения, фиксирующего научный факт. Если высказывания описывают лишь единичные наблюдения, случайную эмпирическую ситуацию, то они образуют некоторый набор данных, которые не обладают необходимой степенью общности. В естественных науках и в ряде социальных, например: экономике, демографии, социологии, как правило, имеет место статистическая обработка некоторого множества данных, позволяющая снять содержащиеся в них случайные элементы и вместо множества высказываний о данных получить высказывание-резюме об этих данных, которое и приобретает статус научного факта.

5. Научные факты эмпирического исследования

Как знание научные факты отличаются высокой степенью (вероятностью) истинности, поскольку в них фиксируется «непосредственно данное», описывается (а не объясняется или интерпретируется) непосредственно сам фрагмент действительности. Факт дискретен, а следовательно, до известной степени локализован во времени и пространстве, что придает ему определенную точность, и тем более потому, что он – очищенное от случайностей статистическое резюме эмпирических данных или знание, отражающее типичное, существенное в объекте. Но научный факт одновременно и относительно истинное знание, он не абсолютен, но релятивен, т. е. способен к дальнейшему уточнению, изменению, поскольку «непосредственно данное» включает элементы субъективного; описание никогда не может быть исчерпывающим; изменяются и сам объект, описываемый в факте-знании, и язык, на котором осуществляется описание. Будучи дискретным, научный факт вместе с тем включен в изменяющуюся систему знания, исторически изменяется и само представление о том, что есть научный факт.

Поскольку в структуру научного факта входит не только та информация, которая зависит от чувственного познания, но и ее рациональные основания, то встает вопрос о роли и формах этих рациональных компонент. Среди них логические структуры, понятийный аппарат, в том числе математический, а также философско-методологические и теоретические принципы и предпосылки. Особо важную роль играют теоретические предпосылки получения, описания и объяснения (интерпретации) факта. Без таких предпосылок часто нельзя даже обнаружить те или иные факты, а тем более понять их. Наиболее известные из истории науки примеры – это обнаружение астрономом И. Галле планеты Нептун по предварительным расчетам и предсказаниям У. Леверье; открытие химических элементов, предсказанных Д. И. Менделеевым в связи с созданием им периодической системы; обнаружение позитрона, теоретически рассчитанного П. Дираком, нейтрино, предсказанного В. Паули.

В естествознании факты, как правило, предстают уже в теоретических аспектах, так как исследователи пользуются приборами, в которых опредмечены теоретические схемы; соответственно, эмпирические результаты подвергаются теоретическому истолкованию. Однако при всей важности этих моментов они не должны быть абсолютизированы. Как показывают исследования, на любом этапе развития той или иной естественной науки можно обнаружить обширный слой фундаментальных эмпирических фактов и закономерностей, которые еще не осмыслены в рамках обоснованных теорий.

Так, один из наиболее фундаментальных астрофизических фактов расширения Метагалактики был установлен в качестве статистического резюме многочисленных наблюдений явления «красного смещения» в спектрах удаленных галактик, проводившихся с 1914 г., а также интерпретации этих наблюдений как обусловленных эффектом Доплера. Определенные теоретические знания из физики для этого, разумеется, были привлечены, но включение этого факта в систему знания о Вселенной произошло независимо от разработки теории, в рамках которой он был понят и объяснен, т. е. теории расширяющейся Вселенной, тем более что она появилась много лет спустя после первых публикаций об открытии красного смещения в спектрах спиральных туманностей. Теория А. А. Фридмана помогла правильно оценить этот факт, который вошел в эмпирические знания о Вселенной до и независимо от нее. Это говорит об относительной самостоятельности и ценности эмпирического базиса научно-познавательной деятельности, «на равных» взаим-действующего с теоретическим уровнем познания.

6. Методы, предполагающие работу с полученной эмпирической информацией

До сих пор речь шла об эмпирических методах, которые направлены на вычленение и исследование реальных объектов. Рассмотрим вторую группу методов этого уровня, предполагающих работу с полученной эмпирической информацией – научными фактами, которые необходимо обработать, систематизировать, осуществить первичное обобщение и т. д.

Эти методы необходимы, когда исследователь работает в слое имеющегося, полученного знания, уже не обращаясь непосредственно к событиям действительности, упорядочивая полученные данные, стремясь обнаружить закономерные отношения – эмпирические законы, высказать предположения об их существовании. По своей природе это во многом «чисто логические» методы, разворачивающиеся по законам, принятым, прежде всего, в логике, но вместе с тем включенные в контекст эмпирического уровня научного исследования с задачей упорядочивая актуального знания. На уровне обыденных упрощенных представлений этот этап первоначального преимущественно индуктивного обобщения знания часто интерпретируется как сам механизм получения теории, в чем просматривается влияние широко распространенной в прошлых веках «всеиндуктивистской» концепции познания.

Изучение научных фактов начинается с их анализа. Под анализом имеется в виду метод исследования, состоящий в мысленном расчленении (разложении) целого или вообще сложного явления на его составные, более простые элементарные части и выделении отдельных сторон, свойств, связей. Но анализ не является конечной целью научного исследования, которое стремится воспроизвести целое, понять его внутреннюю структуру, характер его функционирования, законы его развития. Эта цель достигается последующим теоретическим и практическим синтезом.

Синтез – это метод исследования, состоящий в соединении, воспроизведении связей проанализированных частей, элементов, сторон, компонентов сложного явления и постижении целого в его единстве. Анализ и синтез имеют свои объективные основы в строении и закономерностях самого материального мира. В объективной действительности существуют целое и его части, единство и различия, непрерывность и дискретность, постоянно происходящие процессы распада и соединения, разрушения и создания. Во всех науках осуществляется аналитико-синтетическая деятельность, при этом в естествознании она может осуществляться не только мысленно, но и практически.

Сам переход от анализа фактов к теоретическому синтезу осуществляется с помощью методов, которые, дополняя друг друга и сочетаясь, составляют содержание этого сложного процесса. Одним из таких методов является индукция, которая в узком смысле традиционно понимается как метод перехода от знания отдельных фактов к знанию общего, к эмпирическому обобщению и установлению общего положения, переходящего в закон или другую существенную связь. Слабость индукции – в недостаточной обоснованности такого перехода. Перечисление фактов не может быть никогда практически завершено, и мы не уверены в том, что следующий факт не будет противоречащим. Поэтому знание, полученное с помощью индукции, всегда вероятностное. Кроме того, в посылках индуктивного заключения не содержится знания о том, насколько обобщаемые признаки, свойства являются существенными. С помощью индукции перечисления можно получить знание не достоверное, а только вероятное. Существует также ряд других методов обобщения эмпирического материала, с помощью которых, как и в популярной индукции, получаемое знание носит вероятный характер. К числу таких методов относятся метод аналогий, статистические методы, метод модельной экстраполяции. Они различаются между собой степенью обоснованности перехода от фактов к обобщениям. Все эти методы объединяются часто под общим названием индуктивных, и тогда термин индукция употребляется в широком смысле.

В общем процессе научного познания индуктивные и дедуктивные методы тесно переплетены. Оба метода основываются на объективной диалектике единичного и общего, явления и сущности, случайного и необходимого. Индуктивные методы имеют большее значение в науках, непосредственно опирающихся на опыт, в то время как дедуктивные методы имеют первостепенное значение в теоретических науках как орудие их логического упорядочения и построения, как методы объяснения и предсказания. Для обработки и обобщения фактов в научном исследовании широко применяются систематизация как приведение в единую систему и классификация как разбиение на классы, группы, типы и т. п.

7. Методологические аспекты

Разрабатывая методологические аспекты теории классификации, методологи предлагают различать следующие понятия:

Классификация – это разбиение любого множества на подмножества по любым признакам;

Систематика – упорядоченность объектов, имеющая статус привилегированной системы классификации, выделенной самой природой (естественная классификация);

Таксономия – учение о любых классификациях с точки зрения структуры таксонов (соподчиненных групп объектов) и признаков.

Классификационные методы позволяют решать целый ряд познавательных задач: свести многообразие материала к сравнительно небольшому числу образований (классов, типов, форм, видов, групп и т. д.); выявить исходные единицы анализа и разработать систему соответствующих понятий и терминов; обнаружить регулярности, устойчивые признаки и отношения, в конечном счете – эмпирические закономерности; подвести итоги предшествующих исследований и предсказать существование ранее неизвестных объектов или их свойств, вскрыть новые связи и зависимости между уже известными объектами. Составление классификаций должно подчиняться следующим логическим требованиям: в одной и той же классификации необходимо применять одно и то же основание; объем членов классификации должен равняться объему классифицируемого класса (соразмерность деления); члены классификации должны взаимно исключать друг друга и др.

В естественных науках представлены как описательные классификации, позволяющие просто привести к удобному виду накопленные результаты, так и структурные классификации, позволяющие выявить и зафиксировать соотношения объектов. Так, в физике описательные классификации – это деление фундаментальных частиц по заряду, спину, массе, странности, по участию в разных типах взаимодействий. Какие-то группы частиц удается классифицировать по типам симметрий (кварковые структуры частиц), что отражает более глубокий, сущностный уровень отношений.

Исследования последних десятилетий выявили методологические проблемы классификаций, знание которых необходимо современному исследователю и систематизатору. Это прежде всего несовпадение формальных условий и правил построения классификаций и реальной научной практики. Требование дискретности признаков порождает в ряде случаев искусственные приемы разбиения целого на дискретные значения признаков; не всегда возможно вынести категорическое суждение о принадлежности объекту признака, при многоструктурности признаков ограничиваются указанием на частоту встречаемости и т. д. Широко распространенная методологическая проблема – трудность сочетания в одной классификации двух разных целей: расположения материала, удобного для учета и разыскания; выявления в материале внутренних системных отношений – функциональных, генетических и других (исследовательская группировка).

Эмпирический закон – это наиболее развитая форма вероятностного эмпирического знания, с помощью индуктивных методов фиксирующего количественные и иные зависимости, полученные опытным путем, при сопоставлении фактов наблюдения и эксперимента. В этом его отличие как формы знания от теоретического закона – достоверного знания, которое формулируется с помощью математических абстракций, а также в результате теоретических рассуждений, главным образом как следствие мысленного эксперимента над идеализированными объектами.

Исследования последних десятилетий показали, что теорию нельзя получить в результате индуктивного обобщения и систематизации фактов, она не возникает как логическое следствие из фактов, механизмы ее создания и построения имеют иную природу, предполагают скачок, переход на качественно иной уровень познания, требующий творчества и таланта исследователя. Это подтверждается, в частности, многочисленными высказываниями А. Эйнштейна о том, что нет логически необходимого пути от опытных данных к теории; понятия, возникающие в процессе нашего мышления.

Эмпирическая совокупность сведений дает первичную информацию о новых знаниях и многих свойствах исследуемых объектов и таким образом служит исходной базой для научною исследования.

Эмпирические методы основаны, как правило, на использовании способов и приемов опытного исследования, позволяющих получить фактическую информацию об объекте. Особое место среди них занимают базовые методы, которые сравнительно часто используются в практической исследовательской деятельности.


ЛИТЕРАТУРА

1. Коротков Э.М. Исследование систем управления. – М.: ДЕКА, 2000.

2. Ломоносов Б.П., Мишин В.М. Исследование систем. – М.: ЗАО «Информ-Знание», 1998.

3. Малин А.С., Мухин В.И. Исследование систем. – М.: ГУ ВШЭ, 2002.

4. Мишин В.М. Исследование систем. – М.: ЮНИТИ-ДАНА, 2003.

5. Мишин В.М. Исследование систем. – М.: ЗАО «Финстатинформ», 1998.

6. Ковальчук В. В., Моисеев А. Н. Основы научных исследований. К.: Знання, 2005.

7. Филипенко А. С. Основы научных исследований. К.: Академвидав, 2004.

8. Гришенко И. М. Основы научных исследований. К.: КНЕУ, 2001.

9. Лудченко А. А, Основы научных исследований. К.: Знання, 2001

10. Стеченко Д. И., Чмир О. С. Методология научных исследований. К.: ВД «Профессионал», 2005.