Что влияет на скорость диффузии. Описание физического явления диффузия. Опыты по силе трения

Физика — одна из самых интересных, загадочных и в то же время логичных наук. Она объясняет все, что можно объяснить даже то, как чай становится сладким, а суп соленым. Истинный физик сказал бы иначе: так протекает диффузия в жидкостях.

Диффузия

Диффузия — это волшебный процесс проникновения мельчайших частиц одного вещества в межмолекулярные пространства другого. Кстати, такое проникновение взаимно.

Знаете, как это слово переводится с латыни? Растекание, распространение.

Как протекает диффузия в жидкостях

Диффузия может наблюдаться при взаимодействии любых веществ: жидких, газообразных и твердых.

Чтобы узнать, как протекает диффузия в жидкостях, можно попробовать бросить несколько крупинок краски, молотого грифеля или, например, марганцовки в прозрачный сосуд с чистой водой. Лучше, если сосуд этот будет высоким. Что мы увидим? Сначала кристаллики под действием силы тяжести опустятся на дно, но через некоторое время вокруг них появится ореол окрашенной воды, который будет растекаться и растекаться. Если не подходить к данным сосудам хотя бы несколько недель, мы обнаружим, что вода окрасится практически полностью.

Еще один наглядный пример. Для того чтобы сахар или соль растворились быстрее, их нужно размешать в воде. Но если этого не сделать, сахар или соль самостоятельно растворятся через некоторое время: чай или компот станут сладкими, а суп или рассол - солеными.

Как протекает диффузия в жидкостях: опыт

Для того чтобы определить, как скорость диффузии зависит от температуры вещества, можно провести небольшой, но весьма показательный опыт.

Возьмем два стакана одинакового объема: один — с холодной водой, другой — с горячей. Насыпаем в оба стакана равное количество растворимого порошка (например, кофе или какао). В одном из сосудов порошок начнет растворяться интенсивнее. Знаете, в каком именно? Догадаетесь? Там, где температура воды выше! Ведь диффузия протекает в ходе беспорядочного хаотичного движения молекул, а при высоких температурах это движение происходит намного быстрее.

Диффузия может происходить в любых веществах, различается лишь время протекания этого явления. Самая высокая скорость — в газах. Именно поэтому нельзя хранить в холодильнике сливочное масло рядом с селедкой или салом, натертым мелко порубленным чесноком. Далее следуют жидкости (от меньшей плотности к наибольшей). И самая медленная — диффузия твердых тел. Хотя на первый взгляд диффузии в твердых телах не бывает.

МОУ Заозёрная СОШ с углубленным изучением отдельных предметов №16

Тема: «Диффузия в живой и неживой природе».

Выполнил:

ученик 8 А класса Зябрев Кирилл.

Учитель физики: Завьялова Г.М.

Учитель биологии: Зябрева В.Ф.

Томск – 2008

I. Введение. ………………………………………………………… 3

II. Диффузия в живой и неживой природе.

1. История открытия явления. …………………………………. 4

2. Диффузия, её виды. ………………………………………….. 6

3. От чего зависит скорость диффузии? ……………………….. 7

4. Диффузия в неживой природе. ……………………………... 8

5. Диффузия в живой природе. ………………………………… 9

6. Использование явлений диффузии. …………………………. 16

7. Проектирование отдельных явлений диффузии. …………… 17

III. Заключение. …………………………………………………... 20

IV. Используемая литература. …………………………………. . 21

I. Введение.

Как много удивительного и интересного происходит вокруг нас. Светят на ночном небе далёкие звёзды, горит в окне свеча, ветер разносит аромат цветущей черёмухи, тебя провожает взглядом стареющая бабушка…. Многое хочется узнать, попытаться объяснить самостоятельно. Ведь многие природные явления связаны с процессами диффузии, о которой мы говорили недавно в школе. Но говорили так мало!

Цели работы :

1. Расширить и углубить знания о диффузии.

2. Смоделировать отдельные диффузионные процессы.

3. Создать дополнительный материал в компьютерном исполнении для использования на уроках физики и биологии.

Задачи:

1. Найти необходимый материал в литературе, Интернет-сети, изучить и проанализировать его.

2. Выяснить, где в живой и неживой природе (физике и биологии) встречаются явления диффузии, какое значение они имеют, где применяются человеком.

3. Описать и спроектировать наиболее интересные опыты по данному явлению.

4. Создать анимационные модели некоторых диффузионных процессов.

Методы: анализ и синтез литературы, проектирование, моделирование.

Моя работа состоит из трёх частей; основная часть – из 7 глав. Мной были изучены и обработаны материалы 13 литературных источников, среди которых учебная, справочная, научная литература и Интернет-сайты, а также подготовлена презентация, сделанная в редакторе Power Point.

II. Диффузия в живой и неживой природе.

II .1. История открытия явления диффузии.

При наблюдении в микроскопе взвеси цветочной пыльцы в воде Роберт Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды; его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.

Первая количественная теория броуновского движения была дана А. Эйнштейном и М. Смолуховским в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро.

Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена и Т. Сведберга в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана и постоянная Авогадро. (Постоянная Авогадро обозначается NА, число молекул или атомов в 1 моле вещества, NА=6,022.1023 моль-1; название в честь А. Авогадро.

Постоянная Больцмана, физическая постоянная k , равная отношению универсальной газовой постоянной R к числу Авогадро N A: k = R / N A = 1,3807.10-23 Дж/К. Названа по имени Л. Больцмана.)

При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.

Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.

Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции (перемешивания) водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Траектории броуновских частиц (схема опыта Перрена); точками отмечены положения частиц через одинаковые промежутки времени .

Таким образом, ДИФФУЗИЯ, ИЛИ БРОУНОВСКОЕ ДВИЖЕНИЕ – это беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды; открыто

Р. Броуном в 1827 г.

II. 2. Диффузия, её виды.

Различают диффузию и самодиффузию.

Диффузией называется самопроизвольное проникновение молекул одного вещества в промежутки между молекулами другого вещества . При этом происходит перемешивание частиц. Диффузия наблюдается для газов, жидкостей и твердых тел. Например, капелька чернил перемешивается в стакане воды. Или запах одеколона распространяется по всему помещению.

Диффузия, как и самодиффузия, существует, пока есть градиент плотности вещества. Если плотность какого-либо одного и того же вещества неодинакова в разных частях объема, то наблюдается явление самодиффузии. Самодиффузией называется процесс выравнивания плотности (или пропорциональной ей концентрации) одного и того же вещества . Диффузия и самодиффузия происходят благодаря тепловому движению молекул, которое при неравновесных состояниях создает потоки вещества.

Плотностью потока массы называется масса вещества (dm ), диффундирующего в единицу времени через единичную площадку (dS пл ), перпендикулярную оси x :

(1.1)

Явление диффузии подчиняется закону Фика

(1.2)

где - модуль градиента плотности, который определяет скорость изменения плотности в направлении оси х ;

D - коэффициент диффузии, который рассчитывается из молекулярно-кинетической теории по формуле

(1.3)

где - средняя скорость теплового движения молекул;

Средняя длина свободного пробега молекул.

Минус показывает, что перенос массы происходит в направлении убывания плотности.

Уравнение (1.2) называется уравнением диффузии или законом Фика .

II. 3. Скорость диффузии.

При движении частицы в веществе, она постоянно сталкивается с его молекулами. Это одна из причин, почему в обычных условиях диффузия идёт медленнее обычного движения. От чего же зависит скорость диффузии?

Во-первых, от среднего расстояния между столкновениями частиц, т.е. длины свободного пробега. Чем больше эта длина, тем быстрее частица проникает в вещество.

Во-вторых, на скорость влияет давление. Чем плотнее упаковка частиц в веществе, тем труднее частице-пришельцу проникнуть в такую упаковку.

В-третьих, большую роль оказывает на скорость диффузии молекулярная масса вещества. Чем крупнее мишень, тем вероятнее попадание, а после столкновения скорость всегда замедляется.

И, в-четвёртых, температура. С ростом температуры колебания частиц увеличиваются, растёт скорость молекул. Однако, скорость диффузии в тысячу раз медленнее скорости свободного движения.

Все виды диффузии подчиняются одинаковым законам, описываются посредством коэффициента диффузии D, который является скалярной величиной и определяется из первого закона Фика.

При одномерной диффузии ,

где J - плотность потока атомов или дефектов вещества,
D - коэффициент диффузии,
N - концентрация атомов или дефектов вещества.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии пропорциональна в связи с этим средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000 ºC.

Если в смеси газов одна молекула в четыре раза тяжелее другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять вещества с различными молекулярными весами. В качестве примера можно привести разделение изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение делящегося под нейтронным облучением 235U от основной массы 238U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Вывод. На диффузные изменения влияют:

· молекулярная масса вещества (чем выше молекулярная масса, тем меньше скорость);

· среднее расстояние между столкновениями частиц (чем больше длина пробега, тем больше скорость);

· давление (чем больше упаковка частиц, тем труднее её пробить),

· температура (с повышением температуры повышается скорость).

II.4. Диффузия в неживой природе.

Знаете ли вы, что вся наша жизнь построена на странном парадоксе природы? Всем известно, что воздух, которым мы дышим, состоит из газов разной плотности: азота N 2 , кислорода О 2 , углекислого газа СО 2 и незначительного количества других примесей. И эти газы должны быть расположены слоями, соответственно силе тяжести: самый тяжёлый, СО 2 ,- у самой поверхности земли, над ним – О 2 , ещё выше - N 2 . Но этого не происходит. Нас окружает однородная смесь газов. Почему не гаснет пламя? Ведь кислород, окружающий его, быстро выгорает? Тут, как и в первом случае, действует механизм выравнивания. Диффузия препятствует нарушению равновесия в природе!

Почему море солёное? Мы знаем, это реки пробиваются сквозь толщу горных пород, минералов и вымывают соли в море. Как перемешивание соли с водой происходит? Это можно объяснить это с помощью простого опыта:

ОПИСАНИЕ ОПЫТА: В стеклянный сосуд наливаем водный раствор медного купороса. Поверх раствора осторожно наливаем чистую воду. Наблюдаем границу между жидкостями.

Вопрос: Что будет происходить с этими жидкостями с течением времени, и что мы будем наблюдать?

С течением времени граница между соприкасающимися жидкостями начнёт размываться. Сосуд с жидкостями можно поставить в шкаф и изо дня в день наблюдать, как происходит самопроизвольное перемешивание жидкостей. В конце концов, в сосуде образуется однородная жидкость бледно-голубого цвета, почти бесцветная на свету.

Частицы медного купороса тяжелее воды, но благодаря диффузии они медленно поднимаются вверх. Причина в строении жидкости. Частицы жидкости упакованы в компактные группы – псевдоядра. Они отделены друг от друга пустотами – дырами. Ядра не стабильны, их частицы недолго находятся в равновесии. Стоит частице сообщить энергию, как частица отрывается от ядра и проваливается в пустоты. Оттуда она легко перескакивает к другому ядру и т.д.

Молекулы инородного вещества начинают своё путешествие по жидкости с дыр. На пути они сталкиваются с ядрами, выбивают из них частицы, встают на их место. Перебираясь с одного свободного места на другое, они медленно перемешиваются с частицами жидкости. Мы уже знаем, что скорость диффузии мала. Поэтому в обычных условиях данный опыт проходил18 дней, при подогреве – 2-3 минуты.

Вывод: В пламени Солнца, жизни и смерти далёких светящихся звёзд, в воздухе, которым мы дышим, изменении погоды, практически во всех физических явлениях мы видим проявление всемогущей диффузии!

II.5. Диффузия в живой природе.

Процессы диффузии хорошо изучены в настоящее время, установлены их физические и химические закономерности, и они вполне применимы к перемещению молекул в живом организме. Диффузия в живых организмах неразрывно связана с плазматической мембраной клетки. Поэтому необходимо выяснить, как она устроена, и как особенности её строения связаны с транспортом веществ в клетке.

Плазматическая мембрана (плазмалемма, клеточная мембрана), поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток, служит не только механическим барьером, но, главное, ограничивает свободный двусторонний поток в клетку и из нее низко- и высокомолекулярных веществ. Более того, плазмалемма выступает как структура, «узнающая» различные химические вещества и регулирующая избирательный транспорт этих веществ в клетку

Внешняя поверхность плазматической мембраны покрыта рыхлым волокнистым слоем вещества толщиной 3-4 нм - гликокаликсом. Он состоит из ветвящихся цепей сложных углеводов мембранных интегральных белков, между которыми могут располагаться выделенные клеткой соединения белков с сахарами и белков с жирами. Тут же обнаруживаются некоторые клеточные ферменты, участвующие во внеклеточном расщеплении веществ (внеклеточное пищеварение, например, в эпителии кишечника).

Так как внутренняя часть липидного слоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Вследствие наличия этого барьера, предотвращается утечка содержимого клеток, однако из-за этого клетка была вынуждена создать специальные механизмы для транспорта растворимых в воде веществ через мембрану.

Плазматическая мембрана, как и другие липопротеидные мембраны клетки, является полупроницаемой. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Транспорт ионов может проходить по градиенту концентраций, т. е. пассивно, без затрат энергии. В этом случае некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые ионы проходят сквозь мембрану за счет простой диффузии. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану. Такой тип переноса называется активным транспортом и осуществляется с помощью белковых ионных насосов. Например, затрачивая 1 молекулу АТФ, система К-Nа насоса откачивает за один цикл из клетки 3 иона Nа и закачивает 2 иона К против градиента концентрации. В сочетании с активным транспортом ионов через плазмалемму проникают различные сахара, нуклеотиды и аминокислоты. Макромолекулы, такие как, например, белки, через мембрану не проходят. Они, а также более крупные частицы вещества транспортируются внутрь клетки посредством эндоцитоза. При эндоцитозе определенный участок плазмалеммы захватывает, обволакивает внеклеточный материал, заключает его в мембранную вакуоль. Эта вакуоль - эндосома - сливается в цитоплазме с первичной лизосомой и происходит переваривание захваченного материала. Эндоцитоз формально разделяют на фагоцитоз (поглощение клеткой крупных частиц) и пиноцитоз (поглощение растворов). Плазматическая мембрана принимает участие и в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу.

Особенно важна для живых организмов диффузия ионов в водных растворах. Не менее важна роль диффузии в дыхании, фотосинтезе, транспирации растений; в переносе кислорода воздуха через стенки альвеол легких и попадания его в кровь человека и животных. Диффузия молекулярных ионов через мембраны осуществляется с помощью электрического потенциала внутри клетки. Обладая избирательной проницаемостью, мембраны играют роль таможни при перемещении товаров через границу: одни вещества пропускают, другие - задерживают, третьи - вообще «выдворяют» из клетки. Роль мембран в жизни клеток очень велика. Гибнущая клетка теряет контроль над возможностью регулировать концентрацию веществ через мембрану. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости и сбое в работе ее наружной мембраны.

Помимо обычного транспорта - кинетического процесса переноса частиц вещества под действием градиентов электрического или химического потенциала, температуры или давления - в клеточных процессах имеет место и активный транспорт - движение молекул и ионов против градиента концентрации веществ. Такой механизм диффузии назвали осмосом. (Впервые осмос наблюдал А. Нолле в 1748 году, однако исследование этого явления было начато спустя столетие.) Этот процесс осуществляется за счет разного осмотического давления в водном растворе по разные стороны биологической мембраны Вода часто свободно проходит путем осмоса через мембрану, но эта мембрана может быть непроницаема для веществ, растворенных в воде. Любопытно, что вода течет против диффузии этого вещества, но подчиняясь общему закону градиента концентрации (в данном случае воды).

Поэтому вода стремится из более разбавленного раствора, где ее концентрация выше, в более концентрированный раствор вещества, в котором концентрация воды ниже. Не имея возможности непосредственно всасывать и откачивать воду, клетка осуществляет это с помощью осмоса, изменяя концентрацию находящихся в ней растворенных веществ. Осмос выравнивает концентрацию раствора по обе стороны мембраны. От осмотического давления растворов веществ по обе стороны клеточной оболочки и упругости клеточной оболочки зависит напряжённое состояние клеточной оболочки, которое называют тургорным давлением (тургор – от лат. turgere - быть набухшим, наполненным). Обычно упругость оболочек клеток животных (исключая некоторых кишечнополостных) невелика, они лишены высокого тургорного давления и сохраняют целостность только в изотонических растворах или мало отличающихся от изотонических (разница между давлением внутренним и давлением внешним меньше 0,5-1,0 ам). У живых растительных клеток давление внутреннее всегда больше давления внешнего, однако, разрыва клеточной оболочки у них не происходит из-за наличия целлюлозной клеточной стенки. Разница между внутренним и внешним давлениями у растений (например, у растений галофитов – любящих соль, грибов) достигает 50-100 ам. Но даже при этом запас прочности растительной клетки составляет 60-70%. У большинства растений относительное удлинение клеточной оболочки вследствие тургора не превышает 5- 10%, а тургорное давление лежит в пределах 5-10 ам. Благодаря тургору ткани растений обладают упругостью и конструктивной прочностью. (Опыты №3, №4 подтверждают это). Все процессы автолиза (самоуничтожения), увядания и старения сопровождаются падением тургорного давления.

Рассматривая диффузию в живой природе, нельзя не упомянуть о всасывании. Всасывание - процесс поступления различных веществ из окружающей среды через клеточные мембраны в клетки, и через них - во внутреннюю среду организма. У растений это процесс поглощения воды с растворенными в ней веществами корнями, листьями путем осмоса и диффузии; у беспозвоночных - из окружающей среды или полостной жидкости. У примитивных организмов всасывание осуществляется с помощью пино- и фагоцитоза. У позвоночных всасывание может происходить как из полостных органов - легких, матки, мочевого пузыря, так и с поверхности кожи, с раневой поверхности и др. Кожей всасываются летучие газы, пары.

Наибольшее физиологическое значение имеет всасывание в желудочно-кишечном тракте, которое происходит главным образом в тонком кишечнике. Для эффективного переноса веществ особое значение имеет большая площадь поверхности кишечника и постоянно высокий кровоток в слизистой оболочке, за счет которого поддерживается высокий градиент концентраций всасываемых соединений. У человека брыжеечный кровоток во время приема пищи около 400 мл/мин, а в разгар пищеварения - до 750 мл/мин, причем основную долю (до 80%) составляет кровоток в слизистой оболочке пищеварительных органов. Благодаря наличию структур, увеличивающих поверхность слизистой оболочки - круговых складок, ворсинок, микроворсинок, общая площадь всасывающей поверхности кишки человека достигает 200 м 2 .

Вода и растворы солей могут диффундировать по обе стороны кишечной стенки, как в тонком, так и в толстом кишечнике. Всасывание их происходит в основном в верхних отделах тонкого кишечника. Большое значение имеет в тонком кишечнике транспорт ионов Na+, за счет которых в основном создается электрический и осмотический градиенты. Всасывание ионов Na+ происходит как за счет активного, так и пассивного механизмов.

Если бы у клетки не существовало систем регуляции осмотического давления, то концентрация растворенных веществ внутри нее оказалась бы больше их внешних концентраций. Тогда концентрация воды в клетке была бы меньшей, чем ее концентрация снаружи. Вследствие этого, происходил бы постоянный приток воды в клетку и ее разрыв. К счастью, животные клетки и бактерии контролируют осмотическое давление в своих клетках с помощью активного выкачивания неорганических ионов, таких как Na. Поэтому их общая концентрация внутри клетки ниже, чем снаружи. Например, земноводные значительную часть времени проводят в воде, а содержание солей в их крови и лимфе выше, чем в пресных водах. Организмы амфибий через кожные покровы непрерывно всасывают воду. Поэтому они вырабатывают много мочи. Лягушка, например, если ей перевязать клоаку, разбухает, как шар. И, наоборот, если земноводное попадает в солёную морскую воду, оно обезвоживается и погибает очень быстро. Поэтому моря и океаны для амфибий – неодолимая преграда. Клетки растений имеют жесткие стенки, которые предохраняют их от набухания. Многие простейшие избегают разрыва от поступающей внутрь клетки воды с помощью специальных механизмов, которые регулярно выбрасывают поступающую воду.

Таким образом, клетка является открытой термодинамической системой, осуществляя обмен веществом и энергией с окружающей средой, но сохраняющей определенное постоянство внутренней среды. Эти два свойства саморегулирующейся системы - открытость и постоянство - выполняются одновременно, причем за постоянство клетки как раз и отвечает обмен веществ ( метаболизм). Обмен веществ является тем регулятором, который способствует сохранению системы, он обеспечивает целесообразное реагирование на воздействие окружающей среды. Поэтому необходимым условием обмена веществ является раздражимость живой системы на всех уровнях, которая в то же время выступает как фактор системности и целостности системы.

Мембраны могут менять свою проницаемость под воздействием химических и физических факторов, в том числе в результате деполяризации мембраны при прохождении электрического импульса через систему нейронов и воздействия на нее.

Нейрон - это отрезок нервного волокна. Если на одном его конце действует раздражитель, то возникает электрический импульс. Величина его около 0,01 В для мышечных клеток человека, и он распространяется со скоростью порядка 4 м/с. Когда импульс доходит до синапса - соединения нейронов, которое можно рассматривать как своеобразное реле, передающее сигнал от одного нейрона на другой, то электрический импульс преобразуется в химический с помощью выделения нейромедиаторов - специфических веществ-посредников. Когда молекулы такого посредника попадают в щель между нейронами, то нейромедиатор путем диффузии достигает конца щели и возбуждает следующий нейрон.

Однако нейрон реагирует только в том случае, если на его поверхности имеются особые молекулы - рецепторы, которые могут связывать лишь данный медиатор и не реагировать на другой. Это происходит не только на мембране, но и в любом органе, например мышце, вызывая ее сокращение. Сигналы-импульсы через синапсы могут тормозить или усиливать передачу других, и поэтому нейроны исполняют логические функции («и», «или»), что в известной мере и послужило Н. Винеру основанием считать, что вычислительные процессы в мозгу живого организма и в ЭВМ идут принципиально по одной и той же схеме. Тогда информационный подход позволяет единым образом описывать неживую и живую природу.

Сам процесс воздействия сигнала на мембрану заключается в изменении ее высокого электрического сопротивления, так как разность потенциалов на ней тоже порядка 0,01 В. Уменьшение сопротивления приводит к увеличению импульса электрического тока и возбуждение передается дальше в виде нервного импульса, изменяя при этом возможность прохождения через мембрану определенных ионов. Таким образом, информация в организме может передаваться в сочетании, химическим и физическим механизмами, и это обеспечивает надежность и многообразие каналов ее передачи и переработки в живой системе.

С процессами клеточного дыхания, когда в митохондриях клетки образуются молекулы АТФ, обеспечивая ее необходимой энергией, тесно связаны и процессы обычного дыхания живого организма, для которого требуется кислород О2, получаемый в результате фотосинтеза. Механизмы этих процессов также основаны на законах диффузии. По существу, это те материальные и энергетические компоненты, которые необходимы живому организму. Фотосинтез - это процесс запасания солнечной энергии путем образования новых связей в молекулах синтезируемых веществ. Исходными веществами для фотосинтеза являются вода Н 2 О и двуокись углерода СО 2 . Из этих простых неорганических соединений образуются более сложные богатые энергией питательные вещества. В качестве побочного, но очень важного для нас продукта образуется молекулярный кислород О 2 . Примером может служить реакция, которая идет за счет поглощения квантов света и присутствия пигмента хлорофилла, содержащегося в хлоропластах.

В результате получается одна молекула сахара C 6 Н 12 О 6 и шесть молекул кислорода О 2 . Процесс идет по-стадийно, сначала на стадии фотолиза образуются путем расщепления воды водород и кислород, а затем водород, соединяясь с углекислым газом, образует углевод – сахар С 6 Н 12 О 6 . По существу, фотосинтез - преобразование лучистой энергии Солнца в энергию химических связей возникающих органических веществ. Таким образом, фотосинтез, производящий на свету кислород О 2 , является тем биологическим процессом, который обеспечивает живые организмы свободной энергией. Процесс обычного дыхания как процесс обмена веществ в организме, связанный с потреблением кислорода, является обратным процессу фотосинтеза. Оба эти процесса могут идти по следующей цепочке:

Солнечная энергия (фотосинтез)

питательные вещества + (дыхание)

Энергия химических связей.

Конечные продукты дыхания служат исходными веществами для фотосинтеза. Тем самым процессы фотосинтеза и дыхания участвуют в круговороте веществ на Земле. Часть солнечного излучения поглощается растениями и некоторыми организмами, которые, как мы уже знаем, являются автотрофами, т.е. самопитающимися (питание для них - солнечный свет). В результате процесса фотосинтеза автотрофы связывают углекислый газ атмосферы и воду, образуя до 150 млрд. тонн органических веществ, усваивая до 300 млрд. тонн СО 2 , и выделяют около 200 млрд. тонн свободного кислорода О 2 ежегодно.

Полученные органические вещества употребляются в качестве пищи человеком и травоядными животными, которыми, в свою очередь, питаются другие гетеротрофы. Растительные и животные остатки затем разлагаются до простых неорганических веществ, которые снова могут участвовать в виде СО 2 и Н 2 О в фотосинтезе. Часть получающейся энергии, в том числе запасенной в виде ископаемого энергетического топлива, идет на потребление ее живыми организмами, часть бесполезно рассеивается в окружающую среду. Поэтому процесс фотосинтеза благодаря возможности обеспечения им необходимой энергии и кислорода является на определенном этапе развития биосферы Земли катализатором эволюции живого.

Процессы диффузии лежат в основе обмена веществ в клетке, а значит, с их помощью данные процессы осуществляются и на уровне органов. Так осуществляются процессы всасывания в корневых волосках растений, кишечнике животных и человека; газообмен в устьицах растений, лёгких и тканях человека и животных, выделительные процессы.

Строением и изучением клеток биологи занимаются уже более 150 лет, начиная с Шлейдена, Шванна, Пуриме и Вирхова, который в 1855 г. установил механизм роста клеток путем их деления. Было установлено, что каждый организм развивается из одной клетки, которая начинает делиться и в результате этого образуется множество клеток, заметно отличающихся друг от друга. Но поскольку изначально развитие организма началось от деления первой клетки, то на одном из этапов нашего жизненного цикла мы сохраняем сходство с очень отдаленным одноклеточным предком, и можно в шутку сказать, что мы скорее произошли от амебы, чем от обезьяны.

Из клеток формируются органы, и у системы клеток появляются такие качества, которых нет у составляющих ее элементов, т.е. отдельных клеток. Эти отличия обусловлены набором белков, синтезируемых данной клеткой. Бывают клетки мышечные, нервные, кровяные ( эритроциты), эпителиальные и другие в зависимости от своей функциональности. Дифференцировка клеток происходит постепенно в процессе развития организма. В процессе деления клеток, их жизни и гибели в течение всей жизни организма происходит непрерывная замена клеток.

Ни одна молекула в нашем теле не остается неизменной дольше нескольких недель или месяцев. За это время молекулы синтезируются, выполняют свою роль в жизни клетки, разрушаются и заменяются другими, более или менее идентичными молекулами. Самое удивительное, что живые организмы в целом значительно более постоянны, чем составляющие их молекулы, и строение клеток и всего тела, состоящего из этих клеток, остается в этом безостановочном круговороте неизменным, несмотря на замену отдельных компонентов.

Причем это не замена отдельных деталей автомобиля, а, как образно сравнивает С. Роуз, тело с кирпичной постройкой, «из которой сумасшедший каменщик непрерывно ночью и днем вынимает один кирпич за другим и вставляет на их место новые. При этом наружный вид постройки остается прежним, а материал постоянно заменяется». Мы рождаемся с одними нейронами и клетками, а умираем с другими. Примером является сознание, понимание и восприятие ребенка и старого человека. Во всех клетках имеется полная генетическая информация для построения всех белков данного организма. Хранение и передача наследственной информации осуществляются с помощью клеточного ядра.

Вывод: Нельзя преувеличить роль проницаемости плазматической мембраны в жизнедеятельности клетки. Большинство процессов, связанных с обеспечением клетки энергией, получением продуктов и избавлением ее от продуктов распада, основаны на закономерностях диффузии через эту полупроницаемую живую преграду.

Осмос – по сути дела, простая диффузия воды из мест с ее большей концентрацией, в места с меньшей концентрацией воды.

Пассивный транспорт – это перенос веществ из мест с большим значением электрохимического потенциала к местам с его меньшим значением. Перенос малых водорастворимых молекул осуществляется при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул.

Часто бывает необходимым обеспечить перенос через мембрану молекул против их электрохимического градиента. Такой процесс называется активным транспортом и осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Если связать белок-переносчик с источником энергии, можно получить механизм, обеспечивающий активный транспорт веществ через мембрану.

II.6. Применение диффузии.

Человек с древних времён использует явления диффузии. С данным процессом связаны приготовление пищи и обогрев жилища. Мы встречаемся с диффузией при термообработке металлов (сварке, пайке, резке, нанесении покрытий и т.п.); нанесении тонкого слоя металлов на поверхность металлических изделий для повышения химической стойкости, прочности, твёрдости деталей и приборов, или в защитно-декоративных целях (оцинкование, хромирование, никелирование).

Природный горючий газ, которым мы пользуемся дома для приготовления пищи, не имеет ни цвета, ни запаха. Поэтому трудно было бы сразу заметить утечку газа. А при утечке за счёт диффузии газ распространяется по всему помещению. Между тем при определённом соотношении газа с воздухом в закрытом помещении образуется смесь, которая может взорваться, например, от зажженной спички. Газ может вызвать и отравление.

Чтобы сделать поступление газа в помещение заметным, на распределительных станциях горючий газ предварительно смешивают с особыми веществами, обладающими резким неприятным запахом, который легко ощущается человеком даже при весьма малой его концентрации. Такая мера предосторожности позволяет быстро заметить накопление газа в помещении, если образовалась утечка.

В современной промышленности используют вакуумформование, способ изготовления изделий из листовых термопластов. Изделие требуемой конфигурации получают за счет разности давлений, возникающей вследствие разрежения в полости формы, над которой закреплен лист. Применяется, напр., в производстве емкостей, деталей холодильников, корпусов приборов. За счёт диффузии таким путём можно сварить то, что само сварить невозможно (металл со стеклом, стекло и керамику, металлы и керамику, и многое другое).

За счёт диффузии различных изотопов урана через пористые мембраны полечено топливо для ядерных реакторов. Иногда ядерное топливо называют ядерным горючим.

Всасывание (рассасывание) веществ при введении их в подкожную клетчатку, в мышцы или при аппликации на слизистые оболочки глаза, носа, кожу слухового прохода происходит главным образом за счет диффузии. На этом основано применении многих лекарственных веществ, причем всасывание в мышцах происходит быстрее, чем в коже.

Народная мудрость гласит: «коси коса, пока роса». Скажете, причем здесь диффузия и утренний покос? Объяснение очень просто. Во время утренней росы у трав повышенное тургорное давление, открыты устьица, стебли упругие, что облегчает их скашивание (трава, скошенная при закрытых устьицах, хуже сохнет).

В садоводстве, при окулировке и прививке растений на срезах за счёт диффузии образуется каллюс (от лат. Сallus – мозоль) - раневая ткань в виде наплыва в местах повреждений и способствует их заживлению, обеспечивает срастание привоя с подвоем.

Каллюс используют для получения культуры изолированных тканей (эксплантации). Это метод длительного сохранения и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных и растений. Основан на методах выращивания культуры микроорганизмов, обеспечивающих асептику, питание, газообмен и удаление продуктов обмена культивируемых объектов. Одно из преимуществ метода тканевых культур - возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа. Для этого растительную ткань выращивают на питательных средах, содержащих ауксины и цитокинины. Каллюс состоит обычно из слабо дифференцированных однородных клеток образовательной ткани, но при изменении условий выращивания, прежде всего содержания фитогормонов в питательной среде, в нем возможно образование флоэмы, ксилемы и других тканей, а также развитие различных органов и целого растения.

II.7. Проектирование отдельных опытов.

Используя научную литературу, я попытался повторить наиболее интересные для меня опыты. Механизм диффузии и результаты этих опытов я изобразил в презентации в виде анимационных моделей.

ОПЫТ 1. Взять две пробирки: одна до половины наполнена водой, другая до половины наполнена песком. Воду вылить в пробирку с песком. Объём смеси воды и песка в пробирке меньше суммы объёмов воды и песка.

ОПЫТ 2. Длинную стеклянную трубку до половины наполнить водой, а затем сверху налить подкрашенный спирт. Общий уровень жидкостей в трубке отметить резиновым кольцом. После перемешивания воды и спирта объём смеси уменьшается.

(Опыты 1 и 2. доказывают, что между частицами вещества существуют промежутки; во время диффузии они заполняются частицами вещества – пришельца.)

ОПЫТ 3. Ватку, смоченную нашатырным спиртом, приведём в соприкосновение с ваткой, смоченной индикатором фенолфталеином. Наблюдаем окрашивание ваток в малиновый цвет.

Теперь ватку, смоченную нашатырным спиртом, помещают на дно стеклянного сосуда, а смоченную фенолфталеином. Прикрепим к крышке и накроем этой крышкой стеклянный сосуд. Через некоторое время ватка, смоченная фенолфталеином, начинает окрашиваться.

В результате взаимодействия с нашатырным спиртом фенолфталеин окрашивается в малиновый цвет, что мы и наблюдали при соприкосновении ваток. Но почему тогда во втором случае ватка, смоченная фенолфталеином. Также окрашивается, ведь теперь ватки в соприкосновение не приводились? Ответ: непрерывное хаотическое движение частиц веществ.

ОПЫТ 4. Вдоль стенки внутри высокого цилиндрического сосуда опустить узкую полоску фильтровальной бумаги, пропитанной смесью крахмального клейстера с раствором индикатора фенолфталеина. На дно сосуда поместить кристаллы йода. Сосуд плотно закрыть крышкой, к которой подвешена вата, пропитанная раствором аммиака.

За счёт взаимодействия йода с крахмалом по полоске бумаги вверх поднимается сине – фиолетовое окрашивание. Одновременно вниз распространяется малиновая окраска – доказательство движения молекул аммиака. Через несколько минут границы окрашенных участков бумаги встретятся, и далее синий и малиновый цвета смешиваются, то есть происходит диффузия.[ 10]

ОПЫТ 5. (проводят вдвоём) Взять часы с секундной стрелкой, рулетку, флакон туалетной воды и встать в разные углы комнаты. Один засекает время и открывает флакон. Другой отмечает время, когда почувствует запах туалетной воды. Измеряя расстояние между экспериментаторами, находим скорость диффузии. Для точности опыт повторяется 3 – 4 раза, и находится среднее значение скорости. Если расстояние между эксперитентаторами 5 метров, то запах чувствуется через 12 минут. То есть скорость диффузии в данном случае равна 2, 4 м /мин.

ОПЫТ 6. ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ПЛАЗМЫ МЕТОДОМ ПЛАЗМОЛИЗА (по П.А.Генкелю) .

Скорость наступления выпуклого плазмолиза в растительных клетках при их обработке гипертаническим раствором зависит от вязкости цитоплазмы; чем меньше вязкость цитоплазмы, тем скорее вогнутый плазмолиз переходит в выпуклый. Вязкость цитоплазмы зависит от степени дисперсии коллоидных частиц и их гидратации, от содержания воды в клетке, от возраста клеток и других факторов.

Ход работы. Делают тонкий срез эпидермиса с листа алоэ, или сдирают эпидермис с мягких чешуй лука. Изготовленные срезы подкрашивают в часовом стекле в течение 10 минут в растворе нейтрального красного концентрации 1:5000. Затем срезы объекта помещают на предметное стекло в каплю сахарозы слабой концентрации и закрывают одним покровным стеклом. Под микроскопом отмечают состояние плазмолиза. Сначала в клетках отмечается вогнутый плазмолиз. В дальнейшем эта форма или сохраняется, или с той или иной быстротой переходит в выпуклую форму. Важно отметить время перехода вогнутого плазмолиза в выпуклый. Промежуток времени, в течение которого вогнутый плазмолиз переходит в выпуклый, является показателем степени вязкости протоплазмы. Чем больше продолжительность времени перехода к выпуклому плазмолизу, тем больше вязкость плазмы. Плазмолиз в клетках лука начинается быстрее, чем в кожице алоэ. Значит цитоплазма клеток алоэ более вязкая.

ОПЫТ 7. ПЛАЗМОЛИЗ. ДЕПЛАЗМОЛИЗ. ПРОНИКНОВЕНИЕ ВЕЩЕСТВ В ВАКУОЛЬ [ 2]

Некоторые органические вещества довольно быстро проникают в вакуоль. В клетках, при их выдерживании в растворах таких веществ, сравнительно быстро теряется плазмолиз и наступает деплазмолиз.

Деплазмолиз – это восстановление тургора в клетках (т.е. явление, обратное плазмолизу).

Ход работы. Срезы верхнего эпидермиса чешуи окрашенного лука (вогнутая сторона) помещают в каплю I М раствора удобрения для растений мочевины или глицерина прямо на предметном стекле, накрывают покровным стеклом. Через 15-30 минут объекты рассматривают под микроскопом. Хорошо заметны плазмолизированные клетки. Оставляют срезы в капле раствора еще на 30-40 минут. Потом опять рассматривают под микроскопом и наблюдают деплазмолиз - восстановление тургора.

Вывод : растения не могут чётко контролировать количество поступающих и выходящих из клеток химических веществ.

III. Заключение.

Закономерностям диффузии подчиняются процессы физико-химических перемещений элементов в земных недрах и во Вселенной, а также процессы жизнедеятельности клеток и тканей живых организмов. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Диффузия оказывает влияние на протекание многих химических реакций, а также многих физико-химических процессов и явлений: мембранных, испарения, конденсации, кристаллизации, растворения, набухания, горения, каталитических, хроматографических, люминесцентных, электрических и оптических в полупроводниках, замедления нейтронов в ядерных реакторах и т.д. Диффузия большое значение имеет при образовании на границах фаз двойного электрического слоя, диффузиофорезе и электрофорезе, в фотографических процессах для быстрого получения изображения и др. Диффузия служит основой многих распространённых технических операций: спекания порошков, химико-термической обработки металлов, металлизации и сварки материалов, дубления кожи и меха, крашения волокон, перемещения газов с помощью диффузионных насосов. Роль диффузии существенно возросла в связи с необходимостью создания материалов с заранее заданными свойствами для развивающихся областей техники (ядерной энергетики, космонавтики, радиационных и плазмохимических процессов и т.п.). Знание законов, управляющих диффузией, позволяет предупреждать нежелательные изменения в изделиях, происходящие под влиянием высоких нагрузок и температур, облучения и могое-многое другое…

Каким вообще был бы мир без диффузии? Прекратись тепловое движение частиц – и вокруг всё станет мёртвым!

В своей работе я обобщил собранный по теме реферата материал и подготовил для его защиты презентацию, сделанную в редакторе Power Point. Данная презентация, на мой взгляд, сможет разнообразить материал урока по данной теме. Некоторые описанные в литературе опыты были повторены и немного видоизменены мной. Наиболее интересные примеры диффузии представлены на слайдах презентации в анимационных моделях.

IV. Используемая литература:

1. Антонов В. Ф., Черныш А. М., Пасечник В. И., и др. Биофизика.

М., Арктос-Вика-пресс, 1996

2. Афанасьев Ю.И., Юрина Н.А., Котовский Е.Ф. и др. Гистология.

М. Медицина, 1999.

3. Албертс Б., Брэй Д., Льюис Дж. и др. Молекулярная биология клетки.

В 3-х томах. Том 1. М., Мир, 1994.

4. Большая энциклопедия Кирилла и Мефодия 2006

5. Варикаш В.М. и др. Физика в живой природе. Минск,1984.

6. Демьянков Е.Н. Задачи по биологии. М. Владос, 2004.

7. Николаев Н.И. Диффузия в мембранах. М. Химия, 1980, с.76

8. Перышкин А.В. Физика. 7. М. Дрофа, 2004.

9. Физический энциклопедический словарь, М., 1983, с. 174-175, 652, 754

10. Шабловский В. Занимательная физика. С-Петербург, «тригон» 1997, с.416

11. xttp//bio. fizten/ru./

12. xttp//markiv. narod.ru./

13. «http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D1%83%D0%B7%D0%B8%D1%8F» Категории: Явления на атомном уровне | Термодинамические явления | Явления переноса | Диффузия

ДИФФУЗИЯ (от лат. diffusio - распространение, растекание, рассеивание) - неравновесный процесс, вызываемый молекулярным тепловым движением и приводящий к установлению равновесного распределения концентраций внутри фаз. В результате Д. происходит выравнивание хим. потенциалов компонентов смеси. В однофазной системе при пост. темп-ре и отсутствии внеш. сил Д. выравнивает концентрацию каждого компонента фазы по объёму всей системы. Если темп-pa не постоянна или на систему действуют внеш. силы, то в результате Д. устанавливается пространственно неоднородное равновесное распределение концентраций каждого из компонентов (см. Термодиффузия, Электродиффузия ).

(2-й закон Фика). Матем. теория ур-ния Д. совпадает с теорией теплопроводности уравнения .

Для смеси мн. компонентов диффузионный поток каждого компонента j i , согласно термодинамике необратимых процессов , определяется градиентами хим. потенциалов всех п компонентов смеси:

где L ik - кинетич. коэф. Онсагера, имеющие тензорный характер и пропорциональные коэф. Д. компонентов смеси (индекс означает, что рассматривается Д. i -гo компонента относительно k -го). Градиенты хим. потенциалов берутся при фиксиров. темп-ре T . Выражение (4) есть частный случай линейных соотношений Онсагера между термодинамич. силами Д. и диффузионными потоками. Согласно принципу Онсагера (см. Онсагера теорема) , в отсутствие магн. поля .

Среди градиентов хим. потенциалов лишь n - 1 независимых, их можно выразить через градиенты концентраций с помощью Гиббса - Дюгема уравнения и представить диффузионный поток в виде

где D ik - тензор коэф. Д. Его диагональные элементы определяют прямые процессы Д., а недиагональные - перекрёстные диффузионные процессы. Соотношения Онсагера для D ik имеют более сложный характер, чем для L ik . Для бинарной смеси коэф. D 11 связан с коэф. Онсагера L 11 соотношением


В процессе Д. происходит возрастание энтропии, причём производство энтропии в единицу времени равно:

Если на смесь компонентов действуют внеш. силы F k (напр., гравитационные и инерциальные), то явление Д. существенно меняется. Поскольку градиент давления зависит от внеш. сил F k , то термодинамич. силами являются не только градиенты хим. потенциалов, но также и центробежная сила и сила тяготения и возникает бародиффузия. При этом термодинамич. равновесию соответствует стационарное неоднородное распределение концентраций. Процесс Д. стремится к установлению этого распределения. Этот процесс позволяет определять молекулярные массы по седиментации в центробежном поле в ультрацентрифуге.

Диффузия в твёрдых телах. Процесс Д. в твёрдых телах может осуществляться с помощью неск. механизмов: обмен местами атомов кристаллич. структуры с её вакансиями ,перемещение атомов по междоузлиям (см. Межузельный атом ), одновременное циклическое перемещение неск. атомов, обмен местами двух соседних атомов. При образовании твёрдых растворов замещения преобладает обмен местами атомов и вакансий.

Коэф. Д. в твёрдых телах очень зависит от дефектов структуры, увеличиваясь с ростом их числа. Для Д. в твёрдых телах характерна экспоненц. зависимость от темп-ры с энергией активации большей, чем у жидкостей. Коэф. Д. для цинка в медь возрастает в 10 14 раз при повышении темп-ры от 30 о C до 300 о C.

Микроскопич. теория Д. атомов, основанная на механизме перескоков по вакансиям, была развита Я. И. Френкелем . Замещение атомом кристалич. структуры вакансии связано с возможностью перехода его через потенц. барьер. Предполагается, что после перехода атома в вакансию он благодаря сильному взаимодействию его с соседними атомами успевает отдать часть энергии прежде, чем вернётся на своё прежнее место. Время пребывания данного атома в соседнем с вакансией узле равно

где - время порядка периода атомов кристаллич. структуры, соответствующих частоте акустич. спектра (~10 -13 с). Тогда коэф. самодиффузии будет иметь вид

где - энергия активации, а - постоянная решётки, U - энергия образования вакансии. Для разл. решёток W отличаются не очень сильно (напр., для свинца W 26 ккал/г*атом, для меди W 60 ккал/г*атом),а а и в ф-ле (12) могут сильно отличаться. Коэф. Д. в твёрдых телах можно оценить также с помощью теории Эйринга скоростей реакций, что приводит также к экспоненц. зависимости от темп-ры с энергией активации. Аналогичная теория была развита для Д. в неупорядоченных сплавах замещения, она позволила учесть влияние внедрённых атомов на самодиффузию металла, когда Д. уже не описывается одной экспонентой, т. к. на узлах с разл. конфигурацией атомов нужно преодолевать разл. потенц. барьеры. В том случае, когда Д. идёт путём обмена с вакансиями или одноврем. перемещения по замкнутому контуру, причём коэф. Д. компонент D 1 и D 2 различны, появляется результирующий поток вещества в направлении вещества с большим парциальным коэф. Д., пропорциональный (Киркендалла эффект).

Явление переноса нейтронов в конденсиров. среде, сопровождаемое многократным рассеянием, описывается кинетич. ур-нием, к-рое, вообще говоря, не сводится к ур-нию Д., однако диффузионное приближение оказывается часто полезным и при рассмотрении диффузии нейтронов .

При очень низких темп-pax в конденсиров. средах возможна квантовая диффузия атомов, к-рая определяется квантовым подбарьерным туннельным движением атомов, в отличие от классич. Д., к-рая определяется надбарьерными переходами атомов . Существ. отличие квантовой Д. состоит в том, что коэф. квантовой Д. отличен от нуля при стремлении темп-ры к нулю, его значение на мн. порядков больше, чем коэф. классич. Д. при тех же темп-рах.

Другие виды диффузий . К диффузионным процессам относят также нек-рые явления, не связанные с переносом частиц. Так, в оптике имеет место излучения в неоднородной среде при многократных процессах испускания и поглощения фотонов, к-рое наз. диффузией излучения , однако это явление существенно отлично от Д. частиц, т. к. ур-ние баланса для плотности потока фотонов описывается интегр. ур-нием, к-рое не сводится к дифференц. ур-нию Д. В спиновых системах в магн. поле возможен процесс выравнивания ср. магн. момента в пространстве под влиянием спин-спинового взаимодействия - спиновая диффузия .

Лит.: 1)Гроот С. де, Мазур П., Неравновесная , пер. с англ., M., 1964, гл. 11; 2) Xаазе Р., Термодинамика необратимых процессов, пер. с нем., M., 1967, гл. 4; 3) Чепмен С., Каулинг т., Математическая теория неоднородных газов, пер. с англ., M., 1960, гл. 10, 14; 4)Ферцигер Дж., Капер Г., Математическая теория процессов переноса в газах, пер. с англ., M., 1976; 5) Френкель Я. И., Кинетическая теория жидкостей. Л., 1975; 6) Гиршфельдер Дж., Кертисс Ч., Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., M., 1961, гл. 9; 7) Грэй П., Кинетическая теория явлений переноса в простых жидкостях, в кн.: Физика простых жидкостей. Статистическая теория, пер. с англ., M., 1971; 8) Смирнов А. А., Молекулярно-кинетическая теория металлов, M., 1966, гл. 8; S )Андреев А. Ф., Лифшиц И. M., Квантовая теория дефектов в кристаллах, "ЖЭТФ", 1969, т. 56, с. 2057; 10) Каgan Yu., Кlingеr M. I., Theory of quantum diffusion of atoms in crystals, "J. Phys. C", 1974, v. 7, p. 2791; 11) Лифшиц E. M., Питаевский Л. П., Физическая кинетика, M., 1979, p11, 12; 12) Ландау Л. Д., Лифшиц E. M., Гидродинамика, 3 изд., M., 1986, p 59.

Д. П. Зубарев .

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Диффузия играет огромную роль в природе, в быту человека и в технике . Диффузионные процессы могут оказывать как положительное, так и отрицательное влияние на жизнедеятельность человека и животных. Примером положительного воздействия является поддержание однородного состава атмосферного воздуха вблизи поверхности Земли. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Она оказывает влияние на течение химических реакций.

С участием диффузии или при нарушении и изменении этого процесса могут протекать отрицательные явления в природе и жизни человека, такие как обширное загрязнение окружающей среды продуктами технического прогресса человека.

Актуальность: Диффузия доказывает, что тела состоят из молекул, которые находятся в беспорядочном движении; диффузия имеет большое значение в жизни человека, животных и растений, а также в технике.

Цель:

    доказать, что диффузия зависит от температуры;

    рассмотреть примеры диффузии в домашних опытах;

    убедиться, что диффузия в разных веществах происходит по-разному.

    Рассмотреть тепловую диффузию веществ.

Задачи исследования:

    Изучить научную литературу по теме «Диффузия».

    Доказать зависимость скорости диффузии от рода вещества, температуры.

    Изучить влияние явления диффузии на окружающую среду и человека.

    Описать и спроектировать наиболее интересные опыты по диффузии.

Методы исследования:

    Анализ литературы и материалов интернета.

    Проведение опытов по изучению зависимости диффузии от рода вещества и температуры.

    Анализ результатов.

Предмет исследования: явление диффузии, зависимость протекания диффузии от различных факторов, проявление диффузии в природе, технике, быту.

Гипотеза: диффузия имеет большое значение для человека и природы.

1.Теоретическая часть

1.1.Что такое диффузия

Диффузия - это самопроизвольное перемешивание соприкасающихся веществ, происходящее вследствие хаотического (беспорядочного) движения молекул.

Еще одно определение: диффузия (лат. diffusio — распространение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией .

Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной).

Диффузия происходит в жидкостях, твердых телах и газах. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Столетиями рабочие сваривали металлы и получали сталь нагреванием твердого железа в атмосфере углерода, не имея ни малейшего представления о происходящих при этом диффузионных процессах. Лишь в 1896г. началось изучение проблемы.

Диффузия молекул протекает очень медленно. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным.

1.2. Роль диффузии в природе

С помощью диффузии происходит распространение различных газообразных веществ в воздухе: например, дым костра распространяется на большие расстояния . Если посмотреть на дымовые трубы предприятий и выхлопные трубы автомобилей, во многих случаях вблизи труб виден дым. А потом он куда-то исчезает. Дым растворяется в воздухе за счет диффузии. Если же дым плотный, то его шлейф тянется довольно далеко.

Результатом диффузии может быть выравнивание температуры в помещении при проветривании. Таким же образом происходит загрязнение воздуха вредными продуктами промышленного производства и выхлопными газами автомобилей. Природный горючий газ, которым мы пользуемся дома, не имеет ни цвета, ни запаха. При утечке заметить его невозможно, поэтому на распределительных станциях газ смешивают с особым веществом, обладающим резким, неприятным запахом, который легко ощущается человеком даже при весьма малой его концентрации . Такая мера предосторожности позволяет быстро заметить накопление газа в помещении, если образовалась утечка (рис 1).

Благодаря явлению диффузии нижний слой атмосферы - тропосфера - состоит из смеси газов: азота, кислорода, углекислого газа и паров воды . При отсутствии диффузии произошло бы расслоение под действием силы тяжести: внизу оказался бы слой тяжёлого углекислого газа, над ним - кислород, выше - азот, инертные газы (рис 2).

В небе мы тоже наблюдаем это явление. Рассеивающиеся облака - тоже пример диффузии и как точно об этом сказано у Ф.Тютчева: «В небе тают облака…» (рис 3)

На принципе диффузии основано перемешивание пресной волы с солёной при впадении рек в моря. Диффузия растворов различных солей в почве способствует нормальному питанию растений.

Диффузия играет большую роль в жизни растений и животных. Муравьи помечают свой путь капельками пахучей жидкости и узнают дорогу домой (рис 4)

Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчёлы, обнаружив сладкий объект, штурмуют его своим роем. А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух, пьёт воду, получает из почвы различные микродобавки .

Плотоядные животные находят своих жертв тоже благодаря диффузии. Акулы чувствуют запах крови на расстоянии нескольких километров, также как и рыбы пираньи (рис 5).

Большую роль играют диффузионные процессы в снабжении кислородом природных водоёмов и аквариумов. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели её обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума (рис 6).

Уже было отмечено, что есть много общего в значении явления диффузии для жизнедеятельности растений и животных. Прежде всего, следует отметить роль диффузионного обмена через поверхность растений в выполнении функции дыхания. Для деревьев, например, наблюдается особенно большое развитие поверхности(листовая крона), так как диффузионный обмен сквозь поверхность листьев выполняет функцию дыхания. К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия» (рис 7).

Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани.

В научной литературе я изучила процесс односторонней диффузии - осмос, т.е. диффузия веществ через полупроницаемые мембраны. Процесс осмоса отличается от свободной диффузии тем, что на границе двух соприкасающихся жидкостей расположено препятствие в виде перегородки (мембраны), которая проницаема только для растворителя и вовсе не проницаема для молекул растворенного вещества (рис 8).

В почвенных растворах содержатся минеральные соли и органические соединения. Вода из почвы попадает в растение путем осмоса через полупроницаемые мембраны корневых волосков. Концентрация воды в почве оказывается выше, чем внутри корневых волосков, поэтому вода проникает в зерно и дает жизнь растению.

1.3. Роль диффузии в быту и технике

Диффузия используется во многих технологических процессах: засолка, получение сахара (стружка сахарной свёклы промывается водой, молекулы сахара диффундируют из стружки в раствор), варка варенья, окрашивание тканей, стирка вещей, цементация, сварка и пайка металлов, в том числе диффузионная сварка в вакууме (свариваются металлы, которые другими методами соединить невозможно, - сталь с чугуном, серебро с нержавеющей сталью и т.д.) и диффузионная металлизация изделий(поверхностное насыщение стальных изделий алюминием, хромом, кремнием), азотирование - насыщение поверхности стали азотом (сталь становится твёрдой, износоустойчивой), цементация - насыщение стальных изделий углеродом, цианирование -насыщение поверхности стали углеродом и азотом .

Распространение запахов в воздухе - наиболее часто встречающийся пример диффузии в газах. Почему же запах распространяется не мгновенно, а спустя некоторое время? Дело в том, что во время движения в определенном направлении молекулы пахучего вещества сталкиваются с молекулами воздуха. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения.

2. Практическая часть

Как много удивительного и интересного происходит вокруг нас! Многое хочется узнать, попытаться объяснить самостоятельно. Именно для этого я решила провести ряд экспериментов, в ходе которых попыталась выяснить, действительно ли теория диффузии справедлива, находит ли она свое подтверждение на практике. Любую теорию можно считать достоверной лишь в том случае, если она многократно подтверждается экспериментально.

Опыт №1 Наблюдение явления диффузии в жидкостях

Цель : изучить диффузию в жидкости. Пронаблюдать растворение кусочков перманганата калия в воде, при неизменной температуре (при t = 20°С)

Приборы и материалы :стакан с водой, термометр, перманганат калия.

Я взяла кусочек перманганата калия и два стакана с чистой водой при температуре 20 °С. Положила в стаканы кусочки перманганата калия и начала наблюдать за происходящим. Через 1 минуту вода в стаканах начинает окрашиваться.

Вода является хорошим растворителем. Под действием молекул воды происходит разрушение связей между молекулами твердых веществ марганцовки.

В первом стакане я не перемешивала раствор, а во втором перемешала. Перемешивая воду (взбалтывая), я убедилась, что процесс диффузии происходит гораздо быстрее (2 минуты)

Цвет воды в первом стакане становится более интенсивным по истечении времени. Молекулы воды проникают между молекулами перманганата калия, нарушая силы притяжения. Одновременно с силами притяжения между молекулами начинают действовать силы отталкивания и, как следствие, происходит разрушение кристаллической решетки твердого вещества. Процесс растворения марганцовки закончился. Время прохождения эксперимента 3 часа 15 минут. Вода полностью окрасилась в малиновый цвет (рис 9-12).

Можно сделать вывод, что явление диффузии в жидкости - это длительный процесс, в результате которого происходит растворение твердых тел.

Я захотела выяснить, от чего еще зависит скорость протекания диффузии.

Опыт №2 Изучение зависимости скорости протекания диффузии от температуры

Цель: изучить, как температура воды влияет на скорость протекания диффузии.

Приборы и материалы: термометры - 1 шт, секундомер - 1 шт, стаканы - 4 шт, чай, перманганат калия.

(опыт приготовления чая при начальной температуре 20°С и при температуре 100° С в двух стаканах).

Взяли два стакана с водой при t=20 °С и t=100 °С. На рисунках показано протекание эксперимента через определенное время от начала: в начале эксперимента - рис.1, через 30 с. - рис.2, через 1 мин. - рис.3, через 2 мин. - рис.4, через 5 мин. - рис 5, через 15 мин. - рис.6. Из этого опыта можно сделать вывод о том, что на скорость протекания диффузии влияет температура: чем больше температура, тем выше скорость протекания диффузии (рис 13-17).

Те же результаты я получила, когда вместо чая взяла 2 стакана с водой. В одном из них была вода комнатной температуры, во втором кипяток.

Я опустила в каждый стакан одинаковое количество перманганата калия. В том стакане, где температура воды была выше, процесс диффузии протекал значительно быстрее (рис.18-23.)

Следовательно скорость диффузии зависит от температуры - чем выше температура, тем интенсивнее происходит диффузия.

Опыт № 3 Наблюдение диффузии с применением химических реактивов

Цель: Наблюдение явления диффузии на расстоянии.

Оборудование: вата, нашатырный спирт, фенолфталеин, пробирка.

Описание опыта: Нальём в пробирку нашатырный спирт. Смочим кусочек ваты фенолфталеином и положим сверху в пробирку. Через некоторое время наблюдаем окрашивание ватки (рис 24-26).

Нашатырный спирт испаряется; молекулы нашатырного спирта проникли к ватке, смоченной фенолфталеином, и та окрасилась, хотя ватка в соприкосновение со спиртом не приводилась. Молекулы спирта перемешались с молекулами воздуха и достигли ватки. Данный опыт демонстрирует явление диффузии на расстоянии.

Опыт №4. Наблюдение явления диффузии в газах

Цель: изучение изменения диффузии газа в воздухе в зависимости от изменения температуры в помещении.

Приборы и материалы : секундомер, духи, термометр

Описание опыта и полученные результаты :я исследовала время распространения запаха духов в кабинете V=120м 3 при температуре t = +20 0 . Засекалось время от начала распространения запаха в комнате, до получения явной чувствительности у людей, стоящих на расстоянии 10 м. от исследуемого объекта (духи). (рис 27-29)

Опыт №5 Растворения кусочков гуаши в воде, при неизменной температуре

Цель:

Приборы и материалы: три стакана, вода, гуашь трех цветов.

Описание опыта и полученные результаты:

Взяли три стакана, набрали воды t =25 0 С, бросили одинаковые кусочки гуаши в стаканы.

Начали наблюдать за растворением гуаши.

Фотографии сделаны через 1 минуту, 5 минут, 10 минут, 20 минут, растворение закончилось через 4 часа 19 минут (рис 30-34)

Опыт №6 Наблюдение явления диффузии в твердых телах

Цель: наблюдение диффузии в твердых телах.

Приборы и материалы: яблоко, картофель, морковь, раствор «зеленки», пипетка.

Описание опыта и полученные результаты:

Разрезаем яблоко, морковь, картофель «капаем зеленкой» на одну из половинок.

Наблюдаем, как пятно расплывается по поверхности

Разрезаем по месту соприкосновения с зеленкой, чтобы посмотреть насколько глубоко она проникла внутрь (рис 35-37)

Как провести опыт, чтобы подтвердить гипотезу о возможности протекания диффузии в твердых телах? Возможно ли перемешивание веществ в таком агрегатном состоянии? Скорей всего, ответ «Да». Но наблюдать диффузию в твердых телах (очень вязких) удобно с использованием густых гелей. Таким является плотный раствор желатина. Его можно приготовить следующим образом: 4-5 г сухого пищевого желатина растворить в холодной воде. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при помешивании в воде объемом 100 мл, опустив в сосуд с горячей водой. После охлаждения получается 4-5 % раствор желатина.

Опыт № 7 Наблюдение диффузии с применением густых гелей

Цель: Наблюдение явления диффузии в твердых телах (с применением густого раствора желатина).

Оборудование: 4%-ный раствор желатина, пробирка, небольшой кристаллик марганцовки, пинцет.

Описание и результат опыта: Раствор желатина поместить в пробирку, в центр пробирки быстро, одним движением ввести пинцетом кристаллик марганцовки.

Кристаллик марганцовки в начале опыта

Расположение кристаллика в пузырьке с раствором желатина через 1,5 часа

Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый шарик, со временем он становится все больше и больше. Это означает, что вещество кристаллика распространяется во всех направлениях с одинаковой скоростью (рис 38-39)

В твердых телах диффузия происходит, но значительно медленнее чем, в жидкостях и газах.

Опыт № 8 Разница температур в жидкости - тепловая диффузия

Цель: Наблюдение явления тепловой диффузии.

Оборудование: 4 одинаковых стеклянных сосуда, 2 цвета краски, горячая и холодная вода, 2 пластиковые карточки.

Описание и результат опыта:

1. Добавляем немного красной краски в сосуд 1 и 2, синюю краску в сосуды 3 и 4.

2. Наливаем горячую воду в сосуды 1 и 2.

3. Наливаем холодную воду в сосуды 3 и 4.

4. Сосуд 1 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 4.

5. Сосуд 3 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 2.

6. Удаляем обе карты.

Этот опыт демонстрирует эффект тепловой диффузии. В первом случае горячая вода оказывается поверх холодной и диффузия не происходит до тех пор, пока температуры не сравняются. А во втором случае наоборот, внизу горячая, а вверху холодная. И во втором случае молекулы горячей вода начинают стремиться вверх, а молекулы холодной - вниз (рис 41-44).

Заключение

В ходе данной исследовательской работы можно сделать вывод о том, что диффузия играет огромную роль в жизни человека и животных.

В ходе данной исследовательской работы можно сделать вывод о том, что продолжительность диффузии зависит от температуры: чем выше температура, тем быстрее протекает диффузия.

Я изучила явление диффузии на примере различных веществ.

Скорость протекания зависит от рода вещества: в газах она протекает быстрее, чем в жидкостях; в твердых телах диффузия протекает значительно медленнее.Это утверждение можно объяснить так: молекулы газов свободны, находятся на расстояниях много больше размеров молекул, двигаются с большими скоростями. Молекулы жидкостей расположены также беспорядочно, как и в газах, но значительно плотнее. Каждая молекула, находясь в окружении соседних молекул, медленно перемещается внутри жидкости. Молекулы твердых веществ совершают колебания около положения равновесия.

Существует тепловая диффузия.

Список используемой литературы

    Генденштейн, Л.Э. Физика. 7 класс. Часть 1 / Л.Э. Генденштейн, А.Б, Кайдалов. - М: Мнемозина, 2009.-255 с.;

    Кириллова, И.Г. Книга для чтения по физике для учащихся 7 классов средней школы / И.Г. Кириллова.- М.,1986.-207 с.;

    Ольгин, О. Опыты без взрывов / О. Ольгин.- М.: Химик, 1986.-192 с.;

    Перышкин, А.В. Учебник по физике 7 класс / А.В. Перышкин.- М., 2010.-189 с.;

    Разумовский, В.Г. Творческие задачи по физике / В.Г. Разумовский.- М.,1966.-159 с.;

    Рыженков, А.П. Физика. Человек. Окружающая среда: Приложение к учебнику физики для 7-го класса общеобразовательных учреждений / А.П. Рыженков.- М.,1996.- 120 с.;

    Чуянов, В.А. Энциклопедический словарь юного физика / В.А. Чуянов.- М., 1984.- 352 с.;

    Шабловский, В. Занимательная физика / В. Шабловский. С.-П., Тригон, 1997.-416 с.

Приложение

рисунок 1

рисунок 2

рисунок 3

рисунок 4

рисунок 5

рисунок 6

рисунок 7

Частицы растворителя (синие) способны пересекать мембрану,

частицы растворённого вещества (красные) — нет.

рисунок 8

рисунок 9

рисунок 10

рисунок 11

рисунок 12

рисунок 13

рисунок 14

рисунок 15

рисунок 16

рисунок 17

рисунок 18

рисунок 19

рисунок 20

рисунок 21

рисунок 22

рисунок 23

рисунок 24

рисунок 25

рисунок 26

рисунок 27

рисунок 28

рисунок 29

рисунок 30

рисунок 31

рисунок 32

рисунок 33

рисунок 34

рисунок 35

рисунок 36

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Вконтакте

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!