Физические принципы детектирования элементарных частиц. Смотреть что такое "Детектор элементарных частиц" в других словарях

2.1. Газоразрядные детекторы. Счетчики Гейгера-Троста, пропорциональные счетчики, ионизационные камеры. Сцинтилляционные счетчики.

2.2. Черенковские счетчики. Полупроводниковые счетчики.

2.3. Трековые детекторы с фильмовым съемом информации. Камера Вильсона, пузырьковые камеры, искровые и стримерные камеры. Метод ядерных фотоэмульсий.

2.4. Бесфильмовые камеры. Пропорциональные и дрейфовые камеры. Годоскопические системы из сцинтилляционных и черенковских счетчиков.

Методы измерений и математической обработки данных

3.1. Методы спектрометрических измерений. Магнитные спектрометры. Спектрометрические тракты измерений с полупроводниковыми и сцинтилляционными счетчиками с выводом данных на ЭВМ. Методы изображения многомерных спектров.

3.2. Дозиметрические измерения. Допустимые потоки излучений. Способы защиты.

3.3. Методы автоматической обработки фотографий трековых приборов. Механико-оптические и электронные системы сканирования с выводом данных на ЭВМ.

3.4. Физические установки с автоматическим выводом данных на ЭВМ. Типы накопительных устройств. Использование разных классов ЭВМ для приема, предварительной обработки и накопления информации, а также для контроля и управления.

Методы обработки экспериментальных данных

4.1. Основные понятия математической статистики. Теория статистических оценок и проверки гипотез. Метод максимального правдоподобия. Планирование эксперимента.

4.2. Системы математических программ обработки и анализа физических результатов. Геометрическая реконструкция пучков частиц. Система распознавания определенного класса событий. Анализ физических результатов.

VIII. Основные сведения
по экспериментальной ядерной физике

Основные свойства элементарных частиц

1.1. Движение заряженных частиц в электрических и магнитных полях; уравнения движения.

1.2. Взаимодействие заряженных частиц с веществом. Ионизационные потери и пробег тяжелых заряженных частиц; прохождение бета-частиц через вещество. Взаимодействие нейтральных частиц с веществом.

1.3. Элементарные частицы и ядра. Основные характеристики ядер. Физические свойства частиц: заряды, масса, спин, четность, изоспин. Времена жизни частиц.

Методы регистрации элементарных частиц

2.1. Методы регистрации заряженных и нейтральных частиц.

2.2. Газонаполненные счетчики и их типы. Ионизационные камеры. Газонаполненные камеры с оптическим методом съема информации. Искровые и стримерные камеры.



2.3. Газонаполненные камеры с электронными методами съема информации. Многопроволочные искровые, пропорциональные и дрейфовые камеры.

2.4. Сцинтилляционные и черенковские детекторы. Фотоумножители.

2.5. Полупроводниковые детекторы. Позиционно-чувствительные
детекторы.

2.6. Регистрация частиц с помощью пузырьковых камер.

Статистическая обработка результатов измерений

3.1. Основы теории вероятностей. Случайные величины. Основные законы распределения случайных величин: биномиальное распределение Пуассона, распределение Гаусса.

3.2. Основы теории ошибок измерений.

3.3. Основы теории просчетов регистрирующих систем.

IX. Общая радиоэлектроника и вычислительная техника
(по технической отрасли науки)

Методы расчета электрических цепей и схем

1.1. Анализ линейных электрических цепей. Эквивалентные схемы. Законы Кирхгофа, теорема об эквивалентном генераторе, метод узловых потенциалов, метод контурных токов. Четырехполюсники.

1.2. Анализ электрических сигналов. Дельта-функция и ступенчатая функция. Преобразование Фурье.

1.3. Передача сигналов через линейные системы. Дифференциальные уравнения, описывающие процессы в электрических цепях. Импульсная характеристика линейной системы. Интеграл суперпозиции. Формула свертывания. Передаточная функция. Переходные процессы в длинных цепях.

1.4. Основы операционного исчисления. Преобразование Лапласа.

1.5. Основы алгебры логики. Составление логических электронных схем.

Полупроводниковые приборы

2.1.Физические принципы работы полупроводниковых приборов. Их классификация.

2.2. Полупроводниковые диоды. Принцип действия, основные характеристики, параметры и режимы работы. Разновидности диодов: импульсные диоды, диоды с накоплением заряда, туннельные диоды, стабилитроны, светоизлучающие диоды и др. Примеры применения.



2.3. Биполярные транзисторы. Принцип действия, основные характеристики, параметры и режимы работы. Схемы включения, эквивалентные схемы, работа в линейном и ключевом режимах. Разновидности триодов. Примеры их применения.

2.4. Полевые транзисторы. Принцип действия, разновидности полевых транзисторов. Основные характеристики, параметры и режимы работы. Примеры применения.

2.5. Другие разновидности полупроводниковых приборов: динистор, тиристор, однопереходный транзистор и др. Их основные характеристики и параметры. Примеры применения.

Интегральные схемы

3.1. Гибридные и монолитные интегральные схемы. Монолитные интегральные схемы на основе биполярных и МДП-транзисторов, их особенности. Технология изготовления интегральных схем различных типов.

3.2. Аналоговые интегральные схемы: дифференциальные и операционные усилители, регуляторы напряжения, преобразователи код-аналог и аналог-код. Их основные параметры, примеры применения.

3.3. Логические интегральные схемы. Их классификация по схемо-техническому исполнению. Основные параметры. Быстродействие схем. Система логических элементов. Типы триггеров. Примеры применения.

3.4. Интегральные схемы со средней степенью интеграции: счетчики, регистры, коммутаторы, дешифраторы, сумматоры и др.

3.5. Интегральные схемы с большой степенью интеграции: сложные логические устройства, запоминающие устройства, микропроцессоры и др. Пути дальнейшего повышения степени интеграции.

В русскоязычной научной и учебной литературе известно очень мало изданий по тематике этой книги, и они уже давно стали библиографической редкостью.
Данное издание выгодно отличает полнота изложения принципов работы детекторных систем, систематичность описания их технического устройства и практической реализации, а также обсуждение области их применения.
Книга содержит обширную библиографию (более 600 ссылок на книжные издания и оригинальные статьи в современных физических журналах) и глоссарий, включающий сжатую информацию об области применения, достоинствах и недостатках каждого из рассмотренных типов детекторов.
Это прекрасное учебное и справочное руководство для всех, кто применяет детекторы излучений и элементарных частиц в своей практической деятельности.

Взаимодействие частиц и излучения с веществом.
Частицы и излучение не могут быть зарегистрированы непосредственно, а лишь через их взаимодействие с веществом. Взаимодействия заряженных частиц, вообще говоря, отличаются от взаимодействий нейтральных частиц, например, фотонов. Каждый процесс взаимодействия может быть основой для некоторого вида детектирования. Существует множество различных типов взаимодействий и, как следствие, большое количество детекторов частиц и излучения. Кроме того, для одной и той же частицы при разных энергиях существенную роль могут играть разные типы взаимодействия.

В этой главе будут подробно рассмотрены основные механизмы взаимодействия частиц с веществом. Некоторые эффекты будут упомянуты при описании конкретных типов детекторов. Мы не будем выводить выражения для сечений из первых принципов, а приведем лишь окончательные результаты в том виде, в котором они применяются для детекторов частиц.

Содержание
Предисловие редакторов перевода Предисловие к русскому изданию Предисловие автора Вступление
1 Взаимодействие частиц и излучения с веществом
1.1 Взаимодействие заряженных частиц с веществом
1.1.1 Потери энергии на ионизацию и возбуждение
1.1.2 Удельная ионизация
1.1.3 Многократное рассеяние
1.1.4 Тормозное излучение
1.1.5 Прямое рождение электрон-позитронных пар
1.1.6 Потери энергии на фотоядерные взаимодействия
1.1.7 Полные потери энергии
1.1.8 Соотношение пробег-энергия для заряженных частиц
1.2 Взаимодействие фотонов
1.2.1 Фотоэффект
1.2.2 Комптон-эффект
1.2.3 Рождение пар
1.2.4 Полное сечение поглощения фотонов
1.3 Сильное взаимодействие адронов
1.4 Дрейф и диффузия в газах
2 Основные характеристики детекторов частиц
3 Единицы измерения излучения
4 Детекторы для ионизационных и трековых измерений
4.1 Ионизационные камеры
4.2 Пропорциональные счетчики
4.3 Счетчики Гейгера
4.4 Стримерные трубки
4.5 Регистрация частиц в жидкостях
4.6 Многопроволочные пропорциональные камеры
4.7 Плоские дрейфовые камеры
4.8 Цилиндрические проволочные камеры
4.8.1 Цилиндрические пропорциональные и дрейфовые камеры
4.8.2 Струйные дрейфовые камеры
4.8.3 Времяпроекционные камеры (ВПК)
4.9 Времяпроекционные камеры с оптическим съемом
4.10 Эффекты старения в проволочных камерах
4.11 Пузырьковые камеры
4.12 Камеры Вильсона
4.13 Стримерные камеры
4.14 Камеры на разрядных трубках
4.15 Искровые камеры
4.16 Ядерные эмульсии
4.17 Кристаллы галоидного серебра
4.18 Рентгеновские пленки
4.19 Термолюминесцентные детекторы
4.20 Радиофотолюминесцентные детекторы
4.21 Пластиковые детекторы
4.22 Сравнение детекторов для ионизационных и трековых измерений
5 Временные измерения
5.1 Фотоумножители
5.2 Сцинтилляционные счетчики
5.3 Плоские искровые счетчики
6 Идентификация частиц
6.1 Нейтронные счетчики
6.2 Детекторы нейтрино
6.3 Счетчики времени пролета
6.4 Черенковские счетчики
6.5 Детекторы переходного излучения (ДПИ)
6.6 Разделение по энергетическим потерям
6.7 Сравнение методов идентификации частиц
7 Измерение энергии
7.1 Твердотельные детекторы
7.2 Калориметры электронов и фотонов
7.3 Адронные калориметры
7.4 Идентификация частиц в калориметрах
7.5 Калибровка и мониторирование калориметров
7.6 Криогенные калориметры
8 Измерение импульса
8.1 Магнитные спектрометры для экспериментов с фиксированной мишенью
8.2 Магнитные спектрометры для специальных приложений
9 Электроника
10 Обработка информации
Приложение А: таблица фундаментальных физических констант
Приложение Б: определение физических величин и их единицы
Список литературы
Алфавитный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Детекторы элементарных частиц, Справочное издание, Групен К., 1999 - fileskachat.com, быстрое и бесплатное скачивание.

29 апреля поздно вечером (перенесли пока) NASA запускает на орбиту церновский детектор элементарных частиц AMS-02 . Строили этот детектор 10 лет, его старшие «собратья» уже вовсю работают на Большом адронном коллайдере, то бишь, под землей, а этот — полетит в космос! :)

Вот церновский пресс-релиз , вот будет вестись онлайн-трансляция запуска начиная с 21:30 по средне-европейскому времени, твиттер ЦЕРНа тоже будет передавать сводки. Запуск и всю последующую работу можно отслеживать на сайте эксперимента . А я пока вкратце расскажу про аппарат и научные задачи.

AMS-02 — это самый настоящий детектор элементарных частиц (почти) со всеми его атрибутами. Размер его — 4 метра, масса — 8,5 тонн. Конечно, с такой махиной, как ATLAS , он не сравнится, но для запуска в космос (и установки на МКС) и этого немало.

Если подземные детекторы регистрируют частицы, родившиеся при рукотворном столкновении протонов и иных частиц, то AMS-02 будет регистрировать космические лучи — частицы очень больших энергий, прилетающие к нам из глубокого космоса, разогнанные на «природных ускорителях». Космические лучи, конечно, изучаются уже давно, почти век, но с ними до сих пор связано много загадок.

Самая главная задача нового детектора — со сверхвысокой точностью измерить состав космических лучей. Какова доля антивещества в космических лучях? Как она изменяется с энергией? Нет ли там в небольших количествах каких-то новых тяжелых стабильных частиц (частиц темной материи), которые не удается родить на коллайдерах, но которые смогла породить Вселенная? А может быть, какие-то тонкие особенности в энергетическом спектре обычных частиц укажут на то, что они получились при распаде неизвестных до сих пор сверхтяжелых частиц?

AMS-02 будет изучать эти вопросы, регистрируя пролет частиц космических лучей сквозь вещество детектора и измеряя их импульс, скорость, энерговыделение, заряд. «Окно» оптимальной чувствительности детектора по энергии частиц — от примерно 1 ГэВ до нескольких ТэВ. Это окно покрывает предсказания многих моделей, а также пересекается с окнами чувствительности детекторов на LHC. Но в отличие от Большого адронного коллайдера, тут в качестве ускорителя выступает сама вселенная, и это может иметь далеко идущие последствия.

Субдетекторы и подсистемы AMS-02 ().

Так же, как и классические наземные (точнее, подземные) детекторы, он содержит сразу несколько отдельных детектирующих систем, измеряющих разные характеристики частиц. Только в отличие от них, AMS-02 не вглядывается «вовнутрь», а «смотрит наружу»; он похож скорее на один сегмент передового современного детектора.

Кратко устройство описано на сайте эксперимента. Тут есть и трековые детекторы , восстанавливающие траекторию, черенковские детекторы, измеряющие скорость частиц, электромагнитные калориметры , измеряющие энергию частиц, и другие системы. Разделять разные заряды будут сразу два разных магнита (это я наврал). Разделять заряды будет постоянный магнит на 0,125 Тесла из неодимового сплава. И вдобавок, у AMS-02 есть нечто, чего нет у подземных детекторов — GPS датчики и система слежения за звездами:)

Строилось это всё 10 лет, стоимость — порядка 1,5 гигадолларов. В коллаборации AMS числятся 56 институтов из 16 стран.

Главное, чтоб сейчас эта штука удачно улетела. Завтра вечером будем следить за запуском!

Счетчик Гейгера.

Сцинтилляционный счетчик.

Полупроводниковый детектор. В кристалле полупроводника частица создает дополнительные заряды - электронно-дырочные пары. Под действием приложенного напряжения они перемещаются к электродам детектора, создавая во внешней цепи электрический импульс.

Стриповый детектор. Матрица из взаимно-перпендикулярных полосок кремния позволяет с высокой точностью измерять координаты частицы.

Черенковские счетчики нейтринного детектора (Лос- Аламос, США).

Сотрудники МИФИ за сборкой детектора переходного излучения (TRD) для установки ATLAS (Церн, Женева).

Камера Вильсона.

Пузырьковая камера.

Фотография столкновения ионов серы и золота в стримерной (разновидность искровой) камере. Треки рожденных при столкновении заряженных частиц в ней выглядят как цепочки отдельных несливающихся разрядов - стримеров.

Первый детектор заряженных частиц – камера Вильсона.

Принцип работы первой камеры Вильсона.

Современная установка для регистрации элементарных частиц ATLAS.

С открытия в конце XIX века первой элементарной частицы – электрона уже более ста лет физики придумывают все новые и новые приборы для изучения этих мельчайших единиц материи.

Проще всего регистрировать заряженные частицы, поэтому их и открыли раньше. Их выдает ионизационный след, оставляемый электронно-ионными парами вдоль своего пути. За электроном, обнаруженным в потоке лучей разрядной трубки, вскоре были открыты протон (ядро атома водорода), a-частица (ядро атома гелия), ядра других элементов и целая плеяда элементарных частиц, от сравнительно легких мезонов до тяжелых гиперонов и еще более массивных частиц, в состав которых входят тяжелые кварки (см. «Наука и жизнь» № 8, 1994 г.).

Прямая регистрация нейтральных частиц невозможна: они вещество не ионизуют и дают знать о себе только в ходе взаимодействий с образованием заряженных частиц, которые их «засвечивают». Так был открыт нейтрон (по протонам отдачи), гамма-квант (по электрон-позитронным парам) и многие другие «нейтралы».

Приборы, «улавливающие» частицы, делятся на две группы – счетчики и камеры.

Счетчики фиксируют факт прохождения частицы, определяя момент времени (иногда с высокой, до наносекунд, 10-9 c, точностью), величину теряемой энергии, а если из них составить «телескоп», связанный электронной схемой совпадений, то и направление прилета частицы. Хорошо известны газоразрядный счетчик Гейгера, верой и правдой прослуживший в физике полсотни лет; пропорциональный счетчик, сигнал которого служит мерой ионизационных потерь частицы; семейство сцинтилляционных счетчиков. В неорганических сцинтилляторах (кристаллы NaI, CsI и др.), их органических (антрацен и др.) и пластических (полистирол и др.) аналогах под действием заряженных частиц возникают вспышки люминесценции. Это слабое свечение в миллионы раз усиливают фотоэлектронные умножители (ФЭУ). Сцинтилляционные счетчики появились в середине прошлого века и успешно используются по сегодняшний день.

Полупроводниковые счетчики, сигнал которых образуют пары электрон-дырка в слое полупроводника, по чувствительности превосходят сцинтилляторы. Лучшие из них - кристаллы германия, активированные литием, (Ge(Li), - измеряют энергию частицы с точностью 0,1%, но имеют ограниченный размер и требуют глубокого охлаждения. Стриповые детекторы, получившие широкое применение в последние годы, - это разновидность полупроводниковых счетчиков в виде узких полос кремния на твердой подложке. Их взаимно-перпендикулярные слои позволяют измерять координаты частиц с точностью до десятка микрон.

Ионизационная камера, один из самых древних детекторов, это, по сути дела, счетчик, который измеряет полный заряд, созданный частицей в результате ионизации. Различные ее модификации (газовые, жидкостные) до сих пор применяются для измерения энергии частиц и их пучков, особенно часто в дозиметрии. Ксеноновая камера высокого давления, несколько уступая по энергетическому разрешению кристаллам Ge(Li), не ограничена размерами и не требует охлаждения, что особенно ценно для постановки экспериментов на спутниках.

Еще более чувствительны черенковские счетчики, улавливающие когерентное излучение частицы, движущейся со скоростью большей скорости света в среде. Их последнее достижение – так называемые RICH-детекторы (ring imajing Cherenkov), «видящие» не отдельные фотоны, а все кольцо черенковского света, что позволяет измерить многие свойства регистрируемой частицы. К этому классу детекторов относятся и TRD-детекторы (transition radiation detector), счетчики переходного излучения, возникающего при пересечении заряженной частицей границы двух сред. Они выделяют ультрарелятивистские частицы (скорость которых очень близка к скорости света) в огромном потоке частиц и все шире применяются на ускорителях высоких энергий.

Ансамбль счетчиков, размещенный в потоке регистрируемых частиц, образует так называемую годоскопическую установку, которая позволяет проследить путь каждой отдельной частицы, а помещенная в магнитное поле - измерить ее импульс и знак заряда. Счетчики прослаиваются калориметрами - устройствами, измеряющими энергии частиц по образованному ими ливню электронов, позитронов, фотонов в веществе. Счетчики, включенные в «систему времени пролета», измеряют скорость частицы. Современные установки на ускорителях, насчитывающие тысячи счетчиков, дают пространственную картину события - рождения множества вторичных частиц, их распадов и взаимодействий, возникающих при попадании ускоренной частицы в мишень.

Камеры, или трековые детекторы, – это устройства для прослеживания траектории заряженной частицы со всеми вторичными продуктами. Первым трековым детектором была широко известная камера Вильсона (в иностранной литературе - «туманная камера»). Принцип ее действия заключается в образовании капелек тумана на ионизационном следе частицы в переохлажденном паре после резкого сброса давления. Камера Вильсона, помещенная в магнитное поле, стала одним из главных физических приборов начала прошлого столетия; эксперименты с нею привели ко многим фундаментальным открытиям.

Позднее роль лидера измерительной техники перешла к пузырьковой камере, в которой треки частиц создавали микроскопические пузырьки газа в перегретой жидкости. Пузырьковые камеры, особенно наполненные жидким водородом (протонные мишени), способствовали получению выдающихся результатов в ускорительных экспериментах. Известная жидководородная камера Мирабель (самая большая в мире) работала на многих ускорителях, в том числе на синхрофазотроне ИФВЭ (Протвино). Недостатки термодинамических камер (Вильсона, пузырьковой) – малое быстродействие и невозможность автоматизации данных, что стало заметным препятствием после введения в эксперимент компьютера как управляющего и обрабатывающего центра.

Особое место занимает фотоэмульсионная камера (развитие метода ядерной фотоэмульсии) – рекорд-смен по точности измерения координат (до 1 микрона), но совершенно не приспособленная для работы со счетчиками и компьютером. Данные с нее приходится обрабатывать вручную.

На смену ей пришли электроразрядные устройства, резко повысившие эффективность использования ускорительных пучков (за счет быстродействия и возможности «стыковки» со счетчиками частиц): искровые и их разновидность - стримерные камеры. Искры и стримеры – цепочки отдельных разрядов - с высокой точностью следуют по ионизационному следу, даже имеющему форму дуги при движении частицы в магнитном поле. Различные виды искровых и стримерных камер участвовали в важных экспериментах, но все же более универсальным и гибким средством, отвечающим современным требованиям, оказались многопроволочные камеры – пропорциональные, дрейфовые и других модификаций.

Регистрация нейтральных частиц осуществляется теми же методами, что и заряженных (счетчики + камеры), только с учетом того, что прежде они должны создать заряженные частицы.

Особое место занимают детекторы нейтрино - частиц, не участвующих ни в сильном, ни в электромагнитном взаимодействиях. Проникающая способность нейтрино колоссальна, их поток может проходить слой свинца в тысячи астрономических единиц. Вероятность их взаимодействия с веществом на много порядков меньше, чем у заряженных частиц. По этой причине установки для регистрации нейтрино должны иметь большие размеры и массу, измеряемую тысячами тонн. Чтобы снизить фон от посторонних заряженных частиц, нейтринные детекторы располагают под большими толщами вещества (подземные и подводные установки). Широкую известность получили детекторы солнечных нейтрино – Homestake (хлор-аргонный детектор Дэвиса, США), Kamiokande (Япония), а также российские – галлий-германиевый детектор в Баксане и установка «Байкал» в прозрачных водах знаменитого озера (см. «Наука и жизнь» № 8, 1994 г.).

Иллюстрация "Счетчик Гейгера".
В стеклянную трубку, заполненную газом при давлении 100–200 мм рт. ст., помещены два электрода – анод в виде тонкой нити и цилиндрический катод на стенке трубки, к которым приложено постоянное напряжение в несколько сотен вольт. При попадании в трубку заряженной частицы газ ионизуется. Свободные электроны движутся с ускорением к аноду, производя вторичную ионизацию газа. Возникает разряд, вызывающий появление электрического импульса.

Иллюстрация "Сцинтилляционный счетчик".
При попадании заряженной частицы в сцинтиллятор (кристалл, кювету с жидкостью или слой пластика) в нем возникает слабая вспышка люминесценции. Ее свет через световод поступает в фотоэлектронный умножитель, вырабатывающий электрический импульс, амплитуда которого пропорциональна потере энергии налетающей частицы.

Иллюстрация "Черенковские счетчики нейтринного детектора (Лос- Аламос, США)".
В емкость заливается 167 тонн минерального масла с примесью сцинтиллятора. При взаимодействии нейтрино с атомами вещества образуются электроны высокой энергии, скорость которых больше скорости света в среде. При их движении возникает свечение, распространяющееся в виде конуса. Его регистрируют 1220 фотоумножителей на стенках емкости.

Иллюстрация "Камера Вильсона".
Емкость со стеклянной крышкой и поршнем в нижней части заполнена насыщенными парами воды, спирта или эфира. Когда поршень опускается, то за счет адиабатического расширения пары охлаждаются и становятся пересыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своем пути цепочку ионов. Пар конденсируется на ионах, делая видимым след частицы.

Иллюстрация "Пузырьковая камера".
Емкость заполнена хорошо очищенной жидкостью. Центры образования пара в жидкости отсутствуют, поэтому ее можно перегреть выше точки кипения. Но проходящая частица оставляет за собой ионизованный след, вдоль которого жидкость вскипает, отмечая траекторию цепочкой пузырьков. В современных камерах используются жидкие газы – пропан, гелий, водород, ксенон, неон и др. На снимке: пузырьковая камера, сконструированная в ФИАНе. 1955–1956 годы.

Иллюстрация "Первый детектор заряженных частиц – камера Вильсона".
Первый детектор заряженных частиц – камера Вильсона - был создан 19 апреля 1911 года. Камера представляла собой стеклянный цилиндр диаметром 16,5 см и высотой 3,5 см. Сверху цилиндр закрывался приклеенным зеркальным стеклом, через которое фотографировали следы частиц. Внутри находился второй цилиндр, в нем – деревянное кольцо, опущенное в воду. Испаряясь с поверхности кольца, она насыщала камеру водяными парами. Вакуумный насос создавал разрежение в шаровидной емкости, соединенной с камерой трубкой с вентилем. При открывании вентиля в камере создавалось разрежение, водяные пары становились пересыщенными, и на следах заряженных частиц происходила их конденсация в виде полосок тумана (именно поэтому в зарубежной литературе прибор называется the cloud chamber – «туманная камера»).

Иллюстрация "Принцип работы первой камеры Вильсона".
На нитке 1 подвешены шарики 2 и 3. Нитку пережигали, одновременно открывая вентиль 4. Шарики, падая, замыкали последовательно контакты 5 и 6, подключенные к источникам высокого напряжения – батареям лейденских банок. Включалась рентгеновская трубка 7, ионизирующая своим излучением газ в камере, и спустя сотые доли секунды в разряднике 8 возникала искра, освещающая треки. Их снимал фотоаппарат 9. Так без малого сто лет назад начались исследования микромира.

Иллюстрация "Современная установка для регистрации элементарных частиц ATLAS".
Современная установка для регистрации элементарных частиц ATLAS, созданная для работы на Большом адронном коллайдере LHC (Large Hadron Collider), который строится в Центре европейских ядерных исследований (ЦЕРН) в Женеве. В этом гигантском сооружении высотой с восьмиэтажный дом собрана аппаратура для регистрации взаимодействий адронов - элементарных частиц, участвующих в так называемом сильном взаимодействии. Это детекторы мюонов 1, трековый детектор переходного излучения 8, электромагнитные и адронные калориметры 3, 4, 7, огромные сверхпроводящие магниты 2, 5, 9. Детекторы закрыты мощным слоем радиационной защиты 6. Все устройства выполнены с точностью до 100 микрон, должны работать синхронно в условиях сильных полей и потоков фотонов и нейтронов плотностью 107 см2/с многие годы. ATLAS регистрирует все частицы, приходящие в детектор под любыми углами, одновременно фиксируя их характеристики. Основа всей установки - детектор переходного излучения, предназначенный для регистрации следов ультрарелятивистских частиц и их классификации по рентгеновскому излучению, возникающему при их переходе границы двух сред (здесь - воздух-полипропилен), явлению, открытому в 1950-х годах В. Л. Гинзбургом и И. М. Франком. Детектор состоит из 400 тысяч трубок диаметром 4 мм и с четырехслойными стенками толщиной 28 мк. По принципу работы они напоминают счетчик Гейгера: трубка наполнена газовой смесью, по ее оси проходит тонкая проволока под напряжением +1500 В. Частица ионизует газ, электрон дрейфует к проволоке (аноду). Возникший сигнал считывает быстродействующая аппаратура, фиксирующая время прихода и координату с точностью около 1 нс и 100 мк. Весь детектор занимает объем несколько кубических метров и позволяет регистрировать и распознавать «сорта» примерно 10 млрд частиц ежесекундно.

В ядерной физике и физике элементарных частиц, а также в многочисленных областях науки, использующих в своей практике радиоактивные частицы (медицина, судебная экспертиза, промышленный контроль и т. п.), существенное место отводится вопросам обнаружения, идентификации, спектрального анализа заряженных частиц и фотонов высоких энергий (рентгеновских лучей и гамма-лучей). Сначала рассмотрим детекторы рентгеновского и гамма-излучения, а затем детекторы заряженных частиц.

Детекторы рентгеновского и гамма-излучения.

Классический образ искателя урана предполагает седеющего, измученного жарой субъекта, который бродит по пустыне со счетчиком Гейгера в руке. В наши дни в отношении детекторов достигнут значительный прогресс. Во всех современных детекторах используется следующий эффект: энергия поступающего в детектор фотона используется для ионизации какого-либо атома, при этом благодаря фотоэлектрическому эффекту излучается электрон. С этим электроном поступают по-разному в различных типах датчиков.

Рис. 15.19. Пропорциональный счетчик частиц.

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера. Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны имеется узкое «окошко» из материала, пропускающего интересующее вас излучение (пластик, бериллий и т.п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рис. 15.19.

Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 В энергии в расчете на создаваемую им пару электрон-ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение. В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения. Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно. В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае вы получаете хороший большой выходной импульс, но не имеете никакой информации об энергии рентгеновского излучения.

В разд. 15.16 вы познакомитесь с интересным прибором, называемым анализатором ширины импульсов, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму. Если ширина импульса является мерой энергии частицы, то с помощью такого прибора получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от до . Пропорциональные счетчики обладают разрешающей способностью порядка 15% при значении энергии (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп/с).

Сцинтилляторы. Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электрон-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем.

Распространенным сцинтиллятором является кристаллический иодид натрия с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ (разд. 15.16). Обычно кристалл обеспечивает разрешение порядка 6% при значении энергии 1,3 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад ) и используется в энергетическом диапазоне от до нескольких ГэВ. Световой импульс имеет длительность порядка , следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе, имеющем окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

В сцинтилляторах используют также пластики (органические материалы), которые отличаются тем, что они очень недороги. Разрешение у них хуже, чем у иодида натрия, и используют их в основном в тех случаях, когда имеют дело с энергией выше 1 МэВ. Световые импульсы получаются очень короткими - их длительность составляет примерно 10 не. В биологических исследованиях в качестве сцинтилляторов используют жидкости («коктейли»). При этом материал, исследуемый на радиоактивность, примешивается к «коктейлю», который помещается в темную камеру с фотоумножителем. В биологических лабораториях можно встретить очень красивые приборы, в которых процесс автоматизирован; в них через камеру счетчика одна за другой помещаются различные ампулы и регистрируются результаты.

Детекторы на твердом теле. Как и в других областях электроники, революцию в области обнаружения рентгеновского и гамма-излучения произвели достижения в технологии изготовления кремниевых и германиевых полупроводников. Детекторы на твердом теле работают точно так же, как классические ионизационные камеры, но активный объем камеры заполняется в данном случае непроводящим (чистым) полупроводником. Приложенный потенциал порядка 1000 В вызывает ионизацию и генерирует импульс заряда. При использовании кремния электрон теряет всего около 2 эВ на пару электрон-ион, значит, при той же энергии рентгеновского излучения создается гораздо больше ионов, чем в пропорциональном газонаполненном детекторе, и обеспечивается лучшее энергетическое разрешение благодаря более представительным статистическим данным. Некоторые другие, менее значительные эффекты также способствуют тому, что прибор имеет улучшенные характеристики.

Выпускают несколько разновидностей детекторов на твердом теле: на основе (называются ), («жил-ли») и чистого германия (или IG), отличающихся друг от друга материалом полупроводника и примесей, используемых для того, чтобы обеспечить изолирующие свойства. Все они работают при температуре жидкого азота , и все типы полупроводников с примесью лития нужно постоянно держать в холодном состоянии (повышенная температура влияет на детектор так же плохо, как на свежую рыбу). Типовые детекторы на основе имеют диаметр от 4 до 16 мм и используются в энергетическом диапазоне от 1 до . Детекторы на основе и IG используют при работе с более высокими значениями энергии, от до 10 МэВ. Хорошие детекторы на основе обладают разрешением 150 эВ при значении энергии разрешение в 6-9 раз лучше, чем у пропорциональных счетчиков), германиевые детекторы обладают разрешением порядка при значении энергии 1,3 МэВ .

Рис. 15.20. Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе .

Для того чтобы проиллюстрировать, что дает такое высокое разрешение, мы бомбардировали лист нержавеющей стали протонами с энергией 2 МэВ и проанализировали полученный рентгеновский спектр. Это явление называют рентгеновской эмиссией за счет протонов, и оно является мощным средством анализа веществ, при котором используется взаимное расположение спектров элементов. На рис. 15.20 показан энергетический спектр (полученный с помощью анализатора ширины импульсов), каждому элементу соответствуют два видимых рентгеновских импульса, по крайней мере при использовании детектора на основе . На графике можно видеть железо, никель и хром. Если нижнюю часть графика укрупнить, то можно будет увидеть и другие элементы. При использовании пропорционального счетчика получается «каша».

Рис. 15.21 иллюстрирует аналогичное положение для детекторов гамма-излучения.

Рис. 15.21. Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li). (Из брошюры Canberra Ge(Li) Detector Systems фирмы Canberra Industries, Inc.)

Рис. 15.22. Криостат с датчиком . (С разрешения фирмы Canberra Industries, )

На этот раз сравниваются между собой сцинтиллятор на основе и датчик на основе . Этот график нам помогли получить коллеги из фирмы Canberra Industries. Выражаем благодарность мистеру Тенчу. Как и в предыдущем случае, преимущество в отношении разрешающей способности оказалось на стороне детекторов на твердом теле.

Детекторы на твердом теле обладают самым высоким энергетическим разрешением среди всех детекторов рентгеновского и гамма-излучения, но у них есть и недостатки: маленькая активная область в большом и неуклюжем корпусе (см., например, рис. 15.22), относительно невысокое быстродействие (время восстановления составляет и более), высокая стоимость и, кроме того, для работы с ними нужно запастись большим терпением (но может быть вам и понравится нянчиться с «пожирателем» жидкого азота, кто знает).

Детекторы заряженных частиц.

Детекторы, которые мы только что описали, предназначены для определения энергии фотонов (рентгеновских и гамма-лучей), но не элементарных частиц. Детекторы элементарных частиц имеют несколько иной облик; кроме того, заряженные частицы отклоняются электрическим и магнитным полями в соответствии с их зарядом, массой и энергией, благодаря чему измерять энергию заряженных частиц значительно проще.

Детекторы с поверхностным энергетическим барьером. Эти германиевые и кремниевые детекторы аналогичны детекторам из . Однако их не требуется охлаждать, а это намного упрощает конструктивное оформление прибора. (А у вас появляется шанс получить свободное время!) Детекторы с поверхностным энергетическим барьером выпускают с диаметрами от 3 до 50 мм. Их используют в энергетическом диапазоне от 1 МэВ до сотен МэВ, они обладают разрешением от 0,2 до 1% при значении энергии альфа-частиц, равном 5,5 МэВ (распространенная энергетическая калибровка, которая обеспечивается при распаде америция-241).

Детекторы Черенкова. При очень высоких значениях энергии (1 ГэВ и выше) заряженная частица может опередить свет в материальной среде и вызвать излучение Черенкова, «видимую ударную волну». Они находят широкое применение при экспериментах в физике высоких энергий.

Ионизационные камеры. Классическую газонаполненную камеру, которую мы рассмотрели выше в связи с рентгеновским излучением, можно использовать также в качестве детектора заряженных частиц. Простейшая ионизационная камера состоит из камеры, заполненной аргоном, и проходящего по всей ее длине провода. В зависимости от того, для работы с какими энергиями предназначена камера, ее длина может составлять от нескольких сантиметров до нескольких десятков сантиметров; в некоторых разновидностях прибора используют не один, а несколько проводов или пластин и другие газы-наполнители.

Душевые камеры. Душевая камера является электронным эквивалентом ионизационной камеры. Электрон попадает в камеру, заполненную жидким аргоном, и создает «душ» из заряженных частиц, которые затем притягиваются к заряженным пластинам.

Специалисты в области физики высоких энергий любят называть такие приборы калориметрами.

Сцинтилляционные камеры. Заряженную частицу можно обнаружить с очень хорошим энергетическим разрешением с помощью фотоумножителей по ультрафиолетовым вспышкам, которые возникают при движении заряженной частицы в камере, заполненной жидким или газообразным аргоном или ксеноном. Сцинтилляционные камеры обладают более высоким быстродействием по сравнению с ионизационными и душевыми камерами.

Дрейфовые камеры. Это новейшее достижение в области физики высоких энергий, которое обусловлено успехами в области быстродействующих диалоговых вычислительных систем. Концепция их проста: камера, в которой под атмосферным давлением находится газ (обычная смесь аргона с этаном) и множество проводов с приложенным к ним напряжением. В камере действуют электрические поля, и когда в нее попадает заряженная частица, ионизирующая газ, ионы оказываются в сфере действия проводов. Отслеживаются амплитуды сигналов и моменты времени по всем проводам (вот здесь и приходит на помощь ЭВМ), и на основе этой информации строится траектория движения частицы. Если в камере действует еще магнитное поле, то можно также определить количество движения.

Дрейфовая камера завоевала положение универсального детектора заряженных частиц для физики высоких энергий. Она может обеспечить пространственное разрешение порядка 0,2 мм и выше для объемов, которые могут вместить даже вас.