Функционально крючок гиппокампа является. Из-за чего повреждается гиппокамп? Нарушения функций гиппокампа


Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокампы обоих полушарий связаны между собой комиссурой (plasterium).

Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14-30 в секунду) и медленными тета-ритмами (4-7 в секунду).

Если с помощью фармакологических методов в новой коре ослабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гиппокампе и высокочастотных ритмов в новой коре.

Значение тета-ритма заключается в том, что он отражает реакцию гиппокампа, а тем самым - его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в динамике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения - страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздражение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе перекрываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т. е. способностью реагировать на световые, звуковые и другие виды раздражений.

Нейроны гиппокампа отличаются выраженной фоновой активностью. В ответ на сенсорное раздражение реагирует до 60% нейронов гиппокампа. Особенность строения гиппокампа, взаимосвязанные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с) нейронов на однократный короткий стимул.

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Обширные повреждения гиппокампа у животных характерным образом нарушают протекание условнорефлекторной деятельности. Например, крысу довольно легко научить находить приманку в 8-лучевом лабиринте (лабиринт представляет собой центральную камеру, от которой радиально отходят 8 коридоров) только в каждом втором или четвертом рукаве. Крыса с поврежденным гиппокампом не обучается этому навыку и продолжает обследовать каждый рукав.

Очередное доказательство тесной связи между сном и работой гиппокампа получил Мэтью Уокер из Гарварда. Он и его коллеги установили, что всего одна ночь без сна может заметно повлиять на работу органа, играющего ключевую роль в процессе закрепления новых знаний в памяти.

10 студентов-добровольцев провели одну ночь без сна, после чего им показали 30 слов, которые испытуемые должны были запомнить. Через два дня экспериментаторы проверили надёжность запоминания. Оказалось, что эти 10 человек запомнили слов в среднем на 40 % меньше, чем контрольная группа из 10 студентов, которые спали как обычно.



ГИППОКАМП (hippocampus ; греч, hippokampos морское чудовище с телом коня и рыбьим хвостом; син.: аммонов рог, cornu Ammonis ) - парное образование - часть старой коры большого мозга; располагается на медиальной стенке нижних рогов боковых желудочков. Г. является центральной структурой лимбической системы (см.).

Вопрос о функциях Г. весьма сложен и до конца не решен. Прежние представления об участии Г. в функции обоняния как части «обонятельного мозга» (rhinencephalon) отвергнуты. На основании последствий удаления и стимуляции Г. у животных были высказаны предположения, что Г. участвует в организации ориентировочного рефлекса и внимания, регуляции вегетативных реакций, мотиваций (см.) и эмоций (см.), управлении произвольными движениями, механизмах памяти (см.) и обучения. Вместе с тем у животных после удаления Г. сохраняются выработанные до разрушения Г. условные связи и возможность выработки новых простых условных рефлексов. Однако формирование более сложных форм поведения (цепные, отставленные условные рефлексы, условные рефлексы на время, сложные дифференцировки, лабиринтные навыки) резко затрудняется. Особенно страдают формы поведения, связанные с необходимостью активного торможения - угасание ориентировочного рефлекса, неподкрепляемых условных рефлексов. Переделка ранее выработанных систем условных связей становится невозможной. В целом поведение становится значительно менее гибким, стереотипным, трудно перестраивающимся в соответствии с меняющимися условиями окружающей среды.

При стимуляции Г. электрическим током с физиологически адекватной частотой и силой он остается так наз. немой структурой. Интенсивности тока, которые при действии на гипоталамус вызывают развернутые комплексы соматических и висцеральных реакций, в Г. не вызывают никаких внешних эффектов, кроме реакции «успокоения» животного. При повышении частоты и силы тока, раздражающего Г., можно получить широкий спектр различных соматических и вегетативных проявлений, что, по-видимому, является следствием распространения судорожных разрядов по системе структур, связанных с Г. или лежащих вблизи от него, а также патол, состояния самого Г. Установлено, что Г. имеет наиболее низкий порог возникновения эпилептических разрядов в электрической активности, хотя внешние проявления развернутых судорожных припадков с клонической и тонической фазами возникают лишь при значительном увеличении параметров электрической стимуляции. Нанесение умеренной (не вызывающей двигательных судорог) стимуляции Г. сразу после выработки условного рефлекса приводит к исчезновению следов обучения. Аналогичный эффект дает введение в Г. ряда фармакол, веществ, в частности холинолитиков.

Т. о., наиболее вероятной функцией Г. является участие в регистрации новой информации. При этом уже сформировавшиеся следы памяти не хранятся в Г., но запись новых следов существенно зависит от его нормального функционирования. Ряд исследователей полагает, что Г. осуществляет сравнение вновь поступающей информации с уже имеющимися следами, на основании чего происходит выявление сигналов, подлежащих записи, и обеспечиваются условия, необходимые для формирования долговременной памяти.

В филогенезе истинный, относительно дифференцированный Г. впервые появляется у рептилий. Первоначально Г. располагается на медиодорсальной поверхности полушарий, но при последующем развитии неокортекса и его комиссуры (мозолистого тела Г.) оказывается оттесненным в глубь полушария. Часть Г. подвергается редукции, превращаясь в рудимент Г. (indusium griseum). У грызунов и хищных Г. занимает дорсовентральное положение и соответственно делится на дорсальный и вентральный отделы. При дальнейшем росте неокортекса дорсальная часть Г. редуцируется. Однако сохраняющаяся часть Г. является прогрессивно развивающейся структурой. В ходе эволюции происходит качественная дифференцировка и количественный рост числа нервных элементов и волокон Г. и непосредственно связанных с ним структур (в сравнении с ядрами таламуса и гипоталамуса). Наибольшее увеличение числа клеточных элементов Г. (в 5 раз) произошло у человека. У человека Г. занимает положение в глубине височной доли, где он образует медиальную стенку нижних рогов боковых (латеральных) желудочков (рис. 1). Развитие г. идет в тесной связи с ростом неокортекса (новой коры), и на каждом этапе филогенетического развития Г. получает проекции от высших для данного уровня эволюции областей коры» в частности у приматов и человека связи идут от лобных долей и нижнетеменной дольки.

Эмбриология

Эмбриол, исследование показывает, что основные структурные черты Г. выявляются довольно рано (у кролика - к концу 4-й нед., а у человека - к 4-му мес. внутриутробного развития). Однако основная масса нейронов Г. и особенно зубчатой фасции формируется постнатально. У крысы выход и пролиферация нейробластов в Г. продолжаются в течение двух недель постнатального развития, а в зубчатой фасции этот процесс не заканчивается м в 3 недели, когда в неокортексе формирование клеточных слоев уже завершено. Окончательная дифференциация клеточных элементов и прекращение роста Г. у грызунов происходит одновременно с неокортексом, в 40 дней. У человека наиболее интенсивное нарастание массы волокон свода Г., составленного аксонами его клеток, происходит в 3-7 лет, но увеличение идет и после 12 лет.

Морфология

Г. животных и человека входит в состав более обширной области - гиппокамповой формации. К ней относятся: энторинальная область (area entorhinalis), образующая парагиппокамповую извилину приматов (gyrus parahippocampalis), ряд сложно организованных переходных областей (parasubiculum, presubiculum и subiculum), а также зубчатая фасция (fascia dentata; ее свободная часть, обращенная в полость желудочка, образует gyrus dentatus). Энторинальная область у животных (поле 28) имеет сложную шестислойную структуру и рассматривается как переходная область между неокортексом и более примитивно организованным палеокортексом (древняя кора) грушевидной доли (gyrus piriformis). Она делится на медиальную часть, наиболее характерной особенностью к-рой является наличие крупных клеток во II слое, и латеральную, где клетки II слоя малы. В parasubiculum (поле 49) клеточные слои, представленные в энторинальной области, расширяются и сливаются. Граница с presubiculum (поле 27) является очень резкой, здесь исчезают пирамидальные нейроциты (пирамидные нейроны), которые сменяются зерновидными нейроцитами (зернистыми клетками). Между para- и presubiculum вклинивается небольшая дополнительная зона (поле 29 е, area retrosplenialis e). В subiculum вновь появляются крупные, рыхло расположенные пирамидальные нейроциты, которые при переходе к Г. собираются в узкий компактный слой.

По гистол, критериям Г. делится на ряд полей. С. Рамон-и-Кахаль делил Г. на два отдела: regio superior (прилежит к subiculum) и regio inferior (прилежит к fimbria hippocampi). Эта классификация применяется преимущественно в нейрохим. исследованиях. Розе (М. Rose) и И. Н. Филимонов делят Г. на пять полей (hi-h5, начиная от subiculum). Наиболее часто (рис. 2) употребляется деление Г, на четыре поля (CA1-СА4), введенное Лоренте де Но (R. Lorente de No). Поле CA1(h1) в клин, исследованиях иногда называют сектором Зоммера, а остальные поля - резистентным сектором. Правильность деления Г. на поля по гистол, критериям подтверждается различием афферентных и эфферентных связей, биохим, и физиол, характеристик и различной чувствительностью к ряду фармакол, веществ и патол, факторов. Так, в поле CA1 в первую очередь обнаруживаются патол. изменения при аноксии, а также при болезни Альцгеймера (см. Альцгеймера болезнь). Другие поля вместе с зубчатой фасцией дегенерируют при амавротической идиотии (см.), хотя сектор Зоммера остается почти интактным.

Основным клеточным элементом Г. являются крупные пирамидальные нейроциты, тела которых образуют единый плотный слой. Отростки этих клеток строго ориентированы перпендикулярно к продольной оси Г. Вследствие этого в Г. четко выделяются следующие слои, соответствующие различным уровням ветвления их дендритной системы (а не расположению разных типов клеток, как в неокортексе): alveus, содержащий в основном миелинизированные аксоны пирамид (пирамидальных нейроцитов); stratum oriens, где находятся ветвящиеся базальные дендриты; stratum pyramidale, содержащий тела пирамидальных нейроцитов; stratum radiatum, где проходят неветвящиеся стволы апикальных дендритов; stratum molecularelacunosum - область претерминальных и терминальных ветвлений апикальных дендритов. В regio inferior выделяется дополнительный слой - stratum lucidum, где на проксимальных сегментах апикальных дендритов заканчиваются аксоны зубчатой фасции. Остальные афферентные волокна, входящие в Г., также заканчиваются на определенных уровнях дендритов пирамидных клеток (пирамидальных Нейроцитов), в результате чего синапсы одного происхождения концентрируются в узких зонах.

Прилежащая к Г. зубчатая фасция у животных состоит из плотного слоя зернистых клеток (зерновидных нейроцитов). Их аксоны (мшистые волокна) заканчиваются гигантскими синапсами на пирамидальных клетках полей СА3-СА4, не выходя за пределы своей стороны. Т. о., зубчатая фасция, к к-рой подходят афференты (в основном от энторинальной коры), является внутренней релейной структурой гиппокамповой формации. В зубчатой фасции выделяют 3 слоя: stratum moleculare, содержащий дендриты зерновидных нейроцитов; stratum granulosum, содержащий их тела, и stratum polymorphe, где находятся полиморфные клетки и проходят аксоны зерновидных клеток.

Аксоны пирамидальных нейроцитов Г. выходят из него, образуя бахромку (fimbria hippocampi) и дорсальный свод (fornix dorsalis). В составе бахромки проходят комиссуральные волокна Г., образующие вентральную комиссуру Г. (psalterium ventrale, commissura fornicis, commissura hippocampi, давидова лира). Эфферентные нисходящие волокна Г. образуют компактный пучок - посткомиссуральный свод (fornix postcommissuralis) и более диффузный прекомиссуральный свод (fornix precommissuralis). Составляющие их волокна частично переключаются в ядрах перегородки (septum, у человека - septum pellucidum). Посткомиссуральный свод в основном заканчивается в медиальных ядрах сосцевидных, или мамиллярных, тел (corpora mamillaria). Последующие звенья этой системы [мамиллоталамический тракт - передние ядра зрительного бугра (таламуса) - поясной пучок - поясная и энторинальная кора] образуют основной лимбический круг, или так наз. круг Пейпса. Остальные нисходящие волокна Г., частично переключаясь в латеральной преоптической области и латеральном гипоталамусе, идут к неспецифическим (ретикулярным) структурам среднего мозга. Афферентные связи к Г. восходят от этих же отделов мозга гл. обр. в составе медиального переднемозгового пучка. Перед вступлением в Г. большинство этих волокон переключается на медиальном ядре перегородки (nucleus medialis septi). Вторым источником афферентных связей является энторинальная область коры.

Физиология

Рис. 3. Электроэнцефалограмма (ЭЭГ) различных полей гиппокампа у кролика: при первых применениях звукового раздражителя (тон) нерегулярные высокоамплитудные волны, регистрируемые в гиппокампе, сменяются регулярным низкоамплитудным синусоидальным ритмом с частотой 3-6 гц («тэта-ритм»); при повторении раздражителя реакция угасает: 1-отметка действия раздражителя; 2-5-ЭЭГ полей CA1, CA2, CA3, СА4 гиппокампа; I-ЭЭГ при первом применении звукового раздражителя; II-ЭЭГ при пятом применении звукового раздражителя; III-ЭЭГ при пятнадцатом применении звукового раздражителя.

При записи суммарной электрической активности Г. у животных в состоянии покоя регистрируются нерегулярные высоко-амплитудные волны, которые при действии сенсорных раздражителей сменяются особым регулярным синусоидальным ритмом с частотой 3-6 гц (тэта-ритм). Этот ритм наиболее четко выражен у низших млекопитающих (грызунов). На более высоких ступенях эволюции выраженность тэта-ритма в Г. снижается, но и у приматов его можно выделить методом частотного анализа. Тэта-ритм можно вызвать электрической стимуляцией ретикулярной формации среднего мозга, а также гипоталамуса. Постепенное повышение частоты или силы стимуляции сначала вызывает нарастание частоты тэта-ритма (до 8-10 гц), а затем приводит к десинхронизации активности Г. Появление тэта-ритма в Г. зависит от ритмических залповых разрядов клеток медиального ядра перегородки (пейсмекера тэта-ритма). Тэта-ритм в Г. возникает как при действии любых новых сенсорных раздражителей, так и при выработке различных условных связей (независимо от качества подкрепления и характера ответной реакции). Угасание ориентировочного рефлекса и автоматизации условных связей сопровождается снижением частоты, ограничением и подавлением тэта-ритма (рис. 3). По-видимому, тэта-ритм представляет собой особое проявление общей реакции активации, организуемой через восходящую ретикулярную формацию й отражающей повышение функционального состояния мозга, необходимого для анализа новой информации и выработки новых условных связей.

Регистрация активности одиночных нейронов Г. выявляет высокую реактивность пирамидальных нейроцитов полей СА3-СА4 к различным сенсорным раздражителям. На все раздражители эти клетки отвечают длительными тоническими реакциями. При повторных раздражениях ответные реакции нейронов уменьшаются и даже прекращаются, но вновь восстанавливаются при изменении параметров раздражителя. Клетки поля САХ более избирательны в отношении действующих раздражителей, и их ответы на различные раздражители различны. Электрическая стимуляция систем связей Г. при регистрации активности его нейронов выявляет особенности возбуждения этой структуры. При низкочастотной (до 8 гц) и высокочастотной (св. 30-40 гц) стимуляции нейроны Г. преимущественно тормозятся. Активное возбуждение нейронов Г. возникает лишь в узком частотном диапазоне стимуляции (приблизительно 8-30 гц). За этими пределами стимуляция Г. может быть эквивалентной его функциональному выключению. Это явление называется частотной, или ритмической, потенциацией.

Нарушения функций гиппокампа

В клинике последствия двустороннего поражения Г. (при опухолях, инсультах, «лимбическом» энцефалите, вызываемом вирусом herpes simplex), а также его хирургического удаления (при иссечении очага эпилептической активности в случаях височной эпилепсии) выражаются в нарушениях памяти. Если повреждения гиппокампа не сопровождаются обще-мозговыми нарушениями и не затрагивают соседних структур, наблюдается полная сохранность сенсорных процессов, двигательной и эмоциональной сферы, интеллекта и речи. Навыки и знания, приобретенные больными до поражения Г., остаются сохранными. Однако исчезает способность к запоминанию любой новой информации (антероградная амнезия) и проявляется ретроградная амнезия (см.), при к-рой объем кратковременной памяти может оставаться нормальным, но перехода ее в долговременную не происходит. Наблюдающиеся нарушения не зависят от сенсорной модальности вводимой информации (зрительная, слуховая) или от ее характера (слова, рисунки, двигательные навыки). Т. о., страдает так наз. общий фактор памяти - возможность перехода кратковременной памяти в долговременную. Аналогичные явления - нарушение запоминания предъявляемого материала и забывание предшествующих событий - наблюдаются у человека при электрической стимуляции Г. Одностороннее повреждение Г. не влечет явных последствий.

При необходимости удаления эпилептического очага, захватывающего один Г., предварительно проводят амиталовую пробу, чтобы выяснить, не изменен ли противоположный Г. патол, процессом настолько, что в нем не выявляются судорожные разряды. При этом в Г., подлежащий резекции, вводят амитал натрия, временно выключающий его, и дают тест на запоминание; если запоминание не нарушается, контралатеральный Г. сохранен и операция возможна. Есть указания, что и одностороннее повреждение Г. у человека оказывает влияние на память, хотя более ограниченное и специфическое, - при повреждении Г. доминантного (левого) полушария несколько ухудшается запоминание словесного материала, а при повреждении Г. правого полушария снижается способность запоминать неречевой материал (лица, сочетания линий и т. п.).

Библиография: Виноградова О. С. Гиппокамп и память, М., 1975, библиогр.; Серков Ф. Н. К физиологии гиппокампа, Ф1зюлогичн. журн., т. 14, № 6, с. 830, 1968, библиогр.; Филимон о в И. Н. Сравнительная анатомия коры большого мозга млекопитающих, Палеокортекс, архикортекс и межуточная кора, М., 1949, библиогр.; Douglas R. J. The hippocampus and behavior, Psychol. Bull., v. 67, p. 416, 1967, bibliogr.; The hippocampus, ed. by R. L. Isaacson а. K. H. Prilram, v. 1-2, N.Y., 1975; KimbleD.P. Hippocampus and internal inhibition, Psychol. Bull., v. 70, p. 285, 1968, bibliogr.; Lorente de No R. Studies on structure of cerebral cortex, continuation of study of ammo-nic system, J. Psychol. Neurol. (Lpz.), v. 46, p. 113, 1934; Milner B. Disorders of learning and memory after temporal lobe lesions in man, Clin. Neurosurg., v. 19, p. 421, 1972, bibliogr.; Ramon у Caja 1 S. Studies on the cerebral cortex, L., 1955; o h же, The structure of Ammon’s horn, Springfield, 1968, bibliogr.

О. С. Виноградова.

Гиппокамп. Вы когда-нибудь чувствовали себя глупо, забыв в последний момент то, что хотели сказать? Наша голова переполнена различной информацией, которую мы накапливаем годами. Иногда информации столько, что наш мозг вынужден забывать или игнорировать какую-то её часть.

Отдел мозга, отвечающий за такие важнейшие функции, как память, эмоции и обучение, называется гиппокамп. Без него мы потеряли бы возможность вспоминать и испытывать эмоции, связанные с этими воспоминаниями. Хотите узнать больше? Нейропсихолог Майрена Васкес расскажет вам о том, что такое гиппокамп и почему такая крохотная мозговая структура имеет такое большое значение.

Гиппокамп отвечает за память и эмоции

Что такое гиппокамп?

Гиппокамп обязан своим названием анатому Джулио Чезаре Аранцио, также известному как Арантиус или Юлий Цезарь Аранци, который ещё в XVI веке обратил внимание на то, что эта часть мозга внешне очень напоминает морского конька . Слово «гиппокамп» происходит от греческого Hippos (конь) и Kampe (изогнутый).

Сделав научное открытие этой мозговой структуры, Арантиус связал её с обонянием, выдвинув идею о том, что основной функцией гиппокампа является обработка обонятельных стимулов (запахов). Эта теория поддерживалась вплоть до 1890 года — до тех пор, пока академик Владимир Бехтерев не доказал, что в действительности гиппокамп отвечает за память и когнитивные процессы.

Вы хотите знать, как работает ваш мозг? Присутствуют ли симптомы, указывающие на возможное наличие какого либо расстройства? Проверьте основные способности и функции вашего мозга с помощью CogniFit прямо сейчас!

Гиппокамп — один из важнейших отделов человеческого мозга , тесно связанный с памятью и эмоциями . Он расположен в височной доле (за каждым виском) и сообщается с различными отделами коры головного мозга.

Гиппокамп считается основной структурой памяти .

Это небольшой парный орган удлинённой и извилистой формы, расположенный в обоих полушариях головного мозга (т.е. по одному гиппокампу в правом и левом полушарии).

Гиппокамп получил своё название из-за схожести с морским коньком

Где находится гиппокамп?

Гиппокамп находится в медиальной височной доле и соединён с различными областями головного мозга.

Гиппокамп, а также миндалина и формируют и отвечают за управление примитивными физиологическими реакциями. Эти отделы относятся к самой «древней, глубокой и примитивной» части мозга, известной как «архикортекс» (старая кора) или «аллокортекс» (наиболее древняя область человеческого мозга), появившаяся миллионы лет назад для обеспечения основных потребностей предков млекопитающих.

Гиппокамп расположен в височной доле и является частью лимбической системы. Рис. Википедия

Зачем нужен гиппокамп?

Каковы функции гиппокампа? Какую роль он играет? За что отвечает? Среди основных функций гиппокампа — умственные процессы, связанные с консолидацией памяти и процессом обучения , а также процессы возникновения и регулирования эмоциональных состояний и обеспечение ориентации в пространстве.

Ряд исследователей также обнаружили связь гиппокампа с ингибицией или ингибиторным контролем поведения, но это достаточно новая информация, которая пока ещё изучается.

Гиппокамп и память

Гиппокамп отвечает, в первую очередь, за эмоциональную и декларативную память. С его помощью мы можем узнавать лица, описывать предметы и события, а также связывать позитивные или негативные переживания и ощущения с воспоминаниями о прожитых событиях.

Гиппокамп участвует в формировании как эпизодических, так и автобиографических воспоминаний , основываясь на нашем пройденном опыте. Мозгу необходимо место, чтобы хранить весь этот объём информации долгие годы, поэтому гиппокамп передаёт эти временные воспоминания в другие области мозга, где они сохраняются в долговременной памяти .

Именно поэтому самые старые воспоминания лучше хранятся. При повреждении гиппокампа мы потеряли бы способность к обучению и удержанию информации в памяти. Кроме способности превращать воспоминания в долговременную память, гиппокамп связывает их содержимое с позитивными или негативными эмоциями в зависимости от того, связаны ли эти воспоминания с положительным или отрицательным опытом.

Существует множество видов памяти: , эпизодическая память, процедурная память, имплицитная или скрытая память, декларативная память и т.д. Гиппокамп отвечает за декларативную память (включает наш личный опыт и знания об окружающем мире), управляя её содержимым, которое можно выразить в вербальной форме (словами). Различные виды памяти не регулируются исключительно гиппокампом, задействованы и другие отделы мозга . Гиппокамп ответственен за большую часть процессов, связанных с потерей памяти , однако не за все.

Гиппокамп и обучение

Гиппокамп является одной из немногих областей мозга, способных к нейрогенезу на протяжении всей жизни, в связи с чем он отвечает за обучаемость и удержание информации. Другими словами, гиппокамп способен создавать новые нейроны и связи между ними в течение всего жизненного цикла.

Знания приобретаются постепенно после многих усилий, и это напрямую связано с гиппокампом. Для сохранения в нашем мозге новой информации жизненно важно формирование новых нейронных связей. Поэтому гиппокамп играет основную роль в обучении.

Любопытный факт: правда ли то, что у лондонских таксистов гиппокамп больше и развит лучше? Почему? Чтобы получить лицензию, таксисты Лондона должны сдать сложный экзамен, для которого необходимо выучить наизусть огромное количество улиц и мест. В 2000 году Элеонор Магир провела исследование лондонских таксистов, которое показало, что задняя часть их гиппокампа больше. Также она обнаружила, что размер гиппокампа прямо пропорционален рабочему стажу водителя. Таким образом, тренировка, обучение и опыт меняют и моделируют мозг.

Влияние обучения на мозг и гиппокамп у лондонских таксистов. Рис. frontiersin.org

Ориентация в пространстве и гиппокамп

Одной из важных функций, в которой гиппокамп играет значимую роль, является пространственная ориентация .

Пространственная ориентация или навигация позволяет нам удерживать разум и тело в трёхмерном пространстве, двигаться и взаимодействовать с окружающим миром.

Были проведены различные исследования на грызунах, которые показали, что важнейшей функцией гиппокампа является способность к ориентированию и пространственная память. Благодаря гиппокампу мы можем ориентироваться в незнакомых городах и местности и т.д. Однако эти данные пока ещё мало изучены на людях и требуют дополнительного исследования.

Что происходит при повреждении гиппокампа?

Повреждение гиппокампа приводит к невозможности запоминать новые события. Т.е. возникает антероградная амнезия, при которой человек не может вспомнить события, произошедшие после нарушения памяти. При этом знания и память о том, что происходило до начала заболевания, сохраняются.

Поражения гиппокампа могут спровоцировать возникновение антероградной или ретроградной амнезии в зависимости от теряемых воспоминаний, связанных с декларативной памятью. При этом недекларативная память не затрагивается и остаётся неповреждённой. Например, человек с поражением гиппокампа может научиться кататься на велосипеде после начала заболевания, однако не будет помнить, что когда-либо в своей жизни видел велосипед ранее. Т.е. человек с повреждённым гиппокампом способен приобретать навыки, но не может вспомнить сам процесс.

Антероградная амнезия — это потеря памяти на события, произошедшие после начала заболевания или травмы. Ретроградная амнезия, наоборот, приводит к забыванию событий и воспоминаний, предшествующих заболеванию или травме.

Возникает вопрос: почему при амнезии повреждается гиппокамп? Объясняя простыми словами, эта часть мозга представляет собой подобие двери для нейронных паттернов, которые спорадически удерживают информацию до того, как она попадает в лобную долю. Можно сказать, что гиппокамп является ключом к консолидации памяти, превращая Кратковременную память в Долговременную. Если эта дверь повреждена и не позволяет сохранять информацию, будет невозможно создавать долговременные воспоминания.

Кроме того, при повреждении гиппокампа теряется не только способность к воспоминаниям, но способность испытывать связанные с этими воспоминаниями эмоции , поскольку человек не может связать события и чувства, которые они вызвали.

Из-за чего повреждается гиппокамп?

В основном поражения гиппокампа происходят вследствие старения и , стресса, цереброваскулярных болезней, эпилепсии, аневризмы, энцефалита, шизофрении и т.д.

Вы подозреваете у себя или близкого вам человека депрессию? Проверьте прямо сейчас, существует ли риск развития депресии с помощью инновационного нейропсихологического . Начните прямо сейчас!

Старение и деменции

При старении в целом и деменциях (таких, как болезнь Альцгеймера) в частности, гиппокамп является одной из наиболее уязвимых частей мозга. Нарушается способность формировать новые воспоминания или воссоздавать в памяти свежие факты автобиографии. В данном случае причиной проблем с памятью является гибель нейронов гиппокампа.

Большинство из нас сталкивались с людьми, страдающими каким-либо видом деменции или потерявшими память . Любопытно, но у таких людей дольше всего сохраняются детские воспоминания или память об очень давних событиях. Почему так происходит если повреждён гиппокамп?

Дело в том, что даже при сильном поражении гиппокампа (вследствие деменции или другого заболевания) лучше всего сохраняются наиболее старые и важные для человека воспоминания из-за того, что с течением времени эти воспоминания , как мы упомянули выше, «отделились» от гиппокампа, став частью других мозговых структур, связанных с долговременной памятью.

Гиппокамп и стресс

Этот отдел мозга очень страдает при стрессе, поскольку стресс ингибирует и атрофирует нейроны.

Вы обратили внимание на то, что в состоянии стресса, когда вам нужно сделать множество самых разных дел, иногда начинаются

Стресс, и, в частности, кортизол (вид гормона, который высвобождается в ответ на стресс), повреждает наши мозговые структуры, зачастую вызывая гибель нейронов. Поэтому очень важно научиться сохранять спокойствие и управлять своими эмоциями для того, чтобы сохранить здоровье гиппокампа и помочь ему оптимально выполнять свои функции.

Узнать больше…

Если вам интересна эта тема, посмотрите фильм «Помни» («Memento»), в котором главный герой, страдающий антероградной амнезией, неустанно пытается не забыть всё, что с ним происходит.

Будем признательны за вопросы и комментарии к статье.

Перевела с испанского Анна Иноземцева Французский

Сегодня вторник, а это значит, что мы продолжаем наш цикл материалов об устройстве такого неизученного и неповторимого человеческого мозга. И в нынешней статье речь пойдет об одной из самых загадочных его областей гиппокампе.

Название с древнегреческого переводится, как «морской конёк» (ἱππόκαμπος), поскольку считается, что гиппокамп на него похож. Так что этот загадочный отдел мозга в родстве и с ипподромом, и с гиппопотамом. Конечно же, в этимологическом родстве.

На самом деле, это скорее две параллельно расположенные дуги, охватывающие поясом ствол головного мозга. Собственно, гиппокамп — это часть лимбической системы, расположенной на лимбе (крае) верхней части ствола мозга.

Эти дуги связаны комиссуральными нервными волокнами (так называют нервные волокна соединяющие структуры правого и левого полушарий). Гиппокамп одна из старейших систем мозга с точки зрения эволюции, но именно он остается одной из самых неизученных областей. Его по-прежнему окутывают тайны и гипотезы, и исследователи до сих пор во многом могут только предполагать, как работает гиппокамп.

Некоторые исследования показывали, что он отвечает за кратковременную память (подобно ОЗУ компьютера), и при удалении обеих частей гиппокампа у человека остается «неповрежденной» долговременная память, но он не способен запоминать новую информацию. Отсюда исследователи предположили, что «морской конек» так же участвует в «кодировании» краткосрочной памяти в долгосрочную во время сна. Опять же, пока не до конца понятно, как происходит это кодирование, и по какому принципу отбирается информация «достойная» долговременного хранения. Интересно также и то, что при удалении одной из частей гиппокампа способность к запоминанию не нарушается.

Существует гипотеза, что гиппокамп является «архиватором» воспоминаний, и работает примерно так же как мы на компьютере раскладываем файлы по папкам, называем их и запоминаем, как до них можно быстрее всего добраться. Поэтому зачастую, чтобы вспомнить какой-либо день, мы ориентируемся по деталям, которые замечали, так соединяются две функции гиппокампа: формирование воспоминаний и пространственно-временная ориентация. Впрочем, постепенно появляются работы , которые проливают свет на то, как работает гиппокамп во время запоминания нового. Более того, есть исследования , которые показывают, куда деваются из гиппокампа воспоминания при болезни Альцгеймера и как их можно вернуть.

Именно в этой области мозга находятся так называемые пространственные клетки (place cells) или клетки-решётки (grid cells). Часть из них возбуждается при определении человеком своего положения в пространстве, другие чувствительны к направлению движения и положению головы. За это открытие британо-американец Джон О’Киф и его бывшие аспиранты из Норвегии, Мэй-Бритт и Эдвард Мозеры получили в 2014 году Нобелевскую премию по физиологии или медицине.

Джон О"Киф

Также гиппокамп помогает не сбиться с пути, и даже « вычислить » короткий путь. Любопытно, что исследование, проведенное в Лондоне в 2003 году, показало, что гиппокамп лондонских таксистов больше, чем у обычного человека, но до сих пор непонятно: крупный гиппокамп помогает стать таксистом или он развивается при постоянном поиске пути (про эту работу можно услышать в лекции Марии Фаликман на нашем портале). Это заставляет задуматься: стоит ли так часто пользоваться навигаторами, и не деградирует ли наш гиппокамп при этом?

Кроме того, стимуляция различных областей гиппокампа может привести к практически любой поведенческой реакции: удовольствию, ярости, пассивности, половому возбуждению. Больные при гиппокампальных приступах страдают от психомоторных эффектов, включая обонятельные, зрительные, слуховые, тактильные и прочие галлюцинации, которые невозможно подавить.

А повреждение гиппокампа ведет к сни-жению эмоциональности, инициативности, замедлению скорости ос-новных нервных процессов, повышаются пороги вызова эмоциональ-ных реакций.

Возможно, такой «букет» функций гиппокамп приобрел на ранних стадиях развития, когда ему приходилось отвечать за множество необходимых для выживания реакций.

Анастасия Шешукова

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Нейропсихологический подход в изучении эмоциональных нарушений. Нарушения эмоций при поражении лобных, височных и гипофизарно-диэнцефального отделов мозга. Роль гиппокампа в осуществлении эмоций. Межполушарная организация мозга и эмоциональная сфера.

    реферат , добавлен 24.06.2010

    Анатомо-физиологические особенности лимбической системы и базальных ядер. Общий план строения и функции органов пищеварительной системы. Механизмы функционирования гиппокампа. Возрастные морфофизиологические особенности органов системы пищеварения.

    реферат , добавлен 04.07.2015

    Особенности участия составляющих лимбической системы - гиппокампа и орбитофронтальной коры в приспособительных реакциях центральной нервной системы при остром стволовом повреждении мозга крыс. Анализ эмоциональных реакций прооперированных животных.

    диссертация , добавлен 22.01.2015

    Понятие, строение, организованные функции ассоциативной коры головного мозга. Центры памяти, понимания слов, восприятия пространства. Профилактика нарушений зрения. Типичное шестислойное строение мозгового вещества, последствия нарушения строения.

    контрольная работа , добавлен 16.02.2011

    Строение и функции лимбической системы как области мозга человека. Интегративная деятельность лимбической системы. Строение и функции ретикулярной формации. Значение лимбической системы и ретикулярной формации для формирования структуры эмоций человека.

    контрольная работа , добавлен 18.02.2012

    Описание расположения глаза, защита от окружающей среды. Особенности его функций, строения и передачи изображения на зрительный нерв. Обобщенное описание строения различных частей глаза, функции и строение роговицы, радужки, зрачка, стекловидного тела.

    реферат , добавлен 05.06.2010

    Спинной мозг человека, его описание, расположение и характеристика. Оболочка спинного мозга, ее особенности и разновидности. Строение и основные функции спинного мозга, схематическое изображение и детальное описание особенностей каждой части мозга.