Как найти площадь перпендикулярного сечения наклонной призмы. Отрезки А1В1, А2В2…АnBn – боковые ребра призмы. Докажем сначала теорему для треугольной призмы, а затем - для произвольной призмы

Объем наклонной призмы





Все призмы делятся на прямые и наклонные .


Прямая призма, основанием

которой служит правильный

многоугольник, называется

правильной призмой.

Свойства правильной призмы:

1. Основания правильной призмы являются правильными многоугольниками. 2. Боковые грани правильной призмы являются равными прямоугольниками. 3. Боковые ребра правильной призмы равны .


Сечение ПРИЗМЫ.

Ортогональное сечение призмы - это сечение, образованное плоскостью, перпендикулярной к боковому ребру.

Боковая поверхность призмы равна произведению периметра ортогонального сечения на длину бокового ребра.

S б =P орт.сеч C




1. Расстояния между ребрами наклонной

треугольной призмы равны: 2см, 3 см и 4см

Боковая поверхность призмы- 45см 2 .Найдите ее боковое ребро.

Решение:

В перпендикулярном сечении призмы треугольник, периметр которого 2+3+4=9

Значит боковое ребро равно 45:9=5(см)


Найдите неизвестные элементы

правильной треугольной

Призмы

по элементам, заданным в таблице.


ОТВЕТЫ.


Спасибо за урок.

Домашнее задание.

Умение определять объем пространственных фигур является важным для решения геометрических и практических задач. Одной из таких фигур является призма. Рассмотрим в статье, что она собой представляет, и покажем, как вычислять объем наклонной призмы.

Что понимают под призмой в геометрии?

Речь идет о правильном полиэдре (многограннике), который образован двумя одинаковыми основаниями, находящимися в параллельных плоскостях, и несколькими параллелограммами, соединяющими отмеченные основания.

Основаниями призмы могут быть произвольные многоугольники, например, треугольник, четырехугольник, семиугольник и так далее. Причем число углов (сторон) многоугольника определяет название фигуры.

Любая призма, имеющая в основании n-угольник (n - число сторон), состоит из n+2 граней, 2 × n вершин и 3 × n ребер. Из приведенных чисел видно, что количества элементов призмы соответствуют теореме Эйлера:

3 × n = 2 × n + n + 2 - 2

Ниже рисунок показывает, как выглядят треугольные и четырехугольные призмы, сделанные из стекла.

Виды фигуры. Наклонная призма

Выше уже было сказано, что название призмы определяется числом сторон многоугольника в основании. Однако существуют и другие особенности в ее строении, определяющие свойства фигуры. Так, если все параллелограммы, образующие боковую поверхность призмы, представлены прямоугольниками или квадратами, то такая фигура называется прямой. Для расстояние между основаниями равно длине бокового ребра любого прямоугольника.

Если же некоторые или все боковые стороны являются параллелограммами, то речь идет о наклонной призме. Высота ее уже будет меньше, чем длина бокового ребра.

Еще один критерий, по которому проводят классификацию рассматриваемых фигур — это длины сторон и углы многоугольника в основании. Если они равны друг другу, то многоугольник будет правильным. Прямая фигура с правильным многоугольником в основаниях называется правильной. С ней удобно работать при определении площади поверхности и объема. Наклонная призма в этом плане представляет некоторые трудности.

На приведенном рисунке показаны две призмы, имеющие четырехугольное основание. Угол 90° показывает принципиальную разницу между прямой и наклонной призмой.

Формула для определения объема фигуры

Часть пространства, ограниченная гранями призмы, называется ее объемом. Для рассматриваемых фигур любого типа эту величину можно определить по следующей формуле:

Здесь символом h обозначена высота призмы, которая является мерой дистанции между двумя основаниями. Символ S o - одного основания площадь.

Площадь основания найти несложно. Учитывая тот факт, является правильным многоугольник или нет, а также зная количество его сторон, следует применить соответствующую формулу и получить S o . Например, для правильного n-угольника с длиной стороны a площадь будет равна:

S n = n / 4 × a 2 × ctg (pi / n)

Теперь перейдем к высоте h. Для прямой призмы определение высоты не представляет никаких трудностей, однако для призмы наклонной - это непростая задача. Решать ее можно различными геометрическими методами, отталкиваясь от конкретных начальных условий. Тем не менее существует универсальный способ определения высоты фигуры. Опишем его кратко.

Идея заключается в нахождении расстояния от точки в пространстве до плоскости. Предположим, что плоскость задана уравнением:

A × x+ B × y + C × z + D = 0

Тогда от точки с координатами (x 1 ; y 1 ; z 1) плоскость будет находиться на расстоянии:

h = |A × x 1 + B × y 1 + C × z 1 + D| / √ (A 2 + B 2 + C 2)

Если координатные оси расположить так, что точка (0; 0; 0) будет лежать в плоскости нижнего основания призмы, тогда уравнение для плоскости основания можно записать так:

Это означает, что формула для высоты запишется так:

Достаточно найти координату z любой точки верхнего основания, чтобы определить высоту фигуры.

Пример решения задачи

На рисунке ниже дана Основанием наклонной призмы является квадрат со стороной 10 см. Необходимо вычислить ее объем, если известно, что длина бокового ребра равна 15 см, а острый угол фронтального параллелограмма равен 70°.

Поскольку высота h фигуры также является высотой параллелограмма, то используем формулы для определения его площади, чтобы найти h. Обозначим стороны параллелограмма так:

Тогда можно записать для него следующие формулы для определения площади S p:

S p = a × b × sin (α);

Откуда получаем:

Здесь α - острый угол параллелограмма. Поскольку основанием является квадрат, то формула объема наклонной призмы примет вид:

V = a 2 × b × sin (α)

Подставляем из условия данные в формулу и получаем ответ: V ≈ 1410 см 3 .

Определение призмы:

  • А1А2…АnВ1В2Вn– призма

  • Многоугольники А1А2…Аn и В1В2…Вn – основания призмы

  • Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые грани

  • Отрезки А1В1, А2В2…АnBn – боковые ребра призмы


Виды призм

  • Шестиугольная Треугольная Четырехугольная призма призма призма


Наклонная и прямая призма

  • Если боковые ребра призмы перпендикулярны основаниям то призма называется прямой , в противном случае – наклонной .


Правильная призма

  • Призма называется правильной , если она прямая и ее основания - правильные многоугольники.


Площадь полной поверхности призмы


Площадь боковой поверхности призмы

  • Теорема

  • Площадь боковой поверхности прямой призмы равна половине произведения периметра основания на высоту призмы.


Объем наклонной призмы

  • Теорема

  • Объем наклонной призмы равен произведению площади основания на высоту.


Доказательство

  • Доказательство

  • Докажем сначала теорему для треугольной призмы, а затем - для произвольной призмы.

  • 1. Рассмотрим треугольную призму с объ­емом V, площадью основания S и высотой h. Отметим точку О на одном из оснований призмы и направим ось Ох перпендикулярно к основаниям. Рассмотрим сечение призмы плоскостью, перпендикуляр­ной к оси Ох и, значит, параллельной плоскости основания. Обозначим буквой х абсциссу точки пересе­чения этой плоскости с осью Ох, а через S (х) - площадь получившегося сечения.

    Докажем, что площадь S (х) равна площади S основания призмы. Для этого заметим, что треуголь­ники ABC (основание призмы) и А1B1С1 (сечение призмы рассматриваемой плоскостью) равны. В самом деле, четырехугольник АA1BB1 - параллелограмм (отрезки АА1 и ВВ1 равны и параллельны), поэтому А1В1=АВ. Аналогично доказывается, что В1С1=ВС и А1С1=АС. Итак, треугольники А1В1С1 и ABC равны по трем сторонам. Следовательно, S(x)=S. Применяя теперь основную формулу для вычисления объемов тел при а=0 и b=h, получаем



2. h h h, S S * h. Теорема доказана.

    2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h . Выразим объем каждой треуголь­ной призмы по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен S * h. Теорема доказана.


ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Сегодня мы выведем формулу объема наклонной призмы с помощью интеграла.

Вспомним, что такое призма и какая призма называется наклонной?

ПРИЗМА — многогранник, две грани которого (основания) — равные многоугольники, расположенные в параллельных плоскостях, а другие грани (боковые) — параллелограммы.

Если боковые ребра призмы перпендикулярны плоскости основания, то призма прямая, в противном случае призма называется наклонной.

Объем наклонной призмы равен произведению площади основания на высоту.

1) Рассмотрим треугольную наклонную призму ВСЕВ2С2Е2. Объем данной призмы равен V, площадь основания — S, высота — h.

Воспользуемся формулой: объем равен интеграл от 0 до h S от икс дэ икс.

V= , где площадь перпендикулярного оси Ох сечения. Выберем ось Ох, причем точка О — начало координат и лежит в плоскости ВСЕ (нижнее основание наклонной призмы). Направление оси Ох перпендикулярно плоскости ВСЕ. Тогда ось Ох пересечет плоскость в точке h, и проведем плоскость Е1 параллельную основаниям наклонной призмы и перпендикулярную оси Ох. Поскольку плоскости параллельны и боковые грани — это параллелограммы, то ВЕ= , СЕ=С1Е1=С2Е2; ВС=В1С1=В2С2

Откуда следует, что треугольники ВСЕ = E2 равны по трем сторонам. Если треугольники равны, значит, равны их площади. Площадь произвольного сечения S(х) равна площади основания Sосн.

В данном случае площадь основания является постоянной. В качестве пределов интегрирования возьмем 0 и h. Получаем формулу: объем равен интеграл от 0 до h S от икс дэ икс или интеграл от 0 до h площади основания от икс дэ икс, площадь основания - это константа (постоянная величина), мы можем вынести ее за знак интеграла и получится, что интеграл от 0 до h дэ икс равен аш минус 0:

Получается, что объем наклонной призмы равен произведению площади основания на высоту.

2) Докажем эту формулу для произвольной n- угольной наклонной призмы. Для доказательства возьмем пятиугольную наклонную призму. Выполним разбиения наклонной призмы на несколько треугольных призм, в данном случае — на три (так же, как при доказательстве теоремы об объеме прямой призмы). Обозначим объем наклонной призмы за V. Тогда объем наклонной призмы будет состоять из суммы объемов трех треугольных призм (по свойству объемов).

V=V1+V2+V3, а объем треугольной призмы мы ищем по формуле: объем наклонной призмы равен произведению площади основания на высоту.

Значит, объем наклонной призмы равен сумме произведений площадей основания на высоту, выносим высоту h за скобки (так как она одинаковая у трех призм) и получаем:

Теорема доказана.

Боковое ребро наклонной призмы — 4 см, составляет с плоскостью основания угол 30°.Стороны треугольника, которые лежат в основании, равны 12, 12, и 14 см. Найти объем наклонной призмы.

Дано: — наклонная призма,

АВ = 12 см, ВС = 12 см, АС = 14 см, В = 4 см, BK = 30° .

Найти: V - ?

Дополнительное построение: В наклонной призме проведем высоту Н.

Мы знаем, что объем наклонной призмы равен произведению площади основания на высоту.

В основании наклонной призмы лежит произвольный треугольник, у которого известны все стороны, значит, применим формулу Герона: площадь треугольника равна квадратному корню из произведения пэ на разность пэ и а, на разность пэ и бэ, на разность пэ и цэ, где пэ — полупериметр треугольника, который ищем по формуле: половина суммы всех сторон а, в и с:

считаем полупериметр:

Подставим значение полупериметра в формулу площади основания, упростим и получим ответ: семь корней из 95.

Рассмотрим ΔB H. Он прямоугольный, так как Н - высота наклонной призмы. Из определения синуса, катет равен произведению гипотенузы на синус противолежащего угла

значение синус 30° равен одной второй, значит

Мы узнали, что

А высота Н - высота наклонной призмы — равна 2.

Следовательно, объем равен

«Геометрическое тело призма» - Прямоугольный параллелепипед. Прямоугольник. Диагональные сечения. Теорема Пифагора. Сумма площадей. Вершины. Основание призмы. Как называется призма изображённая на рисунке. Математический бой. Решение. Призма. Какая призма называется прямой. Полученные знания. Диагональ правильной треугольной призмы.

«Фигура призма» - Определение призмы. Наклонная и прямая призма. Докажем сначала теорему для треугольной призмы. Виды призм. Объем наклонной призмы. Призма. Площадь боковой поверхности призмы. Площадь полной поверхности призмы. Докажем теперь теорему для произвольной призмы. Правильная призма.

«Объём призмы» - Площадь S основания исходной призмы. Решение задачи. Цели урока. Объем исходной призмы равен произведению S · h. Объем прямой призмы. Призму можно разбить на прямые треугольные призмы с высотой h. Понятие призмы. Проведение высоты треугольника ABC. Вопросы. Изучение теоремы об объеме призмы. Основные шаги при доказательстве теоремы прямой призмы?

«Понятие призмы» - Площадь полной поверхности призмы. Прямая призма. Площадь боковой поверхности призмы. Многоугольник. Сечения призмы. Правильная призма. Призмы встречающиеся в жизни. Треугольные призмы. Доказательство. Объем наклонной призмы. Определение призмы. Наклонная и прямая призма. Виды призм. Призма.

«Свойства призмы» - Существую ли наклонные призмы, в которые можно вписать сферу. Свойства призмы. Условие, сформулированное для прямой призмы. Цилиндр. Призма. Сечение цилиндра. Формула трех косинусов. Основание. Треугольная призма. Теорема синусов для трехгранного угла. Ребро треугольной призмы. Вокруг каких из разновидностей призм всегда можно описать сферу.

«Понятие многогранника призмы» - В сечении образуется параллелограмм. Следствие. Свойства призмы. Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело). Площадь поверхности призмы и площадь боковой поверхности призмы. Такое сечение называется диагональным сечением призмы. Дано: Сторона основания правильной треугольной призмы равна 8 см, боковое ребро - 6 см.