Какая закономерность просматривается в распределении суммарной радиации. Географическое распределение радиационного баланса

Радиационный баланс подстилающей поверхности равен разности поглощенной земной поверхностью суммарной радиации и эффективного излучения:

B = (S’ + D — R) — (Eз — bEa) = Q(1-Ak) — Eэф

где S ‘ - прямая солнечная радиация; D - рассеянная радиация; Q - суммарная солнечная радиация; R - отраженная радиация; Ak - альбедо подстилающей поверхности, Ез - собственное излучение земной поверхности; b- относительный коэффициент поглощения длинноволновой радиации подстилающей поверхностью; E а - встречное излучение атмосферы; Еэф - эффективное излучение подстилающей поверхности.

Количество поглощенной радиации в значительной степени определяется величиной альбедо - отражательной способностью земной поверхности. Альбедо, измеренные на актинометрических станциях (зимой площадка покрытая снегом, летом — травой) не характеризуют в полной мере отражательных свойств больших территорий. В зимний период разница в альбедо открытых снежных участков и леса, покрытого снегом, составляет от 15 до 30%. В бесснежный период альбедо зеленой травы незначительно отличается от альбедо леса, поэтому даже в районах с большими лесными массивами различия между поглощенной радиацией открытых участков (метеорологических площадок) и реальной подстилающей поверхности находится в пределах основной ошибки вычисления месячных сумм поглощенной радиации. В целом за год земной поверхностью поглощается от 50% (в Арктике) до 80%(в южных районах) от поступающей суммарной радиации. Большая часть годового количества поглощенной радиации приходится на период с апреля по сентябрь. В северных районах это оставляет 90–95 % от годовой суммы, в южных– 70–80 %.

Земная поверхность, нагретая в результате поглощения солнечной радиации, становится источником собственного излучения, направленного в атмосферу. В свою очередь атмосфера, нагревающаяся за счет турбулентного теплообмена с земной поверхностью, также излучает тепловую радиацию, направленную к земной поверхности (противоизлучение атмосферы). Разность между собственным излучением земной поверхности и поглощенной земной поверхностью частью противоизлучения атмосферы называется эффективным излучением. Распределение годовых сумм эффективного излучения близко к широтному, увеличение с севера на юг происходит в диапазоне 800–1800 МДж/км 2 .

Радиационный баланс изменяется под действием факторов, влияющих на его основные составляющие. Ночью значения радиационного баланса, определяемые только эффективным излучением, зависят от температуры подстилающей поверхности, облачности и стратификации атмосферы. Днем основная составляющая радиационного баланса - суммарная радиация - зависит от высоты солнца, облачности и альбедо подстилающей поверхности.

Ночью радиационный баланс имеет отрицательные значения. Переход от отрицательных значений к положительным происходит в среднем через 1 час после восхода солнца и обратный переход от положительных значений к отрицательным - за 1час 30мин до захода солнца. В зимние месяцы на севере отрицательный радиационный баланс наблюдается в течение суток.В годовом ходе смена знака радиационного баланса связана с датами образования и разрушения устойчивого снежного покрова. На островных полярных станциях (до 75–77°с.ш.) отрицательный радиационный баланс наблюдается в течение 7–8 мес., в умеренных широтах 3–4 мес. (с ноября по февраль), на юге (до 45–46°с.ш.) - в течение 1–2 мес. (декабрь-январь), а еще южнее радиационный баланс положителен в течение всего года.

Радиационный баланс открытых участков земной поверхности (метеорологических площадок) наиболее близко характеризует условия мест жилья и хозяйственной деятельности человека, но он отличается от радиационного баланса реальной поверхности (например, лесных массивов). Так, радиационный баланс хвойных лесов на 50–60% выше, чем открытой площадки. Для лиственных лесов эти различия меньше. Лесостепи, степи и другие нелесные поверхности по своим отражательным способностям близки к метеорологическим площадкам, поэтому данные актинометрических наблюдений можно использовать для оценки радиационного баланса полей зерновых культур.

В зимние месяцы (для большей территории России это период с ноября по февраль) радиационный баланс имеет отрицательные значения и его распределение по территории сильно отличается от широтного. В январе нарушение зональности связано с наличием в умеренных широтах двух обширных областей, для которых характерно некоторое уменьшение отрицательных значений радиационного баланса. Одна из них расположена на северо-западе Европейской части России, где увеличение радиационного баланса связано с большой облачностью под влиянием западного переноса влажных воздушных масс. Вторая область находится в Восточной Сибири, где рост радиационного баланса связан с преобладанием в зимние месяцы антициклональной циркуляции, способствующей образованию инверсий.

Граница нулевого радиационного баланса в январе и декабре проходит на широте 45–46°с.ш. по Краснодарскому краю. В ноябре и феврале на Европейской части России нулевая изолиния поднимается до 50°с.ш. , а на Азиатской части она проходит по югу Приморского края.

Переходный сезон от зимы к лету включает март, апрель и май. Распределение радиационного баланса по территории в эти месяцы определяется главным образом свойствами подстилающей поверхности (альбедо). В марте к северу от 60°с.ш. радиационный баланс еще остается отрицательным, а в апреле отрицательные значения баланса сохраняются лишь на побережье северных морей. В мае радиационный баланс имеет положительный знак на всей территории, значения его по сравнению с апрелем резко возрастают. На крайнем севере происходит увеличение от нулевых значений до 80 МДж/м 2 , а в умеренных широтах от 100–120 до 280–320 МДж/м 2 . Наряду с общим увеличением радиационного баланса как в апреле, так и в мае отмечается наличие значительного градиента (около 20 МДж/м 2 на 1° широты) в поясе 55–62°с.ш. (апрель) и в поясе 65–73°с.ш. (май). Это связано с большими различиями в альбедо подстилающей поверхности из-за разного времени схода снежного покрова. Как видно из представленных графиков суточного хода, от зимы к весне резко возрастает интенсивность радиационного баланса в дневные часы.

В летние месяцы изменение радиационного баланса по территории России в целом характеризуется увеличением его с севера на юг. В июне наименьшие месячные значения баланса (менее 240 МДж/м 2) отмечаются в северных прибрежных районах востока Европейской части России и Западной Сибири. При продвижении к югу отмечается резкое возрастание радиационного баланса.

Осенью в отличие от весенних месяцев, изменение баланса по всей территории происходит более равномерно и распределение его в сентябре и октябре близко к широтному. В сентябре радиационный баланс хотя и положительный, но его абсолютные значения резко уменьшаются по сравнению с летними месяцами. Особенно это проявляется на севере, где величина баланса в этом месяце составляет 40 МДж/м 2 , что в четыре раза меньше, чем в августе. В октябре вдоль 60-градусной параллели проходит граница между северными районами с отрицательным радиационным балансом и с положительным. Наибольшие значения 120 МДж/м 2 отмечаются на юге Приморского края.

В ноябре радиационный баланс отрицательный практически на всей территории России, лишь к югу от 50°с.ш. он сохраняет небольшие положительные значения. Широтный характер распределения в отличие от предыдущих месяцев нарушается в связи с особенностями циркуляционных процессов и характером подстилающей поверхности. Рост радиационного баланса происходит не с севера на юг, а с северо-востока на юго-запад.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

Географическое распределение суммарной солнечной радиации и радиационного баланса

Годовые суммы прихода солнечной радиации возрастают от полюсов к экватору. Однако общий характер этой закономерности нарушается в зависимости от распределения облачности, влажности и запыленности атмосферы. Так, над пустынями, где преобладает ясная погода, приход солнечной радиации значительно больше, чем на тех же широтах в приморских районах.

Наибольшие годовые суммы прихода солнечной радиации наблюдаются на юге Египта - 9200 МДж/м2. На этой же широте над океаном они составляют 6700-7550 МДж/м2. На территории СССР годовые суммы солнечной радиации колеблются от 2500 МДж/м2 на севере до 6700 МДж/м2 и больше в Средней Азии. В июне месячная сумма суммарной радиации на севере СССР составляет 590-670 МДж/м2, а на юге 750-920 МДж/м2. Довольно большой, приход суммарной радиации на севере, вполне сравнимый с таковым на юге, обусловлен круглосуточным днем.

Радиационный баланс зависит как от прихода солнечной радиации, так и от альбедо и эффективного излучения подстилающей поверхности. Поэтому радиационный баланс при одинаковой географической широте больше над океаном и меньше над материками. В пределах СССР годовые суммы радиационного баланса в среднем составляют 500-800 МДж/м2 на севере и около 2200 МДж/м2 на юге. Месячные суммы радиационного баланса

деятельного слоя в июне у Полярного круга в Сибири и в Среднеазиатских республиках практически близки и составляют около 280-330 МДж/м2 соответственно. На рис. 9 приводится карта годовых сумм радиационного баланса деятельного слоя (по М. И. Будыко). Эти суммы везде положительны, кроме районов с постоянным снежным или ледяным покровом (Гренландия, Антарктида). На карте годовых сумм радиационного баланса заметно скачкообразное изменение радиационного баланса при переходе с океана на континент. Особенно это проявляется на побережьях Африки, граничащих с пустынями. Это объясняется, во-первых, тем, что альбедо поверхности океана значительно меньше, чем альбедо суши (альбедо пустыни в среднем 0,28) и, во-вторых, большим эффективным излучением в тропических пустынях.

Географическое распределение радиационного баланса и его составляющих впервые представлено в Атласе теплового баланса (1963 г.), составленном советскими учеными М. И. Будыко, Т. Г. Берлянд и др. Данные о радиационном балансе используются в строительстве, сельском хозяйстве, медицине и т. д.

Приход солнечной радиации и радиационный баланс являются важнейшими факторами климата. Они обусловливают широтную термическую зональность, т. е. переход от жаркого климата на экваторе к холодному климату полярных широт. Для объяснения закономерностей формирования климата необходимы знания о приходе и поглощении солнечной энергии и ее последующих преобразованиях на земной поверхности и в атмосфере.

Географическое распределение суммарной солнечной радиации на верхней границе атмосферы зависит от широты и времени года, обусловленных шарообразности Земли и наклоном плоскости экватора к плоскости земной орбиты. За год количество суммарной радиации уменьшается от 313 ккал на см квадр. на экваторе до 133 ккал на см квадр. на полюсах. Летом поступления радиации уменьшается от 160 ккал на см квадратный на экваторе до 133 ккал на см квадр. на полюсе за 6 месяцев теплого периода, а зимой - от 160 ккал на квадр. см на экваторе до 0 около 75 ° с.ш.

В годовом ходе радиации на верхней границе атмосферы между тропиками есть два максимума, когда Солнце достигает наибольшей полуденной высоты / на экваторе - равноденствия, в других широтах между равноденствиями и летним солнцестоянием /. Внешне тропиков наблюдается только один максимум в годовом ходе радиации во время летнего солнцестояния, когда высота Солнца наибольшая / 90 ° - широта + 23,5 ° / и зависит от широты места, и один минимум во время зимнего солнцестояния, соответственно, когда высота Солнца наименьшая / 90 ° - широта - 23.5 ° /.

Распределение суммарной радиации у земной поверхности широтно-зональный. Здесь радиация ослаблена тем, что прошла сквозь атмосферу, часть ее поглинулася, рассеялась, отразилась облаками. Облачность уменьшает прямую солнечную радиацию на 20-75%. Изолинии суммарной радиации на картах отклоняются от широтного хода под влиянием прозрачности атмосферы и облачности / рис. 2 /.

Годовое количество суммарной радиации крупнейшая в тропических и субтропических широтах / более 140 ккал на квадр. см в год /, а в пустынях Северной Африки и Аравии составляет 200 ... 220 ккал на квадр. см в год. На экваторе над ба-Сейн Амазонки и Конго и в Индонезии она уменьшается до 100-120 ккал на квадр. см в год. От субтропиков на север и юг радиация снижается до полярного круга, где составляет 60 ... 80, затем к северному полюсу несколько повышается. а над Антарктидой достигает 120 .... 130 ккал на квадр. см в год. На всех широтах, кроме экваториальных, суммарная радиация над океанами ниже, чем над сушей.

Даже идеальная (сухая и чистая) атмосфера поглощает и рассеивает солнечные лучи, уменьшая интенсивность солнечной радиации. Ослабляющее влияние на солнечную радиацию реальной атмосферы, содержащей водяные пары и твердые примеси, значительно больше, чем идеальной.

Атмосфера поглощает всего 15 – 20% пришедшей к Земле солнечной радиации, в основном инфракрасной. Поглотителями служат водяной пар, аэрозоли, озон.

Около 25% солнечной радиации рассеивается атмосферой. Молекулы газов рассеивают коротковолновые лучи (от этого цвет неба голубой). Примеси (пылинки, кристаллики и капельки) рассеивают более длинноволновые лучи (белесоватый оттенок). Благодаря рассеянию и отражению солнечных лучей атмосферой существует дневное освещение в пасмурные дни, видны предметы в тени, возникает явление сумерек.

Фактор мутности – отношение прозрачности реальной атмосферы к прозрачности идеальной, определяется содержанием в атмосфере водяного пара и пыли и всегда больше единицы.

С увеличением географической широты фактор мутности уменьшается: на широтах от 00 до 200 с.ш. он в среднем равен 4,6, на широтах от 400 до 500 с.ш. – 3,5, на широтах от 500 до 600 с.ш. – 2,8 и на широтах от 600 до 800 с.ш. – 2,0. В умеренных широтах фактор мутности зимой меньше, чем летом, утром меньше, чем днем. С высотой он убывает. Чем больше фактор мутности, тем больше ослабление солнечной радиации в атмосфере.

Часть солнечной радиации, проникнувшая через атмосферу к земной поверхности не рассеявшись, представляет собой прямую радиацию. Часть радиации, рассеивающаяся атмосферой, превращается в рассеянную радиацию. Вся солнечная радиация, поступающая на земную поверхность: прямая + рассеянная называется суммарной радиацией.

Соотношение между прямой и рассеянной радиацией меняется в значительных пределах в зависимости от облачности, запыленности атмосферы, а также от высоты Солнца. При облачном небе рассеянная радиация может быть больше прямой. При малой высоте Солнца суммарная радиация почти полностью состоит из рассеянной. При высоте Солнца 500 и при ясном небе рассеянная радиация не превышает 10 – 20%.

Распределение на Земле суммарной радиации позволяют проследить карты средних годовых и месячных ее величин. Наибольшее годовое количество суммарной радиации получает поверхность тропических внутриконтинентальных пустынь (Восточная Сахара и центральная часть Аравии). К экватору суммарная радиация снижается до 120 – 160 ккал/см2 в год вследствие высокой влажности воздуха и большой облачности. В умеренных широтах поверхность получает 80 – 100 ккал/см2 в год, в Арктике – 60 –70 , а в Антарктиде, при частой повторяемости ясных дней и большой прозрачности атмосферы, - 100 – 120 ккал/см2 в год. Распределение суммарной радиации по земной поверхности имеет зональный характер.

4. Альбедо. Суммарная солнечная радиация, попадая на поверхность, частично отражается обратно в атмосферу. Отношение количества радиации, отраженной от поверхности к количеству падающей на эту поверхность, называется альбедо. Альбедо характеризует отражательную способность поверхности и выражается дробью или в процентах. Альбедо земной поверхности зависит от ее свойств и состояния: цвета, влажности и др. Наибольшей отражательной способностью обладает свежевыпавший снег – до 0,90. Альбедо поверхности песчаной пустыни – от 0,09 до 0,34 (в зависимости от цвета и влажности), поверхности глинистой пустыни – 0,30, луга со свежей травой – 0,22, с сухой травой – 0,931, леса лиственного – 0,16 –0,27, леса хвойного – 0,6 – 0,19. Отражательная способность спокойной водной глади при отвесном падении солнечных лучей – 0,02, при низком стоянии Солнца над горизонтом – 0,35.

Чистая атмосфера отражает около 0,10 солнечной радиации. Большое альбедо поверхности полярных льдов, покрытых снегом, - одна из причин низких температур в полярных районах.

Альбедо Земли как планеты очень сложно, так как поверхность ее очень разнообразна. Большое значение имеет облачность. Альбедо облаков – от 0,50 до 0,80. Величину альбедо Земли как планеты принимают равной 0,35.

Излучение. Всякое тело, обладающее температурой выше абсолютного нуля (- 2730С), испускает лучистую энергию. Полная лучеиспускательная способность абсолютно черного тела прямо пропорционально четвертой степени его абсолютной температуры (Т).

Чем выше температура излучающего тела, тем короче длина волн испускаемых им лучей. Раскаленное Солнце посылает в пространство коротковолновую радиацию. Земная поверхность, поглощая коротковолновую солнечную радиацию, нагревается и также становится источником излучения (источником земной радиации). Но так как температура земной поверхности не превышает нескольких десятков градусов, ее излучение длинноволновое, невидимое.

Атмосфера, поглощая часть проходящей через нее солнечной радиации и больше половины земной, сама излучает энергию и в мировое пространство и к земной поверхности. Атмосферное излучение, направленное к земной поверхности, навстречу земному, называется встречным излучением. Встречным оно называется потому, что направлено навстречу собственному излучению земной поверхности. Это излучение, как и земное, длинноволновое, невидимое. Земная поверхность поглощает это встречное излучение почти целиком (на 90 – 99%). Встречное излучение возрастает с увеличением облачности, поскольку облака сами являются источником излучения. С высотой встречное излучение уменьшается вследствие уменьшения содержания водяного пара. Наибольшее встречное излучение у экватора, где атмосфера наиболее нагрета и богата водяным паром.

В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности и излучение атмосферы. Разность между ними, определяющая фактическую потерю тепла земной поверхностью, называется эффективным излучением. Эффективное излучение тем больше, чем выше температура излучающей поверхности. Влажность воздуха уменьшает эффективное излучение, сильно снижают его облака.

Наибольшее значение годовых сумм эффективного излучения наблюдается в тропических пустынях (80 ккал/см2 в год) благодаря высокой температуре поверхности, сухости воздуха и ясности неба. На экваторе при большой влажности воздуха эффективное излучение составляет всего около 30 ккал/см2 в год, причем величина его для суши и для океана мало различается. В умеренных широтах земная поверхность теряет почти половину того количества тепла, которое она получает от поглощения суммарной радиации. В целом для Земли эффективное излучение 46 ккал/см2 в год.

Способность атмосферы пропускать коротковолновое излучение Солнца (прямую и рассеянную радиацию) и задерживать длинноволновое тепловое излучение Земли называют парниковым эффектом. Средняя температура земной поверхности около +150С, а при отсутствии атмосферы она была бы на 21 – 360 ниже.

5. Разность между поглощенной радиацие й и эффективным излучением называют радиационным балансом или остаточной радиацией. В приходную часть баланса входят прямая радиация, рассеянная, т.е. суммарная. В расходную часть – альбедо поверхности и ее эффективное излучение.

Величина радиационного баланса поверхности определяется уравнением: R = Q (1 – a) – Iэф, где Q – суммарная солнечная радиация, поступающая на единицу поверхности, а – альбедо (выраженное дробью), Iэф – эффективное излучение поверхности. Если приход больше расхода, радиационный баланс положительный, если приход меньше расхода – отрицательный.

Радиационный баланс земной поверхности за год положителен для всей Земли, за исключением ледяных плато Гренландии и Антарктиды. Это значит, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время.

Ночью на всех широтах радиационный баланс поверхности отрицателен, днем до полудня – положителен (кроме высоких широт зимой), после полудня снова отрицателен.

На карте годовых сумм радиационного баланса видно, что распределение их на Океане в целом зонально. В тропических широтах годовые суммы радиационного баланса на Океане – 140 ккал/см2 (Аравийское море), а у границ плавучих льдов не превышают 30 ккал/см2. Около 600 с. и ю. широт годовой радиационный баланс равен 20 – 30 ккал/см2. Отсюда к более высоким широтам он уменьшается и на материке Антарктида он отрицателен –5 - -10 ккал/см2. К низким широтам он возрастает, достигая 100 – 120 ккал/см2 в тропиках и на экваторе. Незначительные отклонения от зонального распределения связаны с разной облачностью. Над водной поверхностью радиационный баланс больше, чем на суше в тех же широтах, т.к. океаны поглощают радиацию больше. Существенно отклоняется от зонального распределения величина радиационного баланса в пустынях, где баланс понижен вследствие большого эффективного излучения в сухом и малооблачном воздухе (в Сахаре – 60 ккал/см2, а рядом в океанах – 120 – 140 ккал/см2). Баланс понижен также, но в меньшей степени, в районах с муссонным климатом, где в теплое время года облачность увеличена и, следовательно, поглощенная радиация (прямая и рассеянная) уменьшена по сравнению с другими районами на той же широте.

В январе радиационный баланс отрицателен в значительной части северного полушария. Нулевая изолиния проходит в районе 400 с.ш. К северу от этой широты баланс становится отрицательным, достигая в Арктике – минус 4 ккал/см2 и ниже. Южнее он возрастает до 10 – 14 ккал/см2 на южном тропике, а южнее убывает до 4 – 5 ккал/см2 в прибрежных районах Антарктиды.

В июле радиационный баланс во всем северном полушарии положителен. На 60 – 650 с.ш. он более 8 ккал/см2. К югу он медленно увеличивается, достигая максимальных значений по обе стороны от северного тропика – 12 – 14 ккал/см2 и выше, а на севере Аравийского моря – 16 ккал/см2. Баланс остается положительным до 400ю.ш. Южнее он переходит к отрицательным значениям и у берегов Антарктиды снижается до минус 1 – минус 2 ккал/см2.

6. Как расходуются излишки тепла (положительный радиационный баланс) и восполняется его недостаток (отрицательный радиационный баланс), как устанавливается тепловое равновесие для поверхности, атмосферы, объясняет тепловой баланс.

Уравнение теплового баланса поверхности

R1 – LE – P – B = 0,

где R1 – радиационный баланс (всегда положительный), LE – затраты тепла на испарение (L – скрытая теплота парообразования, Е – испарение), Р – турбулентный теплообмен между поверхностью и атмосферой, В – теплообмен между поверхностью и нижележащими слоями почвогрунтов или воды.

Так как все члены уравнения могут изменяться, тепловой баланс очень подвижен. Тепловой баланс атмосферы включает ее радиационный баланс R2 (всегда отрицательный), тепло, поступающее от поверхности – Р и тепло, выделяющееся при конденсации влаги – LE (величины всегда положительные). В среднем многолетнем тепловой баланс атмосферы можно выразить уравнением:

R2 + P + LE = 0.

Тепловой баланс поверхности и атмосферы вместе как целого в среднем многолетнем равен нулю.

Если величину солнечной радиации, поступающей за год на Землю, принять за 100%, то 31% - направляется обратно в межпланетное пространство (7% рассеивается и 24% отражается облаками). Атмосфера поглощает 17% пришедшей радиации (3% поглощается озоном, 13% - водяным паром и 1% - облаками). Оставшиеся 52% (прямая + рассеянная радиация) достигают подстилающей поверхности, которая 4% отражает за пределы атмосферы, а 48% поглощает. Из 48%, поглощенных поверхностью, 18% идет на эффективное излучение. Таким образом, радиационный баланс поверхности (остаточная радиация) составит 30% (52% - 4% -18%). На испарение с поверхности расходуется 22%, на турбулентный обмен теплом с атмосферой – 8%. Тепловой баланс поверхности: 30% - 22% - 8% = -30%.

Излучение атмосферы в межпланетное пространство – 65%. Ее радиационный баланс: -65% + 17% + 18% = -30%. Тепловой баланс атмосферы: -30% + 22% + 8% =0. Альбедо Земли как планеты 35%.

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Солнечная радиация - это вся энергия Солнца, поступающая на Землю.

Та часть солнечной радиации, которая достигает поверхности Земли без препятствий, называется прямой радиацией. Максимально возможное количество прямой радиации получает единица площади, расположенная перпендикулярно к солнечным лучам. Если солнечные лучи проходят через облака и водяной пар, то это рассеянная радиация.

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или плотность потока радиации, т.е. количество лучистой энергии, падающей на единицу площади в единицу времени. Энергетическая освещенность измеряется в Вт/м2.

Количество солнечной радиации зависит от:

1) угла падения солнечных лучей

2) продолжительности светлого времени суток

3) облачности.

В атмосфере поглощается около 23% прямой солнечной радиации. Причем поглощение это избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени.

На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% падающей на Землю прямой солнечной радиации отражается назад в космическое пространство. Остальные 70% поступают в атмосферу.

Самое большое количество солнечной радиации получают пустыни, лежащие вдоль линий тропиков. Солнце там поднимается высоко и погода почти весь год безоблачная.

Над экватором в атмосфере много водяного пара, который формирует плотную облачность. Пар и облачность поглощает большую часть солнечной радиации.

Полярные районы получают меньше всего радиации, там солнечные лучи почти скользят по поверхности Земли.

Подстилающая поверхность отражает радиацию по-разному. Тёмные и неровные поверхности отражают мало радиации, а светлые и гладкие хорошо отражают.

Море в шторм отражает меньше радиации, чем море в штиль.

Альбедо (лат. albus -- белый) - способность поверхности отражать радиацию.

Географическое распределение суммарной радиации

Распределение годовых и месячных количеств суммарной солнечной радиации по земному шару зонально: изолинии потока радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по земному шару оказывают влияние прозрачность атмосферы и облачность.

Годовые количества суммарной радиации особенно велики в малооблачных субтропических пустынях. Зато над приэкваториальными лесными областями с их большой облачностью они снижены. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают. Но затем они снова растут -- мало в Северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой. Над океанами суммы радиации ниже, чем над сушей.

Радиационный баланс земной поверхности за год положительный повсюду на Земле, кроме ледяных плато Гренландии и Антарктиды. Это означает, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не значит, что земная поверхность год от года становится все теплее. Избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере).

Для земной поверхности не существует радиационного равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

Как известно, радиационный баланс является разностью между суммарной радиацией и эффективным излучением. Эффективное излучение земной поверхности распределяется по земному шару более равномерно, чем суммарная радиация. Дело в том, что с ростом температуры земной поверхности, т. е. с переходом к более низким широтам, растет собственное излучение земной поверхности; однако одновременно растет и встречное излучение атмосферы вследствие большего влагосодержания воздуха и более высокой его температуры. Поэтому изменения эффективного излучения с широтой не слишком велики.