Какие равенства или неравенства являются высказываниями. Основные свойства тождеств. Прочие важные свойства числовых равенств

50. Свойства равенств, на которых основывается решение уравнений . Возьмем какое-нибудь уравнение, не очень сложное, например:

7x – 24 = 15 – 3x

x/2 – (x – 3)/3 – (x – 5)/6 = 1

Мы видим в каждом уравнении знак равенства: все то, что написано слева от знака равенства, называется левою или первою частью уравнения (в первом уравнении 7x – 24 является левою или первою частью, а во втором x/2 – (x – 3)/3 – (x – 5)/6 есть первая, или левая, часть); все то, что написано справа от знака равенства, называется правою или второю частью уравнения (15 – 3x есть правая часть первого уравнения, 1 является правою, или вторю, частью 2-го уравнения).

Каждая часть любого уравнения выражает собою некоторое число. Числа, выражаемые левою и правою частью уравнения, должны быть равны между собою. Нам ясно: если мы к каждому из этих чисел прибавим по одинаковому числу, либо вычтем из них по одинаковому числу, либо каждое из них умножим на одинаковое число, либо, наконец, разделим на одно и то же число, то результаты этих действий должны также быть равными между собою. Другими словами: если a = b, то a + c = b + c, a – c = b – c, ac = bc и a/c = b/c. По поводу деления следует, однако, иметь в виду, что в арифметике не имеется деления на нуль - мы не умеем, например, число 5 разделить на нуль. Поэтому в равенстве a/c = b/c число c не может быть равным нулю.

  1. К обеим частям уравнения можно прибавить или из них вычесть по одинаковому числу.
  2. Обе части уравнения можно умножить или разделить на одно и то же число, исключая случай, когда это число может оказаться равным нулю.

Пользуясь этими свойствами уравнения, мы можем найти удобный способ решать уравнения. Выясним этот случай на примерах.

Пример 1. Пусть надо решить уравнение

5x – 7 = 4x + 15.

Мы видим, что первая часть уравнения содержит два члена; один из них 5x, содержащий неизвестный множитель x, можно назвать неизвестным членом, а другой –7 – известным. Во второй части уравнения также 2 члена: неизвестный 4x и известный +15. Сделаем так, чтобы в левой части уравнения оказались только неизвестные члены (а известный член –7 уничтожился бы), а в правой части оказались бы только известные члены (а неизвестный член +4x уничтожился бы). Для этой цели прибавим к обеим частям уравнения одинаковые числа: 1) прибавим по +7 (чтобы уничтожился член –7) и 2) прибавим по –4x (чтобы уничтожился член +4x). Тогда получим:

5x – 7 + 7 – 4x = 4x + 15 + 7 – 4x

Сделав в каждой части уравнения приведение подобных членов, получим

Это равенство и является решением уравнения, так как оно указывает, что для x надо взять число 22.

Пример 2. Решить уравнение:

8x + 11 = 7 – 4x

Опять прибавим к обеим частям уравнения по –11 и по +4x, получим:

8x + 11 – 11 + 4x = 7 – 4x – 11 + 4x

Выполнив приведение подобных членов, получим:

Разделим теперь обе части уравнения на +12, получим:

x = –4/12 или x = –1/3

(первую часть уравнения 12x разделить на 12 – получим 12x/12 или просто x; вторую часть уравнения –4 разделить на +12 – получим –4/12 или –1/3).

Последнее равенство и является решением уравнения, так как оно указывает, что для x надо взять число –1/3.

Пример 3. Решить уравнением

x – 23 = 3 · (2x – 3)

Раскроем сначала скобки, получим:
x – 23 = 6x – 9

Прибавим к обеим частям уравнения по +23 и по –6x, – получим:

x – 23 + 23 – 6x = 6x – 9 + 23 – 6x.

Теперь, для того, чтобы впоследствии ускорить процесс решения уравнения, не будем сразу выполнять приведение всех подобных членов, а только заметим, что члены –23 и +23 в левой части уравнения взаимно уничтожаются, также члены +6x и –6x в первой части взаимно уничтожаются – получим:

x – 6x = –9 + 23.

Сравним это уравнение с начальным: вначале было уравнение:

x – 23 = 6x – 9

Теперь получили уравнение:

x – 6x = –9 + 23.

Мы видим, что в конце концов оказалось, что член –23, находившийся сначала в левой части уравнения, теперь как бы перешел в правую часть уравнения, причем у него переменился знак (в левой части начального уравнения был член –23, теперь его там нет, но зато в правой части уравнения имеется член + 23, которого там раньше не было). Так же точно в правой части уравнения был член +6x, теперь его там нет, но появился зато в левой части уравнения член –6x, которого раньше там не было. Рассматривая с этой точки зрения примеры 1 и 2, мы придем к общему заключению:

Можно любой член уравнения перенести из одной части в другую, меняя знак у этого члена (в дальнейших примерах мы будем этим пользоваться).

Итак, возвращаясь к нашему примеру, мы получили уравнение

x – 6x = –9 + 23

Разделим обе части уравнения на –5. Тогда получим:

[–5x: (–5) получим x] – это и есть решение нашего уравнения.

Пример 4. Решить уравнение:

Сделаем так, чтобы в уравнении не было дробей. Для этой цели найдем общего знаменателя для наших дробей – общим знаменателем служит число 24 – и умножим на него обе части нашего уравнения (можно, ведь, чтобы равенство не нарушалось, умножить на одно и то же число только обе части уравнения). В первой части 3 члена, причем каждый член является дробью - надо, следовательно, каждую дробь умножить на 24: вторая часть уравнения есть 0, а нуль умножить на 24 - получим нуль. Итак,

Мы видим, что каждая из наших трех дробей, благодаря тому, что она умножена на общее наименьшее кратное знаменателей этих дробей, сократится и сделается целым выражением, а именно получим:

(3x – 8) · 4 – (2x – 1) · 6 + (x – 7) · 3 = 0

Конечно, желательно все это выполнить в уме: надо вообразить, что, например, числитель первой дроби заключается в скобки и умножается на 24, после чего воображение поможет нам увидеть сокращение это дроби (на 6) и конечный результат, т. е. (3x – 8) · 4. Тоже имеет место и для остальных дробей. Раскроем теперь в полученном уравнении (в его левой части) скобки:

12x – 32 – 12x + 6 + 3x – 21 = 0

(обратим внимание, что здесь понадобилось двучлен 2x – 1 умножить на 6 и полученное произведение 12x – 6 вычесть из предыдущего, благодаря чему знаки членов этого произведения должны перемениться - выше и написано –12x + 6). Перенесем известные члены (т. е. –32, +6 и –21) из левой части уравнения в его правую часть, причем (как мы уже знаем) знаки этих членов должны перемениться - получим:

12x – 12x + 3x = 32 – 6 + 21.

Выполним приведение подобных членов:

(при навыке должно сразу выполняться и перенесение нужных членов из одной части уравнения в другую и приведение подобных членов), разделим, наконец, обе части уравнения на 3 - получим:

x = 15(2/3) - это и есть решение уравнения.

Пример 5. Решить уравнение:

5 – (3x + 1)/7 = x + (2x – 3)/5

Здесь две дроби, и их общий знаменатель равен 35. Умножим, чтобы освободить уравнение от дробей, обе части уравнения на общего знаменателя 35. В каждой части нашего уравнения 2 члена. При умножении каждой части на 35 должно каждый член умножить на 35 - получим:

Дроби сократятся - получим:

175 – (3x + 1) · 5 = 35x + (2x – 3) · 7

(конечно, можно было бы при навыке написать сразу это уравнение).

Выполним все действия:

175 – 15x – 5 = 35x + 14x – 21.

Перенесем все неизвестные члены из правой части (т. е. члены +35x и +14x) в левую, а все известные члены из левой части (т. е. члены +175 и –5) в правую - следует при этом не забывать у переносимых членов менять знак:

–15x – 35x – 14x = –21 – 175 + 5

(член –15x, как раньше был в левой части, так и теперь в ней остался - у него поэтому отнюдь не следует менять знака; аналогичное имеет место и для члена –21). Сделав приведение подобных членов, получим:

–64x = –191.

[Возможно сделать так, чтобы не было знака минус в обеих частях уравнения; для этого умножим обе части уравнения на (–1), получим 64x = 191, но этого можно и не делать.]
Разделим затем обе части уравнения на (–64), получим решение нашего уравнения

[Если умножили обе части уравнения на (–1) и получили уравнение 64x = 191, то теперь надо обе части уравнения разделить на 64.]

На основании того, что пришлось выполнять в примерах 4 и 5, мы можем установить: можно освободить уравнение от дробей - для этого надо найти общего знаменателя для всех дробей, входящих в уравнение (или наименьшее общее кратное знаменателей всех дробей) и на него умножить обе части уравнения - тогда дроби должны исчезнуть.

Пример 6. Решить уравнение:

Перенеся член 4x из правой части уравнения в левую, получим:

5x – 4x = 0 или x = 0.

Итак, решение найдено: для x надо взять число нуль. Если мы заменим в данном уравнении x нулем, получим 5 · 0 = 4 · 0 или 0 = 0, что указывает на выполнение требования, выражаемого данным уравнением: найти такое число для x, чтобы одночлен 5x оказался равен тому же самому числу, как и одночлен 4x.

Если кто-либо подметит с самого начала, что обе части уравнения 5x = 4x можно разделить на x и выполнит это деление, то получится явная несообразность 5 = 4! Причиною этого является то обстоятельство, что деление 5x/x в данном случае выполнить нельзя, так как, мы видели выше, вопрос, выражаемый нашим уравнением, требует, чтобы x = 0, а деление на нуль не выполнимо.

Заметим еще, что и умножение на нуль требует некоторой внимательности: умножая на нуль и два неравных числа, мы получим в результате этих умножений равные произведения, а именно - нули.

Если, например, мы имеем уравнение

x – 3 = 7 – x (его решение: x = 5)

и если кто-либо захочет к нему применить свойство «обе части уравнения можно умножить на одно и тоже число» и умножить обе части на x, то получит:

x 2 – 3x = 7x – x 2 .

После этого может обратить на себя внимание, что все члены уравнения содержат множителя x, из чего можно сделать заключение, что для решения этого уравнения можно взять число нуль, т. е. положить x = 0. И в самом деле, тогда получим:
0 2 – 3 · 0 = 7 · 0 – 0 2 или 0 = 0.

Однако, это решение x = 0, очевидно, не годится для данного уравнения x – 3 = 7 – x; заменяя в нем x нулем, получим явную несообразность: 3 = 7!


В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.

Навигация по странице.

Что такое равенство?

Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».

Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.

Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные . В качестве примера приведем два равных квадрата и . Отличающиеся объекты, в свою очередь, называют неравными .

Понятие равенства может относиться как объектам в целом, так и к их отдельным свойствам и признакам. Объекты равны в целом, когда они равны по всем присущим им параметрам. В предыдущем примере мы говорили о равенстве объектов в целом – оба объекта квадраты, они одинакового размера, одинакового цвета, и вообще они полностью одинаковые. С другой стороны, объекты могут быть неравными в целом, но могут иметь некоторые равные характеристики. В качестве примера рассмотрим такие объекты и . Очевидно, они равны по форме –они оба являются кругами. А по цвету и по размеру – неравны, один из них синий, а другой – красный, один маленький, а другой - большой.

Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.

Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.

Запись равенств, знак равно

Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.

При записи равенств записывают равные объекты и между ними ставят знак равно. Например, запись равных чисел 4 и 4 будет выглядеть следующим образом 4=4 , и ее можно прочитать как «четыре равно четырем». Еще пример: равенство площади S ABC треугольника ABC семи квадратным метрам запишется как S ABC =7 м 2 . По аналогии можно привести другие примеры записи равенств.

Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.

Определение.

Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами .

Если письменно требуется обозначить неравенство двух объектов, то используется знак не равно ≠. Мы видим, что он представляет собой перечеркнутый знак равно. В качестве примера приведем запись 1+2≠7 . Ее можно прочитать так: «Сумма единицы и двойки не равна семи». Другой пример |AB|≠5 см. – длина отрезка AB не равна пяти сантиметрам.

Верные и неверные равенства

Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства . Разберемся с этим на примерах.

Запишем равенство 5=5 . Числа 5 и 5 , вне всякого сомнения, равны, поэтому 5=5 – это верное равенство. А вот равенство 5=2 – неверное, так как числа 5 и 2 не равны.

Свойства равенств

Из того, как вводится понятие равенства, естественным образом вытекают характерные для него результаты – свойства равенств. Основными являются три свойства равенств :

  • Свойство рефлексивности, утверждающее, что объект равен самому себе.
  • Свойство симметричности, утверждающее, что если первый объект равен второму, то второй равен первому.
  • И, наконец, свойство транзитивности, утверждающее, что если первый объект равен второму, а второй – третьему, то первый равен третьему.

Запишем озвученные свойства на языке математики с помощью букв:

  • a=a ;
  • если a=b , то b=a ;
  • если a=b и b=c , то a=c .

Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.

Двойные, тройные равенства и т.д.

Наряду с обычными записями равенств, примеры которых мы привели в предыдущих пунктах, используются так называемые двойные равенства , тройные равенства и так далее, представляющие собой как бы цепочки равенств. Например, запись 1+1+1=2+1=3 является двойным равенством, а |AB|=|BC|=|CD|=|DE|=|EF| - пример четверного равенства.

С помощью двойных, тройных и т.д. равенств удобно записывать равенство трех, четырех и т.д. объектов соответственно. Эти записи по своей сути обозначают равенство любых двух объектов, составляющих исходную цепочку равенств. К примеру, указанное выше двойное равенство 1+1+1=2+1=3 по сути означает равенство 1+1+1=2+1 , и 2+1=3 , и 1+1+1=3 , а в силу свойства симметричности равенств и 2+1=1+1+1 , и 3=2+1 , и 3=1+1+1 .

В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.

Получив общее представление о равенствах в математике , можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим .

Навигация по странице.

Что такое числовое равенство?

Знакомство с числовыми равенствами начинается на самом начальном этапе изучения математики в школе. Обычно это происходит в 1 классе сразу после того, как становятся известными первые числа от 1 до 9 и после того, как обретает смысл фраза «столько же». Тогда то и появляются первые числовые равенства, например, 1=1 , 3=3 и т.п., которые на этом этапе обычно называют просто равенствами без уточняющего определения «числовые».

Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в . К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.

После изучения арифметических действий, появляются более разнообразные записи числовых равенств, например, 3+1=4 , 7−2=5 , 3·2=6 , 8:4=2 и т.п. Дальше начинают встречаться числовые равенства еще более интересного вида, содержащие в своих частях различные , к примеру, (2+1)+3=2+(1+3) , 4·(4−(1+2))+12:4−1=4·1+3−1 и тому подобные. Дальше происходит знакомство с другими видами чисел, и числовые равенства приобретают все более и более разнообразный вид.

Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:

Определение.

Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.

Свойства числовых равенств

Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.

Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность : число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.

Основные свойства числовых равенств

Обзор свойств числовых равенств стоит начать с трех основных свойств, характерных всем без исключения равенствам. Итак, основные свойства числовых равенств это:

  • свойство рефлексивности: a=a ;
  • свойство симметричности: если a=b , то b=a ;
  • и свойство транзитивности: если a=b и b=c , то a=c ,

где a , b и c – произвольные числа.

Свойство рефлексивности числовых равенств относится к тому факту, что число равно самому себе. Например, 5=5 , −2=−2 , и т.п.

Несложно показать, что для любого числа a справедливо равенство a−a=0 . Действительно, разность a−a можно переписать в виде суммы a+(−a) , а из свойств сложения чисел мы знаем, что для любого числа a существует единственное −a , и сумма противоположных чисел равна нулю.

Свойство симметричности числовых равенств утверждает, что если число a равно числу b , то число b равно числу a . Например, если 2 3 =8 (смотрите ), то 8=2 3 .

Обоснуем это свойство через разность чисел. Условию a=b отвечает равенство a−b=0 . Покажем, что b−a=0 . Правило раскрытия скобок, перед которыми стоит знак минус, позволяет переписать разность b−a как −(a−b) , она в свою очередь равна −0 , а число, противоположное нулю, есть нуль. Следовательно, b−a=0 , откуда следует, что b=a .

Свойство транзитивности числовых равенств утверждает равенство двух чисел, когда они оба равны третьему числу. Например, из равенств (смотрите ) и 4=2 2 следует, что .

Это свойство также согласуется с определением равных чисел через разность и свойствами действий с числами. Действительно, равенствам a=b и b=c отвечают равенства a−b=0 и b−c=0 . Покажем, что a−c=0 , откуда будет следовать равенство чисел a и c . Так как прибавление нуля не изменяет число, то a−c можно переписать как a+0−c . Нуль заменим суммой противоположных чисел −b и b , при этом последнее выражение примет вид a+(−b+b)−c . Теперь можно выполнить группировку слагаемых следующим образом: (a−b)+(b−c) . А разности в скобках есть нули, следовательно, и сумма (a−b)+(b−c) равна нулю. Этим доказано, что при условии a−b=0 и b−c=0 справедливо равенство a−c=0 , откуда a=c .

Другие важные свойства

Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.

    Начнем с такого свойства: если к обеим частям верного числового равенства прибавить (или вычесть) одно и то же число, то получится верное числовое равенство. С помощью букв оно может быть записано так: если a=b , где a и b – некоторые числа, то a+c=b+c для любого числа c .

    Для обоснования составим разность (a+c)−(b+c) . Ее можно преобразовать к виду (a−b)+(c−c) . Так как a=b по условию, то a−b=0 , и c−c=0 , поэтому (a−b)+(c−c)=0+0=0 . Этим доказано, что (a+c)−(b+c)=0 , следовательно, a+c=b+c .

    Идем дальше: если обе части верного числового равенства умножить на любое число или разделить на отличное от нуля число, то получится верное числовое равенство. То есть, если a=b , то a·c=b·c для любого числа c , и если c отличное от нуля число, то и a:c=b:c .

    Действительно, a·c−b·c=(a−b)·c=0·c=0 , откуда следует равенство произведений a·c и b·c . А деление на отличное от нуля число c можно рассматривать как умножение на 1/c .

    Из разобранного свойства числовых равенств вытекает одно полезное следствие: если a и b отличные от нуля и равные числа, то обратные им числа тоже равны. То есть, если a≠0 , b≠0 и a=b , то 1/a=1/b . Последнее равенство легко доказывается: для этого достаточно обе части исходного равенства a=b разделить на отличное от нуля число, равное произведению a·b .

И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.

    Если почленно сложить верные числовые равенства, то получится верное равенство. То есть, если a=b и c=d , то a+c=b+d для любых чисел a , b , c и d .

    Обоснуем это свойство числовых равенств, отталкиваясь от уже известных нам свойств. Известно, что к обеим частям верного равенства мы можем прибавить любое число. В равенстве a=b прибавим число c , а в равенстве c+d прибавим число b , в результате получим верные числовые равенства a+c=b+c и c+b=d+b , последнее из которых перепишем как b+c=b+d . Из равенств a+c=b+c и b+c=b+d по свойству транзитивности следует равенство a+c=b+d , которое и требовалось доказать.

    Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.

    Завершаем обзор свойств числовых равенств следующим свойством: если почленно перемножить два верных числовых равенства, то получится верное равенство. Сформулируем его формально: если a=b и c=d , то a·c=b·d .

    Доказательство озвученного свойства похоже на доказательство предыдущего. Мы можем умножить обе части равенства на любое число, умножим a=b на c , а c=d на b , получаем верные числовые равенства a·c=b·c и c·b=d·b , последнее из которых перепишем в виде b·c=b·d . Тогда по свойству транзитивности из равенств a·c=b·c и b·c=b·d следует доказываемое равенство a·c=b·d .

    Заметим, что озвученное свойство справедливо для почленного умножения трех и большего числа верных числовых равенств. Из этого утверждения следует, что если a=b , то a n =b n для любых чисел a и b , и любого натурального числа n .

В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу:

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Определение 1

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

Определение 2

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

  • a = a ;
  • если a = b , то b = a ;
  • если a = b и b = c , то a = c .

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 - двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | - пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

- (равенство устар.), равенства, ср. (книжн.). 1. только ед. отвлеч. сущ. к равный, одинаковость, полное сходство (по величине, качеству, достоинству и т.п.). «Без колхозов неравенство, в колхозах равенство прав.» Сталин. Равенство сил. Равенство… … Толковый словарь Ушакова

- (equality) Фактическое и/или нормативное утверждение равной компетенции или равного положения лиц, порождающее право на справедливое распределение (distributive justice). Квазиэмпирическое равенство индивидов относится к сугубо физическим… … Политология. Словарь.

Все люди рождаются свободными и равными в своем достоинстве и правах. Всеобщая декларация прав человека (1948 г.) Все люди рождаются равными и до самой смерти против этого борются. Лешек Кумор Люди рождаются свободными и неравными. Грант Аллен… … Сводная энциклопедия афоризмов

Одно из основных понятий социальной философии и самой социальной жизни. Основанием для всех видов Р. является формальное Р., которое в зависимости от сферы применения и выбора ценностной основы уравнивания формирует различные содержательные… … Философская энциклопедия

Социальное, характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… … Современная энциклопедия

Социальное характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… …

- (equality) Обладание одинаковым значением. Обозначается знаком равенства (=) и применимо к числам или алгебраическим выражениям. Если х и у являются действительными числами, выражение х=у означает, что х и у одинаковы. Если х и у – комплексные… … Экономический словарь

Равенство - Равенство ♦ Égalité Два существа равны, когда они одной величины или обладают одним и тем же количеством чего либо. Таким образом, понятие обретает смысл только относительно и предполагает наличие некой эталонной величины. Так, мы говорим … Философский словарь Спонвиля

См … Словарь синонимов

равенство - 1. Полное сходство, подобие (по величине, качеству, достоинству). 2. Качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы… … Справочник технического переводчика

В логике и математике отношение взаимной заменяемости объектов, которые именно в силу этой заменяемости и считаются равными (а = b). Отношение равенства обладает свойствами рефлексивности (каждый объект равен самому себе), симметричности (если а … Большой Энциклопедический словарь

Книги

  • Равенство , Дэнни Дорлинг. Книга Дэнни Дорлинга `Равенство` богата очень интересными идеями. Большая степень равенства улучшает реальное качество жизни для подавляющего большинства населения. Она улучшает ка чество…