Какие степени окисления проявляет азот. Важнейшие соединения азота. Химическая структура аммония

Азот — элемент 2-го периода V А-группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние N v считается относительно устойчивым.

Шкала степеней окисления у азота:
+5 — N 2 O 5 , NO 3 , NaNO 3 , AgNO 3

3 – N 2 O 3 , NO 2 , HNO 2 , NaNO 2 , NF 3

3 — NH 3 , NH 4 , NH 3 * H 2 O, NH 2 Cl, Li 3 N, Cl 3 N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH 4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

N 2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H 2 O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 , реагирует с фтором и в очень малой степени – с кислородом:

N 2 + 3F 2 = 2NF 3 , N 2 + O 2 ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F 2 O 3 , FeO, в лаборатории при Pt)

N 2 + 3H 2 ↔ 2NH 3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая 15%-ного выхода аммиака. Непрориагировавшие N 2 и H 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O 2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N -3 H 4 N 3 O 2(T) = N 2 0 + 2H 2 O (60-70)

NH 4 Cl(p) + KNO 2 (p) = N 2 0 + KCl +2H 2 O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

NH 3

Бинарное соединение, степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3 ] (sp 3 -гибридизация). Наличие у азота в молекуле NH 3 донорской пары электронов на sp 3 -гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H 2 O при 20˚C); доля в насыщенном растворе равна 34% по массе и 99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N -3) и окислительные (за счет H +1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным HCl, почернение бумажки, смоченной раствором Hg 2 (NO3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH 3(г) ↔ N 2 + 3H 2
NH 3(г) + H 2 O ↔ NH 3 * H 2 O (р) ↔ NH 4 + + OH —
NH 3(г) + HCl (г) ↔ NH 4 Cl (г) белый «дым»
4NH 3 + 3O 2 (воздух) = 2N 2 + 6 H 2 O (сгорание)
4NH 3 + 5O 2 = 4NO+ 6 H 2 O (800˚C, кат. Pt/Rh)
2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O (500˚C)
2 NH 3 + 3Mg = Mg 3 N 2 +3 H 2 (600 ˚C)
NH 3(г) + CO 2(г) + H 2 O = NH 4 HCO 3 (комнатная температура, давление)
Получение. В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью: Ca(OH) 2 + 2NH 4 Cl = CaCl 2 + 2H 2 O +NH 3
Или кипячение водного раствора аммиака с последующим осушением газа.
В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода .



Гидрат аммиака NH 3 * H 2 O . Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и H 2 O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 и анион OH). Катион аммония имеет правильно-тетраэдрическое строение (sp 3 -гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N -3) в концентрированном растворе. Вступает в реакцию ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1 М растворе аммиака содержится в основном гидрат NH 3 *H 2 O и лишь 0,4% ионов NH 4 OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате.
Уравнения важнейших реакций:
NH 3 H 2 O (конц.) = NH 3 + H 2 O (кипячение с NaOH)
NH 3 H 2 O + HCl (разб.) = NH 4 Cl + H 2 O
3(NH 3 H 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3 NH 4 Cl
8(NH 3 H 2 O) (конц.) + 3Br 2(p) = N 2 + 6 NH 4 Br + 8H 2 O (40-50˚C)
2(NH 3 H 2 O) (конц.) + 2KMnO 4 = N 2 + 2MnO 2 ↓ + 4H 2 O + 2KOH
4(NH 3 H 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O
4(NH 3 H 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4H 2 O
6(NH 3 H 2 O) (конц.) + NiCl 2 = Cl 2 + 6H 2 O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

Оксиды азота

Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N 2 О 2 со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. весьма реакционноспособная смесь NO и NO 2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.
Уравнения важнейших реакций:
2NO + O 2 (изб.) = 2NO 2 (20˚C)
2NO + C(графит) = N 2 + CО 2 (400- 500˚C)
10NO + 4P(красный) = 5N 2 + 2P 2 O 5 (150- 200˚C)
2NO + 4Cu = N 2 + 2 Cu 2 O (500- 600˚C)
Реакции на смеси NO и NO 2:
NO + NO 2 +H 2 O = 2HNO 2 (p)
NO + NO 2 + 2KOH(разб.) = 2KNO 2 + H 2 O
NO + NO 2 + Na 2 CO 3 = 2Na 2 NO 2 + CО 2 (450- 500˚C)
Получение в промышленности : окисление аммиака кислородом на катализаторе, в лаборатории — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO 3 + 6Hg = 3Hg 2 (NO 3) 2 + 2NO + 4 H 2 O
или восстановлении нитратов:
2NaNO 2 + 2H 2 SO 4 + 2NaI = 2NO + I 2 ↓ + 2 H 2 O + 2Na 2 SO 4


Диоксид азота NO 2

Кислотный оксид, условно отвечает двум кислотам — HNO 2 и HNO 3 (кислота для N 4 не существует). Бурый газ, при комнатной температуре мономер NO 2 , на холоду жидкий бесцветный димер N 2 О 4 (тетраоксид диазота). Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.
Уравнение важнейших реакций:
2NO 2 ↔ 2NO + O 2
4NO 2 (ж) + H 2 O = 2HNO 3 + N 2 О 3 (син.) (на холоду)
3 NO 2 + H 2 O = 3HNO 3 + NO
2NO 2 + 2NaOH(разб.) = NaNO 2 + NaNO 3 + H 2 O
4NO 2 + O 2 + 2 H 2 O = 4 HNO 3
4NO 2 + O 2 + KOH = KNO 3 + 2 H 2 O
2NO 2 + 7H 2 = 2NH 3 + 4 H 2 O (кат. Pt, Ni)
NO 2 + 2HI(p) = NO + I 2 ↓ + H 2 O
NO 2 + H 2 O + SO 2 = H 2 SO 4 + NO (50- 60˚C)
NO 2 + K = KNO 2
6NO 2 + Bi(NO 3) 3 + 3NO (70- 110˚C)
Получение: в промышленности — окислением NO кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO 3 (конц.,гор.) + S = H 2 SO 4 + 6NO 2 + 2H 2 O
5HNO 3 (конц.,гор.) + P (красный) = H 3 PO 4 + 5NO 2 + H 2 O
2HNO 3 (конц.,гор.) + SO 2 = H 2 SO 4 + 2 NO 2

Оксид диазота N 2 O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N 2 O + C = CO 2 + 2N 2 (450˚C)
N 2 O + Mg = N 2 + MgO (500˚C)
Получают термическим разложением нитрата аммония:
NH 4 NO 3 = N 2 O + 2 H 2 O (195- 245˚C)
применяется в медицине, как анастезирующее средство.

Триоксид диазота N 2 O 3

При низких температурах –синяя жидкость, ON꞊NO 2 , формальная степень окисления азота +3. При 20 ˚C на 90% разлагается на смесь бесцветного NO и бурого NO 2 («нитрозные газы», промышленный дым – «лисий хвост»). N 2 O 3 – кислотный оксид, на холоду с водой образует HNO 2 , при нагревании реагирует иначе:
3N 2 O 3 + H 2 O = 2HNO 3 + 4NO
Со щелочами дает соли HNO 2, например NaNO 2 .
Получают взаимодействием NO c O 2 (4NO + 3O 2 = 2N 2 O 3) или с NO 2 (NO 2 + NO = N 2 O 3)
при сильном охлаждении. «Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазота N 2 O 5

Бесцветное, твердое вещество, O 2 N – O – NO 2 , степень окисления азота равна +5. При комнатной температуре за 10 ч разлагается на NO 2 и O 2 . Реагирует с водой и щелочами как кислотный оксид:
N 2 O 5 + H 2 O = 2HNO 3
N 2 O 5 + 2NaOH = 2NaNO 3 + H 2
Получают дегидротацией дымящейся азотной кислоты:
2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3
или окислением NO 2 озоном при -78˚C:
2NO 2 + O 3 = N 2 O 5 + O 2


Нитриты и нитраты

Нитрит калия KNO 2 . Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена. Качественные реакции на ион NO 2 — обесцвечивание фиолетового раствора MnO 4 и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.
уравнение важнейших реакций:
2KNO 2 (т) + 2HNO 3 (конц.) = NO 2 + NO + H 2 O + 2KNO 3
2KNO 2 (разб.)+ O 2 (изб.) → 2KNO 3 (60-80 ˚C)
KNO 2 + H 2 O + Br 2 = KNO 3 + 2HBr
5NO 2 — + 6H + + 2MnO 4 — (фиол.) = 5NO 3 — + 2Mn 2+ (бц.) + 3H 2 O
3 NO 2 — + 8H + + CrO 7 2- = 3NO 3 — + 2Cr 3+ + 4H 2 O
NO 2 — (насыщ.) + NH 4 + (насыщ.)= N 2 + 2H 2 O
2NO 2 — + 4H + + 2I — (бц.) = 2NO + I 2 (черн.) ↓ = 2H 2 O
NO 2 — (разб.) + Ag + = AgNO 2 (светл.желт.)↓
Получение в промышленности – восстановлением калийной селитры в процессах:
KNO 3 + Pb = KNO 2 + PbO (350-400˚C)
KNO 3 (конц.) + Pb(губка) + H 2 O = KNO 2 + Pb(OH) 2 ↓
3 KNO 3 + CaO + SO 2 = 2 KNO 2 + CaSO 4 (300 ˚C)

H итрат калия KNO 3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе. Хорошо растворим в воде (с высоким эндо -эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO 2 , в щелочной среде до NH 3). Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO 3 = 2KNO 2 + O 2 (400- 500 ˚C)

KNO 3 + 2H 0 (Zn, разб. HCl) = KNO 2 + H 2 O

KNO 3 + 8H 0 (Al, конц. KOH) = NH 3 + 2H 2 O + KOH (80 ˚C)

KNO 3 + NH 4 Cl = N 2 O + 2H 2 O + KCl (230- 300 ˚C)

2 KNO 3 + 3C (графит) + S = N 2 + 3CO 2 + K 2 S (сгорание)

KNO 3 + Pb = KNO 2 + PbO (350 — 400 ˚C)

KNO 3 + 2KOH + MnO 2 = K 2 MnO 4 + KNO 2 + H 2 O (350 — 400 ˚C)

Получение : в промышленности
4KOH (гор.) + 4NO 2 + O 2 = 4KNO 3 + 2H 2 O

и в лаборатории:
KCl + AgNO 3 = KNO 3 + AgCl↓






Степени окисления азота в соединениях −3, −2, −1, 0, +1, +2, +3, +4, +5.

Соединения азота в степени окисления −3 представлены нитридами, из которых практически наиболее важен аммиак;

Соединения азота в степени окисления −2 менее характерны, представлены пернитридами, из которых самый важный пернитрид водорода N2H4 или гидразин(существует также крайне неустойчивый пернитрид водорода N2H2, диимид);

Соединения азота в степени окисления −1 NH2OH (гидроксиламин) - неустойчивое основание, применяющееся, наряду с солями гидроксиламмония, в органическом синтезе;

Соединения азота в степени окисления +1 оксид азота(I) N2O (закись азота, веселящий газ);

Соединения азота в степени окисления +2 оксид азота(II) NO (монооксид азота);

Соединения азота в степени окисления +3 оксид азота(III) N2O3, азотистая кислота, производные аниона NO2−, трифторид азота (NF3);

Соединения азота в степени окисления +4 оксид азота(IV) NO2 (диоксид азота, бурый газ);

Соединения азота в степени окисления +5 оксид азота(V) N2O5, азотная кислота, её соли - нитраты и другие производные, а также тетрафтораммоний NF4+ и его соли.

Аммиак - соединение азота с водородом. Имеет важное значение в химической промышленности. Формула аммиака - NH 3 .

Бесцветный газ с характерным резким запахом. Аммиак значительно легче воздуха, масса одного литра этого газа составляет 0,77 г. Благодаря водородным связям аммиак имеет аномально высокую температуру кипения, не соответствующую его малой молекулярной массе, хорошо растворим в воде.

Соли аммония. Большинство солей аммония бесцветны и хорошо растворимы в воде. По некоторым свойствам они подобны солям щелочных металлов, особенно калия. Соли аммония термически неустойчивы. При нагревании они разлагаются. Это разложение может происходить обратимо и необратимо.

Соли аммония находят широкое применение. Большая часть их (сульфат аммония, нитрат аммония) используется в качестве удобрений. Хлорид аммония или нашатырь применяется в красильной и текстильной промышленности, при паянии и лужении, а также в гальванических элементах.

Азотная кислота - сильная одноосновная кислота. В разбавленных растворах она полностью распадается на ионы Н +1 и NO -1 3 .

Чистая азотная кислота - бесцветная жидкость с едким запахом. Кипит при 86 °С. Гигроскопична. Под действием света она постепенно разлагается.

Азотная кислота - сильный окислитель. Многие неметаллы легко окисляются ею, превращаясь в кислоты.

Азотная кислота действует почти на все металлы за исключением золота, платины, тантала, родия и иридия. Концентрированная азотная кислота приводит некоторые металлы (железо, алюминий, хром) в пассивное состояние. Степень окисления азота в азотной кислоте равна +5. Чем выше концентрация HNO 3 тем менее глубоко она восстанавливается. При реакциях с концентрированной азотной кислотой обычно выделяется N0 2 . При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, медью, выделяется NO.


Применение. В больших количествах она используется для производства азотных удобрений, красителей, взрывчатых веществ, лекарственных препаратов. Азотная кислота применяется в производстве серной кислоты нитрозным способом, используется для изготовления целлюлозных лаков, кинопленки.

Соли азотной кислоты. Одноосновная азотная кислота образует только средние соли, которые называются нитраты. Все нитраты хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода.

Нитраты наиболее активных металлов, которые в ряду стандартных электродных потенциалов находятся левее магния, переходят в нитриты.

Среди солей азотной кислоты наиболее важное значение имеют нитраты натрия, калия, аммония и кальция, которые на практике называются селитрами. Селитры используются главным образом как удобрения.

Азотные удобрения Нитрат аммония (аммиачная селитра) Это наиболее эффективное, богатое азотом удобрение. Содержит 33-35% азота в нитратной и аммиачной форме. Легко растворяется в воде, хорошо действует на многих почвах Сульфат аммония Содержит около 21% азота. Представляет собой бесцветные кристаллы ромбической формы. Это удобрение менее гигроскопично, чем нитрат аммония, не слеживается, не огнеопасно Мочевина Это наиболее ценное азотсодержащее удобрение. Мочевина содержит наибольшее количество азота (около 46%) в хорошо усваиваемой растениями форме. Она представляет собой бесцветные или желтоватые кристаллы, хорошо растворяется в воде. Мочевина не взрывоопасна, мало гигроскопична, не слеживается Нитрат калия (калийная селитра) Калийная селитра содержит приблизительно в 3 раза больше калия, чем азота. Поэтому ее применяют в комбинации с другими удобрениями Нитрат кальция (норвежская селитра) Ценное азотное удобрение. Содержит около 13% азота Хлорид аммония Представляет собой белый порошок, содержит около 25% азота

Вариант 1.



1. Число нейтронов в атоме 4N14:
А. 7.


Б. Азоту.

3. Азот имеет степень окисления +5 в соединении с формулой:
Г. HN03.

4. Минимальная степень окисления азота в соединении (из перечисленных ниже) с формулой:
А. N2.


Б. Фосфор.

6. Наименьший радиус у атома:
Г. F.


Б. Са3Р2.

8. Азотистой кислоте соответствует оксид с формулой:
Б. N203.

10. Коэффициент перед окислителем в реакции, схема которой
Ag + HN03(KOHЦ) -> AgN03 + N02 + Н20:

Б. 4.


11. Составьте молекулярные уравнения реакций следующих превращений:
Р -> Р205 -> H3P04 -> Na3P04.

1. 4Р + 5О2 = 2Р2О5
P0 -5e →P+5 восстановитель
O20 + 2*2e→2O-2 окислитель
2. Р2О5 + 3Н2О = 2Н3РО4
3. Н3РО4 + 3NaOH = Na3PO4 + 3H2O
3Н+ + 3OH- = 3H2O

12. Дополните фразу: «Аллотропия - это...»
существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам.

13. С какими из веществ, формулы которых: КОН, С02, Zn, CuO, НС1, СаС03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 + КOH → КNO3 + H2O
3CuO + 6HNO3 = 3Cu(NO3)2 + 3H2O
10HNO3 разбавл. + 4Zn = 4Zn(NO3)2 + NH4NO3 + 3H2O
2HNO3 + CaCO3 = Ca(NO3)2 + H2O + CO2

14. Закончите схему термического разложения нитрата меди (II):
Cu(N03)2 --> CuO + X + 02.

2Cu(NO3)2 = 2CuO + 4NO2 + O2
Сумма коэфф. = 9

15. При взаимодействии 37 г гидроксида кальция с сульфатом аммония было получено 15 г аммиака. Вычислите массовую долю выхода аммиака от теоретически возможного.
Ca(OH) 2 +(NH4)2 SO4 =CaSO4+2NH3*H2O
M Ca(OH)2=40+32+2=74г/моль.
n Ca(OH)2 =37: 74=0.5 моль
1 моль Са(ОH)2: 2 моль NH3
0.5:1 моль
M NH3 = 17г \моль
масса 17*1=17 г.
выход (NH3)=15: 17=0.88=88%

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 7N15:
А. 8.


В. Фосфору.

3. Азот имеет степень окисления +4 в соединении с формулой:
B. N02.

4. Минимальная степень окисления фосфора в соединении с формулой:
Б. РН3.

5. Из перечисленных химических элементов наибольшей электроотрицательностью в соединениях обладает:
В. Сера

6. Наименьший радиус у атома, символ которого:
Г. С1.

7. Только восстановителем может быть вещество с формулой:
B. NH3.

8. Фосфористой кислоте Н3Р03 соответствует оксид с формулой:
В. Р2О3


Сu + HN03(KOHЦ) -> CU(N03)2 + N02 + Н20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций, идущих по схеме
NO → N02 → HN03 → NaN03.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. HNO3 + NaOH = NaNO3 + H2O
H+ + OH- = H2O

12. Дополните следующую фразу: «Селитра - это...»
Азотнокислая соль калия, натрия, аммония, употребляемая в технике взрывчатых веществ и в агрономии для удобрений.

13. С какими из веществ, формулы которых: Mg, Ag, AgN03, BaO, C02, KN03, NaOH, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Mg + 2H3PO4 = Mg3(PO4)2↓ + 3H2
2H3PO4 +3BaO = Ba3(PO4)2 + 3H2O
Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3

14. Закончите схему термического разложения нитрата натрия
NaN03 → NaN02 + X.
Найдите сумму коэффициентов в уравнении.

2NaNO3 = 2NaNO2 + O2
Сумма коэффициентов – 5

15. Какой объем аммиака (н. у.) можно получить при взаимодействии 15 м3 азота с избытком водорода, если выход аммиака составляет 10% от теоретически возможного?
N2 + 3H2 = 2NH3
n(N2) = 15 000 /22,4 = 669 (моль)
n(NH3) = 2*669 = 1339,28 (моль)
Vтеор.(NH3) = 1339,28*22,4= 29999 (дм3)
Vпракт. (NH3) = 29999*0,9 = 26999 (дм3) = 26, 999 м3

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 20Са40:
Б. 20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 5е соответствует:
А. Азоту.

3. Азот имеет степень окисления +2 в соединении с формулой:
Б. NO.

4. Максимальная степень окисления азота в соединении с формулой:
Г. HN03.


А. Бор.


А. С.


Г. Н3Р04.

8. Азотной кислоте соответствует оксид с формулой:
Г. N205.

10. Коэффициент перед окислителем в схеме
Ag + HN03(paзб) -> AgN03 + NO + H20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме
N2 → NH3 → NH3 Н20 → (NH4)2S04.
Уравнение 1 рассмотрите с точки зрения теории ОВР, уравнение 3 запишите в ионном виде.

1. N2 + 3H2 = 2NH3
N20 +2*3е→2N-3 окислитель
H20 -2*1е→2H+1 восстановитель
2. NH3 + H2O = NH3*H20
3. 2NH3*H20 + H2SO4 = (NH4)2SO4 +2H2O
2NH3*H20 + 2H+= 2NH4+ +2H2O

12. Дополните фразу: «Число атомов, входящих в катион аммония...»
равно 5.

13. С какими из веществ, формулы которых: S03, КОН, CaO, Mg, N205, Na2C03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 (разб.) + КOH = КNO3 + H2O
2HNO3 + CaO = Ca(NO3)2 + H2O
10HNO3 разбавл. + 4Mg = 4Mg(NO3)2 + N2O + 3H2O
2HNO3 + Na2CO3 = 2NaNO3 + H2O + CO2

14. Закончите схему термического разложения нитрата серебра
AgNOg → Ag + X + 02.
Укажите сумму коэффициентов в уравнении.

2AgNO3 = 2Ag + 2NO2 + O2
7

15. Азот объемом 56 л (н. у.) прореагировал с избытком водорода. Объемная доля выхода аммиака составляет 50% от теоретически возможного. Рассчитайте объем полученного аммиака.
N2 + 3H2 = 2NH3
n(N2) = 56 /22,4 = 2,5 (моль)
n(теор.)(NH3) = 2*2,5 = 5 (моль)
Vпракт. (NH3) = 5*22,4*0,5 = 56 л

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в изотопе 19K39:
В.20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 8е, 5е соответствует:
Б. Фосфору.

3. Азот имеет степень окисления 0 в соединении с формулой:
A. N2.

4. Максимальная степень окисления фосфора в соединении с формулой:
Г. Н3Р04.

5. Из перечисленных химических элементов наименьшей электроотрицательностью в соединениях обладает:
А. Бериллий.

6. Наибольший радиус у атома химического элемента, символ которого:
A. Si.

7. Только окислителем может быть вещество с формулой:
Г. HN03.

8. Ортофосфорной кислоте соответствует оксид с формулой:
Г. Р2О5.

10. Коэффициент перед окислителем в схеме
Си + HN03(paзб) -> CU(N03)2 + NO + Н20:

Г. 8.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме:
NO → N02 → HN03 → NH4N03.
Уравнение 1 рассмотрите с точки зрения ОВР, уравнение 3 запишите в ионном виде.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. NH3 + HNO3 = NH4NO3
NH3 + H+ = NH4+

12. Дополните фразу: «Аллотропными видоизменениями фосфора являются...»
белый, красный и черный фосфор

13. С какими из веществ, формулы которых: Zn, CuO, Си, NaOH, S02, NaN03, K2C03, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Zn + 2H3PO4 = Zn3(PO4)2↓ + 3H2
3CuO + 2H3PO4 = Cu3(PO4)2 + 3H2O
3K2CO3 + 2H3PO4 = 2K3PO4 + 3H2O + 3CO2

14. Закончите схему термического разложения нитрата железа (II):
Fe(N03)2 → FeO + N02 + X.
Найдите сумму коэффициентов в уравнении.

2Fe(NO3)2 = 2FeO + 4NO2 + O2

15. При сжигании в кислороде 62 г фосфора было получено 130 г оксида фосфора (V) от теоретически возможного. Вычислите массовую долю выхода оксида фосфора (V).
4P + 5O2 = 2P2O5
n(P) = 62/31 = 2 моль
nтеор.(P2O5) = 0,5*2 = 1 моль
mтеор.(P2O5) = 1*142 = 142 г
выход = mпракт./mтеор. = 130/142=0.92 = 92%

Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет пирамидальное строение и содержит неподеленную пару электронов на атоме азота:

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках. Жидкий аммиак хороший растворитель, в нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O

4NH 3 + 5O 2 = 4NO + 6H 2 O

Аммиак очень хорошо растворим в воде, в которой проявляет свойства слабого основания:

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­

(NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения момента наступления равновесия процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды щелочных и щелочноземельных металлов представляют собой ионные соединения, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень тугоплавкие и химически устойчивые.

Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 114 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:



2NH 3 + NaClO = N 2 H 4 + NaCl + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMnO 4 + 5N 2 H 4 + 6H 2 SO 4 = 5N 2 + 4MnSO 4 + 2K 2 SO 4 + 16H 2 O

Гидразин и его производные широко применяются в качестве ракетного топлива.

Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Гидроксиламин - бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6[H] = NH 2 OH + 2H 2 O

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

Положительные степени окисления азот проявляет в оксидах, а также кислородсодержащих кислотах и их солях.

Оксид азота(I ) - N 2 O(закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) используется в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония:

NH 4 NO 3 ¾® N 2 O + 2H 2 O

N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают, пропуская воздух через электрическую дугу (3000-4000 °С).

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O

Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. - 100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2

N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии.)

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом, чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом. Поэтому оксид азота легко димеризуется. Процесс обратим и очень чувствителен к температуре.

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3

2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3

2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует:

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смесь концентрированной азотной и соляной кислот в соотношении 1: 3:

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Соли азотной кислоты - нитраты хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов.

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода.

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты H 2 N-C(O)-NH 2 . Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории концентрированную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 + H 2 SO 4 = HNO 3 ­ + NaHSO 4

Соединения со степенью окисления –3. Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет геометрию тригональной пирамиды с атомом азота в вершине. Атомные орбитали азота находятся в sp 3 -гибридном состоянии. Три орбитали задействованы в образовании связей азот-водород, а четвертая орбиталь содержит неподеленную электронную пару, молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3 °.

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом в кислой среде происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (109,5 °) за счет равномерного отталкивания атомов водорода.

Жидкий аммиак хороший самоионизирующийся растворитель:

2NH 3 NH 4 + + NH 2 -

амид-анион

В нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

Аммиак очень хорошо растворим в воде (при 20 °С в одном объеме воды растворяется около 700 объемов аммиака). В водных растворах проявляет свойства слабого основания.

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 4NH 3 + 5O 2 = 4NO + 6H 2 O

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­; (NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды образуются в результате реакций многих металлов и неметаллов с азотом. Свойства нитридов закономерно изменяются в периоде. Например, для элементов третьего периода:

Нитриды s-элементов I и II групп представляют собой кристаллические солеподобные вещества, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Из нитридов галогенов в свободном состоянии выделен только Cl 3 N, кислотный характер проявляется в реакции с водой:

Cl 3 N + 3H 2 O = 3HClO + NH 3

Взаимодействие нитридов разной природы приводит к образованию смешанных нитридов:

Li 3 N + AlN = Li 3 AlN 2 ; 5Li 3 N + Ge 3 N 4 = 3Li 5 GeN 3

нитридоалюминат нитридогерманат(IV) лития

Нитриды ВN, AlN, Si 3 N 4 , Ge 3 N 4 – твердые полимерные вещества с высокими температурами плавления (2000-3000 °С), они полупроводники или диэлектрики. Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень твердые, тугоплавкие и химически устойчивые, проявляют металлические свойства: металлический блеск, электропроводность.

Соединения со степенью окисления –2. Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 113,5 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:

2N -3 H 3 + NaCl +1 O = N 2 -2 H 4 + NaCl -1 + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

катион гидрозония

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

катион дигидрозония

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMn +7 O 4 + 5N 2 -2 H 4 + 6H 2 SO 4 = 5N 2 0 + 4Mn +2 SO 4 + 2K 2 SO 4 + 16H 2 O

Несимметричный диметилгидразин (гептил) широко применяется в качестве ракетного топлива.

Соединения со степенью окисления –1. Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6H = NH 2 OH + 2H 2 O

Это бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания. С кислотами дает соли гидроксиламмония – устойчивые бесцветные вещества, растворимые в воде.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

ион гидроксиламмония

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O;

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

NH 2 OН легко разлагается при нагревании, подвергаясь диспропорционированию:

3N -1 H 2 OH = N 0 2 + N -3 H 3 + 3H 2 O;

Соединения со степенью окисления +1. Оксид азота(I) - N 2 O (закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) использовалась в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония. N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

NH 4 NO 3 ¾® N 2 O + 2H 2 O

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Соединения со степенью окисления +2. Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают окислением аммиака на платиновом катализаторе или, пропуская воздух через электрическую дугу (3000-4000 °С).

4NH 3 + 5О 2 = 4NО + 6H 2 О; N 2 + O 2 = 2NO

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O; 10NO + 4Р = 5N 2 + 2Р 2 O 5

Соединения со степенью окисления +3. Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. -100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2 ; N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии).

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Соединения со степенью окисления +4. Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом. Чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом, поэтому оксид азота легко димеризуется.

Процесс димеризации обратим и очень чувствителен к температуре:

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3 ; 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Соединения со степенью окисления +5. Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3 ; 2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует.

Строение молекулы азотной кислоты описывается следующими структурными формулами:

Сложности с написанием структурной формулы HNO 3 вызваны тем обстоятельством, что, проявляя в данном соединении степень окисления +5, азот, как элемент второго периода, может образовать только четыре ковалентные связи.

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O;

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смеси концентрированной азотной и соляной кислот в соотношении 1: 3.

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O;

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­;

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории 100 %-ную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 (кр) + H 2 SO 4 (конц) = HNO 3 ­ + NaHSO 4

Соли азотной кислоты - нитраты - хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов. Например:

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода. Например:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты:

Азид водорода (динитридонитрат) - HN 3 (HNN 2) – бесцветная летучая жидкость (т.пл. –80 °С, т.кип. 37 °С) с резким запахом. Центральный атом азота находится в sp-гибридизации, степень окисления +5, соседние с ним атомы имеют степень окисления –3. Структура молекулы:

Водный раствор HN 3 – азотистоводородная кислота по силе близка к уксусной, K a = 2,6×10 -5 . В разбавленных растворах устойчива. Её получают взаимодействием гидразина и азотистой кислоты:

N 2 Н 4 + HNO 2 = HN 3 + 2Н 2 О

По окислительным свойствам HN 3 (HN +5 N 2) напоминает азотную кислоту. Так, если при взаимодействии металла с азотной кислотой образуются оксид азота(II) и вода, то с азотистоводородной кислотой – азот и аммиак. Например,

Cu + 3HN +5 N 2 = Cu(N 3) 2 + N 2 0 ­ + NH 3

Смесь HN 3 и HCl ведет себя подобно царской водке. Соли азотистоводородной кислоты - азиды. Относительно устойчивы только азиды щелочных металлов, при температуре > 300 °С они разрушаются без взрыва. Остальные распадаются со взрывом при ударе или нагревании. Азид свинца используют в производстве детонаторов:

Pb(N 3) 2 = Pb + 3N 2 0 ­

Исходным продуктом для получения азидов является NaN 3 , который образуется в результате реакции амида натрия и оксида азота(I):

NaNH 2 + N 2 O = NaN 3 + H 2 O

4.2.Фосфор

Фосфор представлен в природе одним изотопом - 31 Р, кларк фосфора равен 0,05 мол.%. Встречается в виде фосфатных минералов: Ca 3 (PO 4) 2 - фосфорит, Ca 5 (PO 4) 3 X (X = F,Cl,OH) - апатиты. Входит в состав костей и зубов животных и человека, а также в состав нуклеиновых кислот (ДНК и РНК) и аденозинфосфорных кислот (АТФ, АДФ и АМФ).

Получают фосфор восстановлением фосфорита коксом в присутствии диоксида кремния.

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P­ + 5CO

Простое вещество - фосфор - образует несколько аллотропных модификаций, из которых основными являются белый, красный и черный фосфор. Белый фосфор образуется при конденсации паров фосфора и представляет собой белое воскоподобное вещество (т.пл. 44 °С), нерастворимое в воде, растворимое в некоторых органических растворителях. Белый фосфор имеет молекулярное строение и состоит из тетраэдрических молекул P 4 .

Напряженность связей (валентный угол P-P-P составляет всего 60 °) обусловливает высокую реакционную способность и токсичность белого фосфора (смертельная доза около 0,1 г). Поскольку белый фосфор хорошо растворим в жирах, в качестве антидота при отравлении нельзя применять молоко. На воздухе белый фосфор самопроизвольно воспламеняется, поэтому хранят его в герметически упакованной химической посуде под слоем воды.

Красный фосфор имеет полимерное строение. Получается при нагревании белого фосфора или облучении его светом. В отличие от белого фосфора малореакционноспособен и нетоксичен. Однако остаточные количества белого фосфора могут придавать красному фосфору токсичность!

Черный фосфор получается при нагревании белого фосфора под давлением 120 тыс.атм. Имеет полимерное строение, обладает полупроводниковыми свойствами, химически устойчив и нетоксичен.

Химические свойства. Белый фосфор самопроизвольно окисляется кислородом воздуха при комнатной температуре (окисление красного и черного фосфора идет при нагревании). Реакция протекает в два этапа и сопровождается свечением (хемилюминесценция).

2P + 3O 2 = 2P 2 O 3 ; P 2 O 3 + O 2 = P 2 O 5

Ступенчато происходит также взаимодействие фосфора с серой и галогенами.

2P + 3Cl 2 = 2PCl 3 ; PCl 3 + Cl 2 = PCl 5

При взаимодействии с активными металлами фосфор выступает в роли окислителя, образуя фосфиды - соединения фосфора в степени окисления -3.

3Ca + 2P = Ca 3 P 2

Кислотами-окислителями (азотная и концентрированная серная кислоты) фосфор окисляется до фосфорной кислоты.

P + 5HNO 3 (конц) = H 3 PO 4 + 5NO 2 ­ + H 2 O

При кипячении с растворами щелочей белый фосфор диспропорционирует:

4P 0 + 3KOH + 3H 2 O = P -3 H 3 ­ + 3KH 2 P +1 O 2

фосфин гипофосфит калия