Неорганическим полимером является. Полимеры германия и олова. Применение серого селена

Неорганические полимеры

  • Неорганические полимеры - полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.


Классификация полимеров

1. Гомоцепные полимеры

Углерод и халькогены (пластическая модификация серы).

Минеральное волокно асбест


Характеристика асбеста

  • Асбест (греч. ἄσβεστος, - неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон.

  • Ca2Mg5Si8O22(OH)2 -формула

  • Два основных типа асбестов - серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты


Химический состав

  • По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества:

  • Mg6(OH)8

  • 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О


Безопасность

  • Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки.

  • На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.


Применение асбеста

  • Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных).

  • В строительстве (в составе асбесто-цементных смесей для производства труб и шифера).

  • В местах, где требуется снизить влияние кислот.


Роль неорганических полимеров в формировании литосферы


Литосфера

  • Литосфера - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

  • Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5-10 км, а гранитный слой полностью отсутствует.



Химический состав

    Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.


Гранит

  • Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд - биотита и мусковита. Граниты очень широко распространены в континентальной земной коре.

  • Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10-20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин,и в меньшей степени, для островных дуг.

  • Минеральный состав гранита:

  • полевые шпаты - 60-65 %;

  • кварц - 25-30 %;

  • темноцветные минералы (биотит, редко роговая обманка) - 5-10 %.


Базальт

  • Минеральный состав . Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит.

  • Химический состав . Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;


Кварц (Оксид кремния(IV), кремнезем)


Формула: SiO2

  • Формула: SiO2

  • Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый

  • Цвет черты: белая

  • Блеск: стеклянный, в сплошных массах иногда жирный

  • Плотность: 2,6-2,65 г/см³

  • Твердость: 7





Химические свойства





Корунд (Al2O3 , глинозем)


Формула: Al2O3

  • Формула: Al2O3

  • Цвет: голубой, красный, жёлтый, коричневый, серый

  • Цвет черты: белая

  • Блеск: стеклянный

  • Плотность: 3,9-4,1 г/см³

  • Твердость: 9







Теллур


Теллур цепочечного строения

  • Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.


Применение теллура

  • Производстве полупроводниковых материалов

  • Производство резины

  • Высокотемпературная сверхпроводимость


Селен


Селен цепочечного строения

Черный Серый Красный

Серый селен

    Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.


Применение серого селена

  • Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками».

  • Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.


Красный селен

  • Красный селен представляет собой менее устойчивую аморфную модификацию.

  • Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние.

  • Не имеет определенной температуры плавления.

  • Красный аморфный селен при повышении температуры (- 55) начинает переходить в серый гексагональный селен


Сера



Особенности строения

  • Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

  • Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.



Получение пластической серы


Применение серы

  • Получение серной кислоты;

  • В бумажной промышленности;

  • в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника);

  • в производстве красителей и светящихся составов;

  • для получения черного (охотничьего) пороха;

  • в производстве спичек;

  • мази и присыпки для лечения некоторых кожных заболеваний.


Аллотропные модификации углерода


Сравнительная характеристика


Применение аллотропных модификаций углерода

  • Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках.

  • Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)

Неорганические полимеры - термин, который приобрел известность благодаря широкому применению в литье по выплавляемым моделям . А все благодаря свойствам, которые присущи этим материалам. Но значение неорганических полимеров для человека намного шире, и сфера применения далеко выходит за рамки этой технологии.

Что такое неорганические полимеры

Более распространены неорганические полимеры природного происхождения, содержащиеся в земной коре

Чаще всего это продукт синтеза элементов III-VI группы периодической системы Менделеева. Неорганическими они называются потому, что в основе лежат неорганические главные цепи и не имеют органические боковые радикалы. Связи появляются в результате одного из двух процессов - поликонденсация или полимеризация.

Говоря обобщенно, неорганические полимеры - это искусственно синтезированные материалы, которые пришли на смену природным. При этом создатели преследовали цель сделать их дешевле. Современные полимеры превосходят имеющиеся природные аналоги по своим характеристикам. Были созданы материалы, которыми природа не обладает вовсе. Это обеспечивает их популярность и разнообразие.

Классификация

Пока еще не сформирован четкий перечень видов, но есть несколько основных групп неорганических полимеров, которые разнятся по своей структуре. Такие материалы бывают:

  • линейными;
  • плоскими;
  • разветвленными;
  • трехмерные и т.д.

Также различают по происхождению:

  • природные;
  • искусственные.

По образованию цепей:

  • гетероцепные;
  • гомоцепные.

Виды неорганических полимеров

Асбест - один из самых распространенных полимеров. По своей структуре это тонковолоконный материал - силикат. В своем составе он включает молекулы железа, магния, кальция и натрия. Производство этого полимера относится к числу вредных для человека, но изделия из него абсолютно безопасны.

Силикон также нашел свое применение благодаря тому, что по многим характеристикам превосходит природный каучук. Прочность и эластичность обеспечивает соединение кислорода и кремния. Полисиликонсан выдерживает механические, температурные, деформационные воздействие. При этом форма и структура остается неизменной.

Карбин пришел на смену алмазу. Он также прочен, что необходимо во многих отраслях промышленности. Для этого полимера характерна способность выдерживать температуру до 5 000 ºC. Особенность - увеличение электропроводности под воздействием световых волн.

Графит известен всем, кто когда-либо брал в руки карандаш. Особенность углеводородистых полимеров - плоскостная структура. Они проводят электрические разряды, тепло, но полностью поглощают световую волну.

Также производятся полимеры, в основе которых применен селен, бор и другие элементы, что обеспечивает разнообразие характеристик.

Характеристики неорганических полимеров

При создании полимерных материалов за основу качеств конечного продукта берут:

  • гибкость и эластичность;
  • прочность на сжатие, кручение, разрыв;
  • агрегатное состояние; температурная стойкость;
  • электропроводность;
  • способность пропускать свет и т.д.

при изготовлении берут чистое вещество, подвергают его специфическим процессам полимеризации, и на выходе получают синтетические (неорганические) полимеры, которые:

  1. Выдерживают запредельные температуры.
  2. Способны принимать изначальную форму после деформации под действием внешних механических сил.
  3. Становятся стеклообразными при нагревании до критической температуры.
  4. Способны менять структуру при переходе от объемной к плоскостной, чем обеспечивается вязкость.

Способность преобразовываться используется при формовом литье. После остывания неорганические полимеры твердеют, и приобретают также различные качества от прочного твердого до гибкого, эластичного. При этом обеспечивается экологическая безопасность, чем не может похвастаться обычный пластик. Полимерные материалы не вступают в реакцию с кислородом, а прочные связи исключают высвобождение молекул.

Сфера применения

Полимеры отличаются огромным разнообразием. С каждым годом ученые разрабатывают новые технологии, которые позволяют производить материалы с различными качественными показателями. И сейчас полимеры встречаются как в промышленности, так и в быту. Ни одно строительство не обходится без асбеста. Он присутствует в составе шифера, специальных труб и т.д. В качестве вяжущего элемента применяется цемент.

Силикон - отличный герметик, используемый строителями. Автостроение, производство промышленного оборудования, товаров народного потребления основано на полимерах, которые позволяют добиться высокой прочности, долговечности, герметичности.

А возвращаясь к асбесту, нельзя не упомянуть, что способность удерживать тепло позволило создать костюмы для пожарных.

Говоря об алмазах, принято отождествлять их с бриллиантами (обработанными алмазами). Некоторые неорганические полимеры не уступают этому природному кристаллу, что необходимо в различных промышленных сферах, и при производстве бриллиантов, в том числе. В виде крошки этот материал наносится на режущие кромки. В итоге получаются резцы, способные разрезать что угодно. Это отличный абразив, применяемый при шлифовании. Эльбор, боразон, киборит, кингсонгит, кубонит относятся к сверхпрочным соединениям.

Если требуется обработать металл или камень, применяются неорганические полимеры, изготовленные методом синтеза бора. Любой шлифовальный круг, продаваемый в строительных супермаркетах, имеет в своем составе этот материал. Для производства декоративных элементов используется, например, карбид селена. Из него получается аналог горного хрусталя. Но и этим перечень достоинств и список сфер применения не ограничен.

Фосфорнитридхлориды образуются при соединении фосфора, азота и хлора. Свойства могут меняться, и зависят от массы. Когда она велика, образуется аналог природного каучука. Только теперь он выдерживает температуру до 350 градусов. Под действием органических соединений реакций не наблюдается. А в допустимом температурном диапазоне свойства изделий не меняются.

Особые свойства, применяемые человеком

Суть в том, что в результате синтеза образуются макромолекулы объемного (трехмерного) типа. Прочность обеспечивается сильными связями и структурой. Как химический элемент неорганические полимеры ведут себя аморфно, и не вступают в реакцию с другими элементами и соединениями. Это особенность позволяет использовать их в химической промышленности, медицине, при производстве продуктов питания.

Термическая стойкость превышает все показатели, которыми обладают природные материалы. Если волокна используются для формирования армированного каркаса, то такая конструкция выдерживает на воздухе температуру до 220 градусов. А ели речь идет о борном материале, то предел температурной прочности поднимается до 650 градусов. Именно поэтому полеты в космос без полимерсан были бы невозможными.

Но это если говорить о качествах, превосходящих природные. Те же изделия, которые изготовлены из этих соединений, которые похожи по качеству к натуральным, имеют особое значение для человека. Это дает возможность снизить стоимость одежды, заменив, например, кожу. При этом внешних отличий практически нет.

В медицине на неорганические полимеры возлагаются особые надежды. Их этих материалов планируется изготавливать искусственные ткани и органы, протезы и т.д. Химическая устойчивость позволяет обрабатывать изделия активными веществами, что обеспечивает стерильность. Инструмент становится долговечным, полезным и безопасным для человека.

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

Полимеры – высокомолекулярные соединения, которые состоят из множества мономеров. Полимеры стоит отличать от такого понятия как олигомеры, в отличие от которых при добавлении еще одного номерного звена свойства полимера не меняются.

Связь между звеньями мономеров может осуществляться с помощью химических связей, в таком случае они называются реактопластами, или благодаря силе междумолекулярного воздействия, что характерно для так называемых термопластов.

Соединение мономеров при образовании полимера может происходить в результате реакции поликонденсации или полимеризации.

В природе встречается множество подобных соединений, наиболее известные из которых: белки, каучук, полисахариды и нуклеиновая кислота. Такие материалы называются органическими.

На сегодняшний день большое количество полимеров производятся синтетическим путем. Такие соединения называются неорганическими полимерами. Неорганические полимеры получают путем соединения природных элементов с помощью реакции поликонденсации, полимеризации и химического превращения. Это позволяет заменить дорогие или редкие природные материалы, или создать новые, не имеющие аналоги в природе. Главное условие, чтобы полимер не содержал в составе элементов органического происхождения.

Неорганические полимеры, благодаря своим свойствам, обрели широкую популярность. Спектр их использования достаточно широк, при этом постоянно находят новые сферы применения и разрабатываются новые виды неорганических материалов.

Основные характеристики

На сегодняшний день существует множество видов неорганических полимеров, как природных, так и синтетических, которые обладают различными составом, свойствами, сферой применения и агрегатного состояния.

Современный уровень развития химической промышленности позволяет производить неорганические полимеры в больших объемах. Чтобы получить такой материал нужно создать условия повышенного давления и высокой температуры. Сырьем для производства выступает чистое вещество, которое поддается процессу полимеризации.

Неорганические полимеры характерны тем, что обладают повышенной прочностью, гибкостью, тяжело поддаются воздействию химических веществ и устойчивы к высоким температурам. Но некоторые виды могут быть хрупкими и не обладать эластичностью, но при этом достаточно прочными. Наиболее известными из них считаются графит, керамика, асбест, минеральное стекло, слюда, кварц и алмаз.

Наиболее распространенные полимеры в основе имеют цепочки таких элементов, как кремний и алюминий. Это связано с распространенностью этих элементов в природе, особенно кремния. Наиболее известные среди них такие неорганические полимеры как силикаты и алюмосиликаты.

Свойства и характеристики разнятся не только в зависимости от химического состава полимера, но и от молекулярной массы, степени полимеризации, строения атомной структуры и полидисперсности.

Полидисперсность – это присутствие в составе макромолекул разной массы.

Большинство неорганических соединений характеризуются такими показателями:

  1. Эластичность. Такая характеристика, как эластичность, показывает возможность материала увеличится в размерах под воздействием сторонней силы и вернутся в изначальное состояние после снятия нагрузки. Например, каучук способен увеличиться в семь-восемь раз без изменения структуры и различных повреждений. Возврат формы и размеров возможен благодаря сохранению расположения макромолекул в составе, перемещаются лишь отдельные их сегменты.
  2. Кристаллическая структура. От расположения в пространстве составных элементов, что называется кристаллической структурой, и их взаимодействия зависят свойства и особенности материала. Исходя из этих параметров, полимеры разделяют на кристаллические и аморфные.

Кристаллические имеют стабильную структуру, в которой соблюдается определенное расположение макромолекул. Аморфные состоят из макромолекул ближнего порядка, которые только в отдельных зонах имеют стабильную структуру.

Структура и степень кристаллизации зависит от нескольких факторов, таких как температура кристаллизации, молекулярная масса и концентрированность раствора полимера.

  1. Стеклообразность. Это свойство характерно для аморфных полимеров, которые при снижении температуры или повышении давления обретают стеклообразную структуру. В таком случае прекращается тепловое движение макромолекул. Температурные интервалы, при которых происходит процесс стеклообразования, зависит от типа полимера, его структуры и свойств структурных элементов.
  2. Вязкотекучее состояние. Это свойство, при котором происходят необратимые изменения формы и объема материала под воздействием сторонних сил. В вязотекущем состоянии структурные элементы перемещаются в линейном направлении, что становится причиной изменения его формы.

Строение неорганических полимеров

Такое свойство очень важно в некоторых сферах промышленности. Наиболее часто его используют при переработки термопластов с помощью таких методов как литье под давлением, экструзия, вакуум-формирования и других. При этом полимер расплавляется при повышенных температурах и высоком давлении.

Виды неорганических полимеров

На сегодняшний день существуют определенные критерии, по которым классифицируются неорганические полимеры. Основные из которых:

  • природа происхождения;
  • виды химических элементов и их разнообразие;
  • количество мономерных звеньев;
  • строение полимерной цепи;
  • физические и химические свойства.

В зависимости от природы происхождения классифицируют синтетические и натуральные полимеры. Натуральные формируются в природных условиях без участия человека, а синтетические производятся и модифицируются в промышленных условиях для достижения необходимых свойств.

На сегодняшний день существует множество видов неорганических полимеров, среди которых выделяются наиболее широко используемые. К таким относится асбест.

Асбест – тонковолокнистый минерал, который относится к группе силикатов. Химический состав асбеста представлен силикатами магния, железы, натрия и кальция. Асбест обладает канцерогенными свойствами, поэтому очень опасен для здоровья человека. Он очень опасен для работников, занятых на его добычи. Но в виде готовых изделий он достаточно безопасен, так как не растворяется в различных жидкостях и не вступает с ними в реакцию.

Силикон – один из наиболее распространенных синтетических неорганических полимеров. Его легко встретить в повседневной жизни. Научное название силикона – полисилоксан. Его химический состав представляет собой связь кислорода и кремния, которая придает силикону свойства высокой прочности и гибкости. Благодаря этому, силикон способен выдержать высокие температуры и физические нагрузки не теряя прочности, сохраняя форму и структуру.

Полимеры углерода очень распространены в природе. Существует также множество видов, синтезирующихся человеком в промышленных условиях. Среди природных полимеров выделяется алмаз. Этот материал невероятно прочный и обладает кристально чистой структурой.

Карбин – это синтетический углеродный полимер, который обладает повышенными свойствами прочности, не уступающими алмазу и графену. Производится в виде черного морошка мелкокристаллической структуры. Обладает свойствами электропроводимости, которая увеличивается под воздействием света. Способен выдержать температуру в 5000 градусов не теряя свойств.

Графит – углеродный полимер, структура которого отличается плоскостной ориентацией. Из-за этого структура графита слоистая. Этот материал проводит электричество, тепло, но не пропускает свет. Его разновидностью является графен, который состоит из одного слоя молекул углерода.

Полимеры бора отличаются высокой твердостью, не сильно уступая алмазам. Способны выдержать температуру более 2000 градусов, что намного больше пограничной температуры алмаза.

Полимеры селена – довольно широкий ряд неорганических материалов. Наиболее известный из них – карбид селена. Карбид селена – прочный материал, имеющий вид прозрачных кристаллов.

Полисиланы обладают особыми свойствами, которые отличают их от других материалов. Этот вид проводит электричество и выдерживает температуру до 300 градусов.

Применение

Неорганические полимеры применяются практически во всех сферах нашей жизни. В зависимости от вида, они обладают различными свойствами. Главная их особенность в том, что искусственные материалы обладают улучшенными свойствами в сравнении с органическими материалами.

Асбест применяется в различных сферах, в основном, в строительстве. Из смесей цемента с асбестом производят шифер и различные типы труб. Также асбест применяют для снижения кислотного влияния. В легкой промышленности асбест применяется для пошива противопожарных костюмов.

Силикон применяется в различных сферах. Из него производят трубки для химической промышленной, элементы, используемые в пищевой промышленности, а также используют в строительстве в качестве герметика.

В целом, силикон один из наиболее функциональных неорганических полимеров.

Алмаз наиболее известен как ювелирный материал. Он очень дорогой благодаря своей красоте и сложности добычи. Но алмазы также используются в промышленности. Это материал необходим в режущих устройствах для распила очень прочных материалов. Он может использоваться в чистом виде как резец или в виде напыления на режущие элементы.

Графит широко используется в различных сферах, из него делают карандаши, он применяется в машиностроении, в атомной промышленности и в виде графитовых стержней.

Графен и карбин пока малоизучены, поэтому сфера их применения ограничена.

Полимеры бора используются для производства абразивных материалов, режущих элементов и . Инструменты из такого материала необходимы для обработки металла.

Карбид селена применяется для производства горного хрусталя. Его получают путем нагрева до 2000 градусов кварцевого песка и угля. Хрусталь используют для производства высококачественной посуды и предметов интерьера.

Слайд 2

НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп).

В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав земной коры (напр., кварц).

Слайд 3

В отличие от органических полимеров такие неорганические полимеры не могут существовать в высокоэластичном состоянии. Синтетически могут быть получены, напр., полимеры серы, селена, теллура, германия. Особый интерес представляет неорганический синтетический каучук - полифосфонитрилхлорид. Обладает значительной высокоэластической деформацией

Слайд 4

Главные цепи построены из ковалентных или ионно-ковалентных связей; в некоторых неорганических полимерах цепочка ионно-ковалентных связей может прерываться единичными сочленениями координационного характера. Структурная классификация неорганических
полимеров осуществляется по тем же признакам, что и органических или полимеров.

Слайд 5

Среди природных неорганических полимеров наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют кристаллы типа алмаза или
кварца.

Слайд 6

Строение неорганических полимеров

К образованию линейных неорганических полимеров способны элементы верхних рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает.

Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы.

Слайд 7

Длинные гомоатомные цепи (образуют лишь углерод и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны.

Слайд 8

Линейные полимеры углерода - кумулены =С=С=С=С= ... и кар-бин -С=С-С=С-...; кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы -соответственно графит и алмаз

Общая формула кумуленов: RR¹CnR²R³

Слайд 9

Виды неорганических полимеров

Сера, селен и теллур образуют атомные цепочки с простыми связями.

Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Слайд 10

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п.

Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Слайд 11

Применение неорганических полимеров

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Посмотреть все слайды