Анизотропией называется. Анизотропия кристаллов

Плотность расположения атомов по различным плоскостям неодинакова. Вследствие этого в различных плоскостях и направлениях решётки многие свойства(химические, физические, механические) каждого кристалла зависят от направления решётки.

Подобная неодинаковость свойств монокристалла в разных кристаллографических направлениях наз. анизотропией .

Все кристаллы анизотропны. В отличие от кристаллов, аморфные тела(стекло) в различных направлениях имеют в основном одинаковую плотность упаковки атомов и поэтому одинаковые свойства в различных направлениях. Аморфные тела изотропны .

Технические металлы состоят из большого количества по разному ориентированных мелких анизотропных кристаллов и являютсяполикрис-таллами . Кристаллы неупорядоченно ориентированы один по отношению к другому и поэтому свойства во всех направлениях получаются усред-нёнными (одинаковыми). Эта кажущаяся независимость свойств от направления наз. квазиизотропией (мнимая изотропность).

Такая мнимая изотропность металла не будет наблюдаться, если все кристаллиты имеют одинаковую ориентировку в каком-то направлении. Эта ориентированность или текстура создаётся в результате значительной холодной деформации, например прокатки. Тогда поликристаллический металл приобретает анизотропию свойств (вдоль и поперёк прокатки).

§ 8. Особенности кристаллического строения реальных кристаллов.

Виды несовершенств.

Реальный кристалл, в отличие от идеального, всегда имеет структурные несовершенства или дефекты. Дефекты кристаллического строения подразделяют по геометрическим признакам на три типа:

    точечные (нуль-мерные), - размеры которых малы во всех трёх измерениях;

    линейные – размеры которых малы в двух направлениях (одномерные);

    поверхностные – размеры которых малы только в одном измерении (двухмерные).

К точечным дефектам относятсявакансии или “дырки” (дефекты Шотки), т.е. узлы решётки, в которых атомы отсутствуют. Это происходит потому, что атомы колеблются возле точек равновесия (узлов решётки) и чем выше температура, тем больше амплитуда колебаний. В кристалле всегда имеются атомы, которые обладают энергией, значительно превышающей среднюю. Такие атомы имеют не только амплитуду колебаний больше, чем средняя, но и они могут ещё перемещаться с одного места в другое (например из узла в междоузлие, из грани кристалла наружу).

Вышедший из узла решётки атом наз. дислоцированным . Место, где находился такой атом, остаётся в решётке незаполненным, оно наз.вакансией .

При данной температуре в кристалле образуются не только одиночные вакансии, но и двойные, тройные и т.д.

Вакансии образуются и в процессе пластической деформации, а также при бомбардировке металла атомами или частицами высоких энергий(в атомном реакторе).

Межузельные атомы (дефекты Френкеля) образуются в результате перехода атома из узла решётки в междоузлие. В плотноупакованных решётках, характерных для большинства металлов, энергия образования межузельных атомов в несколько раз больше энергии образования тепловых вакансий. Поэтому вакансии в таких кристаллах являются основными точечными дефектами.

Точечные дефекты вызывают местное искажение кристаллической решётки. Они оказывают влияние на некоторые физические свойства металла (электропроводимость, магнитные свойства) и предопределяют процессы диффузии в металлах и сплавах.

Линейные дефекты. Клинейным несовершенствам относятсядислока-ции , которые бываюткраевые и винтовые.

Краевая дислокация представляет собой локализованное искажение кристаллической решётки, вызванное наличием в ней “лишней” атомной полуплоскости или экстраплоскости, перпендикулярной к плоскости чертежа.

Н

Вектор сдвига

аиболее простой и наглядный способ образования дислокаций в кристалле – сдвиг. Если верхнюю часть кристалла сдвинуть относительно нижней на одно межатомное расстояние, причём зафиксировать положение, при котором сдвиг охватывает не всю плоскость скольжения, а только её часть АВСД, то граница АВ между участком, где скольжение уже произошло, и ненарушенным участком в плоскости скольжения и будетдислокацией . Линия краевой дислокациивектору сдвига.

Рис. Сдвиг, создавший краевую дислокацию

- положительная дислокация

Отрицательная дислокация

Рис. Схемы расположения атомов у дислокации.

Кристаллическая решётка вокруг дислокации упруго искажена на несколько атомных расстояний. Длина линии дислокации может составлять несколько тысяч параметров решётки.

Винтовые дислокации . В отличие от краевых расположены парал­лельно направлению сдвига. При наличии винтовой дислокации кристалл можно рассматривать как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности.

Образование дислокаций может происходить в процессе кристал­лизации, при пластической деформации, термической обработке и др. процессах. С помощью дислокаций можно объяснить многие явления, связанные с прочностью металлов, особенностями фазовых превращений, протекающих в сплавах, и др. явления.

Поверхностные дефекты . Эти несовершенства связанны с границами зерен. На границе между зернами атомы имеют менее правильное расположение, чем в объёме зёрна. Каждое зерно металла состоит из отдельныхблоков илисубзёрен , образующих так называемуюмозаичную структуру илисубструктуру . Зёрна металла разориентированы отно­сительно друг друга на величину, достигающую от нескольких долей градуса до нескольких градусов или их десятков.

Блоки, или субзёрна, также повёрнуты по отношению друг другу на угол от несколько секунд до нескольких минут. В пределах каждого блока решётка почти идеальная, если не считать точечных дефектов. По границам зёрен скапливаются дислокации, а также примеси и включения. По границам зёрна расположены менее правильно, т. к. решётка одного кристалла, имеющего определённую кристаллографическую ориентацию, переходит в решётку другого кристалла, имеющего другую кристаллографическую ориентацию.

С увеличением угла разориентировки блоков или субзёрен и уменьше­ния их величины плотность дислокаций в металле увеличивается. Вследствие того, что в реальном поликристаллическом металле протяжённость границ блоков и зёрен очень велика, количество дислокаций в таком металле огромно (10 4 – 10 12 см -2).

Анизотропия (от греч. ánisos - неравный и tróроs - направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии - независимости свойств от направления). Примеры Анизотропия : пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).

Естественная Анизотропия - наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца , кубики каменной соли, восьмиугольные кристаллы алмаза , разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов .

При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1 , а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1 , б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a //) и перпендикулярно этой оси (a ^) различны по величине и знаку.

Таблица 1. - Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении

Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r // и перпендикулярно ей r ^ .

Таблица 2. - Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м )

При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая Анизотропия ). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца , рубина и кальцита ) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n // и перпендикулярно ей n ^ равны: n // = 1,64 и n ^ = 1,58; у кварца: n // = 1,53, n ^ = 1,54.

Механическая Анизотропия состоит в различии механических свойств - прочности, твёрдости, вязкости, упругости - в разных направлениях. Количественно упругую Анизотропия оценивают по максимальному различию модулей упругости . Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).

Таблица 3. - Главные значения модулей упругости некоторых кубических кристаллов

Математически анизотропные свойства кристаллов характеризуются векторами и тензорами , в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество ) является вектором. Электрическое сопротивление, диэлектрическая проницаемость , магнитная проницаемость и теплопроводность - тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество ) - тензор третьего ранга, упругость - тензор четвёртого ранга. Анизотропия графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2-5 ).

Поликристаллические материалы (металлы , сплавы ), состоящие из множества кристаллических зёрен (кристаллитов ), ориентированных произвольно, в целом изотропны или почти изотропны. Анизотропия свойств поликристаллического материала проявляется, если в результате обработки (отжига , прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает Анизотропия (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15-20% (до 65%).

Причиной естественной Анизотропия является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы ). Анизотропия может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная Анизотропия некоторых жидкостей, особенно Анизотропия жидких кристаллов . В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.

Анизотропия наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм 2 . Искусственную Анизотропия можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём Анизотропия , которая влечёт за собой упрочнение стекла.

Искусственная оптическая Анизотропия возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон-Мутона эффект ), механического воздействия (см. фотоупругость ).

М. П. Шаскольская.

Анизотропия широко распространена также в живой природе. Оптическая Анизотропия обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.

В ботанике Анизотропия называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.

Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).

Статья про слово "Анизотропия " в Большой Советской Энциклопедии была прочитана 21507 раз

Анизотропия – это зависимость свойств материала от направления. Материал считаетсяизотропным , когда его свойства во всех направлениях одинаковые. Если же с изменением направления свойства материала изменяются, материал считаетсяанизотропным.

Анизотропия характерна для кристаллов и обусловлена их упорядоченной структурой. В кристаллах в различных направлениях атомы располагаются с различной плотностью, т.е. на различном расстоянии друг от друга, что отражается на силе взаимодействия атомов. Как следствие, свойства кристаллов в различных направлениях оказываются различными. Например, в кубическом кристалле в направлении координатных осей атомы вещества располагаются на расстоянии друг от друга равном а (рис.1). В направлении диагонали атомы располагаются на расстоянии а, а в направлении пространственной диагонали – а
. Очевидно, такой кристалл легче разорвать в направлении пространственной диагонали, чем в направлении координатных осей, где он обнаруживает наибольшую прочность из-за того, что атомы расположены ближе и сильнее взаимодействуют.

Анизотропия распространяется практически на все свойства кристаллов. Так, кристалл в одном направлении лучше, чем в другом может проводить тепло, электрический ток, свет, лучше намагничиваться и т.д. При этом, чем ниже система симметрии кристалла, тем сильнее проявляется анизотропия его свойств.

В аморфных материалах, из-за хаотического внутреннего строения, атомы в различных направлениях располагаются примерно с одинаковой плотностью. В результате свойства данных материалов в различных направлениях оказываются одинаковыми, т.е. вещество оказывается изотропным.

Металлы и сплавы, полученные в обычных условиях, также очень часто обнаруживают равенство свойств в различных направлениях, хотя и являются материалами кристаллическими, а не аморфными. Это объясняется их зернистым строением. Зёрна данных материалов, будучи кристаллами, в различных направлениях обнаруживают различные свойства, однако в целом материал оказывается изотропным, поскольку зёрна случайным образом ориентированы в пространстве и при сложении свойств в каждом направлении получается примерно одна, усреднённая величина. Такую изотропию называют ложной изотропией или квазиизотропией .

Иногда зёрна поликристаллических материалов оказываются ориентированными преимущественно в одном направлении. Например, зёрна металлов и сплавов при пластическом деформировании вытягиваются в направлении деформации. Такое явление называют текстурой . При появлении текстуры свойства кристаллических материалов вновь начинают зависеть от направления, т.е. материал оказывается анизотропным.

1.7 Дефекты кристаллической структуры

Структура реальных кристаллов не является идеально симметричной. В реальных кристаллах всегда имеются те или иные отклонения от периодичности расположения атомов. Эти нарушения порядка называют дефектами кристаллической структуры.

Дефекты кристаллической структуры, в зависимости от размеров, подразделяют на точечные, линейные, поверхностные и объёмные.

Точечные дефекты кристаллической структуры во всех трёх измерениях имеют размеры сравнимые с межатомным расстоянием, т.е. порядка одного нанометра. К точечным дефектам структуры относятся вакансии, межузельные атомы и атомы примесей.

Вакансией называют незанятое атомом свободное место в узле кристаллической решётки.Межузельным называют атом, смещённый из узла кристаллической решётки в положение между узлами (рис.3). Данные дефекты возникают, как правило, парами, поскольку смещение атома в межузельное положение сопровождается появлением вакансии.

Примесные атомы – это инородные атомы, которые размещаются либо в узлах кристаллической решётки (примесные атомы замещения ), либо в межузельном пространстве (примесные атомы внедрения ).

В – вакансия;

МА – межузельный

ПАЗ – примесный атом

замещения;

ПАВ – примесный атом

внедрения.

Рис. 3. Точечные дефекты кристаллической структуры.

Вакансии и межузельные атомы непрерывно появляются в кристаллах за счёт энергии тепловых колебаний атомов. Они относительно свободно перемещаются по кристаллу и могут встречаться друг с другом. При встрече межузельного атома с вакансией возможна рекомбинация, т.е. замещение вакантного места межузельным атомом. Дефекты также могут исчезать на любых свободных поверхностях кристалла: на порах, границах зёрен, микротрещинах, которые называют стоками дефектов . Процессы непрерывной рекомбинации, а также исчезновения дефектов на стоках, уравновешиваются процессами их генерации так, что в кристалле всегда поддерживается некоторая равновесная концентрация точечных дефектов. Чем выше температура кристалла, тем выше эта равновесная концентрация дефектов.

Вакансии и межузельные атомы обычно не оказывают заметного влияния на механические свойства материалов, поскольку искажения, вносимые ими в структуру, имеют очень маленький размер. Однако, при возрастании концентрации данных дефектов до значений, значительно превышающих равновесное, это влияние становиться более заметным. Например, при бомбардировке материалов потоком высокоэнергетичных частиц в их поверхностном слое образуется большое число точечных радиационных дефектов, что приводит к существенному изменению поверхностных свойств материала. Имеются сведения о повышении твёрдости и износостойкости облучённой поверхности. Изменяются и другие характеристики облучённых материалов.

Поскольку все точечные дефекты, и особенно примесные атомы, препятствуют прохождению электрического тока через металлические материалы, возрастание их концентрации в металлах приводит к повышению электросопротивления.

Линейные дефекты кристаллической структуры в двух измерениях имеют размеры, сравнимые с межатомным расстоянием, а в третьем измерении простираются на многие сотни и тысячи периодов кристаллической решётки. К линейным дефектам структуры относяткраевые и винтовые дислокации .

Краевую дислокацию образует край АА"«лишней» атомной полуплоскости, называемой экстраплоскостью (рис. 4).

Рис.4. Краевая дислокация.

Если экстраплоскость располагается в верхней части кристалла, то соответствующую дислокацию обозначают значком «», а если в нижней, то знаком «┬». Вдоль линии дислокации кристаллическая структура материала искажена, однако на расстоянии всего в несколько периодов кристаллической решётки от данной линии искажений структуры уже не наблюдается. Линия краевой дислокации обычно бывает изогнутой, а не прямой. Форма этой линии под воздействием внешних и внутренних факторов может изменяться, так же как и её местоположение в кристалле.

Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой его части, происходящий по некоторой плоскости скольжения – ПС (рис.5). ЛиниюL, лежащую в этой плоскости и отделяющую ту её часть, где сдвиг уже произошел от той её части, где сдвиг ещё не происходил, называютлинией винтовой дислокации . Кристалл как бы закручивается в спираль вокруг этой линии. Если закручивание происходит по часовой стрелке, то соответствующую дислокацию называют правой, если против часовой стрелки – то левой.

Рис. 5. Винтовая дислокация.

Линия любой отдельной дислокации не может обрываться внутри кристалла. Она либо выходит на поверхность кристалла, в частности на границы зёрен, либо замыкается сама на себя, образуя дислокационную петлю. Под плотностью дислокаций понимают суммарную протяжённость всех дислокаций, находящихся в единице объёма материала:

, (1)

где l i – длина отдельной дислокации;N– общее число дислокаций в материале;V– объём материала. Единицей измерения ρ является см/см 3 или см -2 .

Равновесная плотность дислокаций в полупроводниковых кристаллах находится в пределах 10 4 10 5 см –2 , а в металлах – 10 6 10 8 см –2 .

В определённых условиях дислокации, также как и точечные дефекты, способны перемещаться по кристаллу. При этом дислокации одного знака отталкиваются друг от друга, а противоположенных знаков – притягиваются. При встрече двух дислокаций противоположенных знаков может произойти их аннигиляция, т.е. взаимоуничтожение. Под воздействием внешних нагрузок, вызывающих пластическую деформацию материала, происходит перемещение дислокаций в сторону свободных поверхностей кристалла. Вместо вышедших на поверхность, а также аннигилировавших дислокаций, в деформируемом материале нарождаются новые дислокации.

Дислокации, благодаря их значительной протяжённости, оказывают существенное влияние на механические свойства материалов. Они играют важную роль в механизме пластического деформирования материалов. При пластической деформации материалов наблюдается сдвиг атомных слоёв относительно друг друга и дислокации способствуют этому процессу. Благодаря дислокациям атомные слои могут смещаться относительно друг друга не сразу целиком, а поэтапно, т.е. атомными рядами. Такой поэтапный сдвиг атомных слоёв выглядит как движение дислокаций в противоположенном направлении и требует при деформировании значительно меньших усилий.

Учитывая вышесказанное можно утверждать, что металлы и сплавы своей высокой пластичностью обязаны наличию в них достаточно большого количества подвижных дислокаций. Под воздействием холодной пластической деформации плотность дислокаций в металлах возрастает до 10 11 10 12 см –2 . При такой высокой плотности дислокации начинают интенсивно взаимодействовать и мешать друг другу, что приводит к ограничению их подвижности. В результате металл становится менее пластичным и более прочным. Такое явление называютнаклёпом .

Поверхностные дефекты кристаллической структуры в одном из измерений имеют размеры, сравнимые с межатомным расстоянием, а в двух других измерениях простираются на многие сотни и тысячи межатомных расстояний. К поверхностным дефектам структуры относят границы зёрен, фрагментов и блоков. Указанные границы являются местом скопления всевозможных точечных и линейных дефектов. Они выглядят как дислокационные стенки, разделяющие кристаллический материал на участки (рис.6).

Рис.6. Дислокационная стенка.

Порядок расположения атомов в зоне границ сильно нарушен. Это наиболее дефектная область материала. По границам зёрен обычно распространяются трещины, разрушающие металлический материал, а также более активно идут процессы взаимодействия металла с химически активными веществами, в частности, процессы окисления, а также травления кислотами.

Поверхностные дефекты оказывают существенное влияние на свойства материалов. Они, в частности, способствуют процессам диффузии, но препятствуют процессу прохождения электрического тока через материал. Для механических свойств особое значение имеет общая протяженность межзёренных границ в единице объёма, т.е. плотность границ. С уменьшением размера зёрен, а, следовательно, увеличением плотности их границ, увеличиваются вязкость, пластичность и прочность металлических материалов.

Объёмные дефекты структуры имеют значительные размеры во всех трех измерениях. К объёмным дефектам структуры относят всевозможные поры, инородные включения, выбоины и царапины на поверхности, микротрещины и т.п. При разрушении материалов объёмные дефекты обычно играют роль концентраторов напряжений и источников трещин, а поэтому являются причиной снижения прочностных характеристик материала.

АНИЗОТРОПИЯ (anisotropia ; греческий anisos - неравный и tropos - направление) - неоднородность некоторых физических свойств вещества по различным направлениям.

Различают анизотропию оптическую, механическую и электрическую.

Оптическая анизотропия на уровне макромолекул наиболее отчетливо проявляется в дихроизме и гипохромном эффекте белков и нуклеиновых кислот. В основе оптической анизотропии макромолекул лежит упаковка их в упорядоченную спиральную конфигурацию. Характерной оптической анизотропией обладают мышечные волокна, внутри которых с помощью метода двойного лучепреломления (см.) выявляются так наз. анизотропные диски.

Механическая анизотропия характерна для элементов опорно-двигательного аппарата, в частности кости (см. Кость), и выражается в различной механической прочности костной ткани в продольном и поперечном направлениях. Механическую анизотропию кости можно наблюдать визуально с помощью прозрачной объемной пластмассовой модели при приложении к ней механического напряжения, сравнимого по величине и направлению с действующим на кость фактором в условиях организма (метод фотоупругости).

Электрическая анизотропия живых тканей определяется пассивными электрическими свойствами (электрическим сопротивлением и электрической емкостью) клеточных мембран. Наличие электрической анизотропии иллюстрируется тем фактом, что удельный электрический импеданс (см.) живой мышцы, измеренный в продольном направлении, значительно меньше поперечного. Объяснение заключается в том, что электрический ток пересекает различное количество мембран на единицу длины в зависимости от направления (продольного или поперечного). Электрическая анизотропия тканей используется в методе вектор-электрокардиографии.

Анизотропные свойства живых систем характерны для всех уровней структурной организации от биомакромолекул до целого организма.

Анизотропия может быть также естественной или искусственной. Естественную анизотропию обнаруживают некоторые структуры нормальных животных тканей(мышечные,коллагеновые,эластические волокна, кость,фибрин, холестерин и др.), дающие при исследовании в поляризованном свете двойное лучепреломление. Ряд веществ, появляющихся в патологических условиях (гиалин, амилоид и др.), также обладает свойством анизотропии и дихроизма.

Искусственная анизотропия возникает вследствие механических деформаций, химических воздействий и т. д.

Особое место в патологии занимает так называемое анизотропное ожирение - отложения в тканях холестерина или его соединений в результате нарушения липоидного (холестеринового) обмена. Вокруг таких отложений в соединительной ткани возникает специфическая реакция, подобная реакции на инородное тело.

В. В. Серов; В. Ф. Антонов (биофиз.).

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали


Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?