Центральный момент первого порядка. Числовые характеристики случайных величин

Очевидно, что начальный выборочный момент нулевого порядка всегда равен 1, а начальный выборочный момент первого порядка

Определение 2.19 Центральным моментом k- го порядка выборки x 1 , x 2 , …, x n называется среднее k-тых степеней отклонений данных выборочных значений от среднего , то есть

Из данного определения следует, что центральный выборочный момент нулевого порядка равен 1. При k = 1 получается, что

, а при k= 2 имеем

.

Следовательно, выборочная дисперсия является центральным выборочным моментом второго порядка. Для вычисления центрального выборочного момента третьего порядка используем стандартные алгебраические преобразования:

В результате получилось выражение центрального момента третьего порядка через начальные моменты. Таким же способом находятся выражения для центральных моментов более высоких порядков. Приведем ряд формул, которые на практике используются чаще других:

При вычислении начальных и центральных выборочных моментов используются приемы и таблицы, аналогичные тем, которые применялись ранее для вычисления среднего и дисперсии .

Пример 2.28 В ходе социологического исследования собраны ответы 25 рядовых сотрудников учреждения о количестве стрессовых ситуаций, возникавших на работе в течение недели. Данные опроса приведены в следующей таблице. Найдем начальные и центральные выборочные моменты первого, второго, третьего и четвертого порядков.

Таблица 2.20 – Данные исследования стрессовых ситуаций

Необходимые промежуточные расчеты будем фиксировать в следующей таблице.

Таблица 2.21 – Вычисления начальных и центральных моментов

Объем выборки n = 25. Вычислим начальные выборочные моменты:

; ;

; .

Используя соответствующие формулы, вычислим центральные выборочные моменты:

Округлим полученные значения центральных моментов:

; ; ;

Начальные и центральные выборочные моменты являются аналогами соответствующих понятий теоретических моментов всей генеральной совокупности значений исследуемой случайной величины.

Определение 2.20 Начальным моментом k -го порядка случайной величины Х называется число , равное математическому ожиданию k -й степени величины Х:

.

Для вычисления начального момента k-го порядка используются следующие формулы:

Очевидно, что математическое ожидание случайной величины является начальным моментом первого порядка, а дисперсия – центральным моментом второго порядка. Как теоретические, так и выборочные моменты используются при исследовании закона распределения случайной величины. Все центральные моменты четных порядков, как и дисперсия, характеризуют рассеяние значений случайной величины вокруг математического ожидания. Центральные моменты нечетных порядков выявляют асимметрию распределения относительно центра. В частности, если значения случайной величины распределены симметрично относительно математического ожидания, то все ее существующие моменты нечетных порядков равны нулю. С другой стороны, существование отличного от нуля центрального момента нечетного порядка показывает наличие асимметрии распределения.

Начальным моментом k -го порядка случайной величины X X k :

В частности,

Центральным моментом k -го порядка случайной величины X называется математическое ожидание величины k :

. (5.11)

В частности,

Воспользовавшись определениями и свойствами математического ожидания и дисперсии, можно получить, что

,

,

Моменты более высоких порядков применяются редко.

Предположим, что распределение случайной величины симметрично относительно математического ожидания. Тогда все центральные нечетного порядка равны нулю. Это можно объяснить тем, что для каждого положительного значения отклонения X–M[X] найдется (в силу симметричности распределения) равное ему по абсолютной величине отрицательное значение, причем их вероятности будут одинаковыми. Если центральный момент равен нечетного порядка не равен нулю, то это говорит об асимметричности распределения и чем больше момент, тем больше асимметрия. Поэтому в качестве характеристики асимметрии распределения разумнее всего взять какой-нибудь нечетный центральный момент. Так как центральный момент 1-го порядка всегда равен нулю, то целесообразно для этой цели использовать центральный момент 3-го порядка. Однако принять этот момент для оценки асимметричности неудобно потому, что его величина зависит от единиц, в которых измеряется случайная величина. Чтобы устранить этот недостаток,  3 делят на  3 и таким образом получают характеристику.

Коэффициентом асимметрии A называется величина

. (5.12)

Рис. 5.1

Если коэффициент асимметрии отрицателен, то это говорит о большом влиянии на величину 3 отрицательных отклонений. В этом случае кривые распределения более пологи слева от M[X]. Если коэффициент A положителен, то кривая более пологи справа.

Как известно, дисперсия (2-й центральный момент) служит для характеристики рассеивания значений случайной величины вокруг математического ожидания. Чем больше дисперсия, тем более полога соответствующая кривая распределения. Однако нормированный момент 2-го порядка  2 / 2 не может служить характеристикой "плосковершинности" или "островершинности" распределения потому, что для любого распределения D[x ]/ 2 =1. В этом случае используют центральный момент 4-го порядка.

Эксцессом E называется величина

. (5.13)

Ч

Рис. 5.2

исло 3 здесь выбрано потому, что для наиболее распространенного нормального закона распределения 4 / 4 =3. Поэтому эксцесс служит для сравнения имеющихся распределе­ний с нормальным, у которого экс­цесс равен нулю. Это означает, что если у распределения эксцесс положителен, то соответствующая кривая распределения более "островершина" по сравнению с кривой нормального распределения; если у распределения эксцесс отрица­телен, то соответствующая кривая более "плосковершина".

Пример 5.6. ДСВ X задана следующим законом распределения:

Найти коэффициент асимметрии и эксцесс.

Рис. 5.4

Решение . Предварительно найдем начальные моменты до 4-го порядка



Теперь вычислим центральные моменты:

Для характеристики различных свойств случайных величин используются начальные и центральные моменты.

Начальным моментом k- го порядка случайной величины Х называется математическое ожидание k-й степени этой величины:

α К = М .

Для дискретной случайной величины

Ц

Х = Х – М[Х]

ентрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:

Условимся отличать центрированную с.в. значком 0 наверху.

Центральным моментом S -го порядка называется математическое ожидание S-й степени центрированной случайной величины

 S = M [(X – m x) S ].

Для дискретной случайной величины

 S = (x i – m x) S p i .

Для непрерывной случайной величины

.

Свойства моментов случайных величин

    начальный момент первого порядка равен математическому ожиданию (по определению):

α 1 = М = m x .

    центральный момент первого порядка всегда равен нулю (докажем на примере дискретной с. в.):

 1 = M [(X – m x) 1 ] =(x i – m x) p i =x i p i –m x p i = m x –m x p i =m x –m x = 0.

    центральный момент второго порядка характеризует разброс случайной величины вокруг ее математического ожидания.

Центральный момент второго порядка называется дисперсией с. в. и обозначается D[X] или D x

Дисперсия имеет размерность квадрата случайной величины.

    Среднее квадратическое отклонение σ х = √D x .

σ х – также как и D x характеризует разброс случайной величины вокруг ее математического ожидания но имеет размерность случайной величины.

    второй начальный момент α 2 характеризует степень разброса случайной величины вокруг ее математического ожидания, а также смещение случайной величины на числовой оси

Связь первого и второго начальных моментов с дисперсией (на примере непрерывной с. в.):

    третий центральный момент характеризует степень разброса случайной величины вокруг математического ожидания, а также степень асимметрии распределения случайной величины.

f(x ср) > f(-x ср)

Для симметричных законов распределения m 3 = 0.

Для характеристики только степени асимметрии используется так называемый коэффициент асимметрии

Для симметричного закона распределения Sk = 0

    четвертый центральный момент характеризует степень разброса случайной величины вокруг математического ожидания, а также степень островершинности закона распределения.

Центральными называются моменты распределения, при вычислении которых за исходную величину принимаются отклонение вариантов от средней арифметической данного ряда.

1. Рассчитаем центральный момент первого порядка по формуле:

2. Рассчитаем центральный момент второго порядка по формуле:

где - значение середины интервалов;

Это среднее взвешенное;

Fi-число значений.

3. Рассчитаем центральный момент третьего порядка по формуле:

где - значение середины интервалов; - это среднее взвешенное; - fi-число значений.

4. Рассчитаем центральный момент четвертого порядка по формуле:

где - значение середины интервалов; - это среднее взвешенное; - fi-число значений.

Расчет для таблицы 3.2

Расчет для таблицы 3.4

1. Рассчитаем центральный момент первого порядка по формуле (7.1):

2. Рассчитаем центральный момент второго порядка по формуле (7.2):

3. Рассчитаем центральный момент третьего порядка по формуле (7.3):

4. Рассчитаем центральный момент четвертого порядка по формуле (7.4):

Расчет для таблицы 3.6

1. Рассчитаем центральный момент первого порядка по формуле (7.1):

2. Рассчитаем центральный момент второго порядка по формуле (7.2):

3. Рассчитаем центральный момент третьего порядка по формуле (7.3):

4. Рассчитаем центральный момент четвертого порядка по формуле (7.4):






Рассчитаны моменты 1,2,3,4 порядков по трем задачам. Где момент третьего порядка понадобиться для расчета асимметрии, а момент четвертого порядка понадобиться для расчета эксцесса.

РАСЧЕТ АСИММЕТРИИ РАСПРЕДЕЛЕНИЯ

В статистической практике встречаются разнообразные распределения. Различают следующие разновидности кривых распределения:

· одновершинные кривые: симметричные, умеренно асимметричные и крайне асимметричные;

· многовершинные кривые.

Для однородных совокупностей, как правило, характерны одновершинные распределения. Многовершинность свидетельствует о неоднородности изучаемой совокупности. Появление двух или более вершин делает необходимой перегруппировку данных с целью выделения более однородных групп.

Выяснение общего характера распределения предполагает оценку его однородности, а также вычисление показателей асимметрии и эксцесса. Для симметричных распределений частоты любых двух вариант, равностоящих в обе стороны от центра распределения, равны между собой. Рассчитанные для таких распределений средняя, мода и медиана также равны.

При сравнительном изучении асимметрии нескольких распределений с разными единицами измерения вычисляется относительный показатель асимметрии ():

где -это среднее взвешенное; Mo-мода; -среднеквадратичная взвешенная дисперсия; Me-медиана.

Его величина может быть положительной и отрицательной. В первом случае речь идет о правосторонней асимметрии, а во втором- о левосторонней.

При правосторонней асимметрии Mo>Me >x. Наиболее широко (как показатель асимметрии) применяется отношение центрального момента третьего порядка к среднему квадратическому отклонению данного ряда в кубе:

где -центральный момент третьего порядка; -среднее квадратическое отклонение в кубе.

Применение данного показателя дает возможность определить не только величину асимметрии, но и проверить ее наличие в генеральной совокупности. Принято считать, что асимметрия выше 0,5 (независимо от знака) считается значительной; если она меньше 0,25, то незначительной.

Оценка существенности производится на основе средней квадратической ошибки, коэффициента асимметрии (), которая зависит от числа наблюдений (n) и рассчитывается по формуле:

где n-число наблюдений.

В случае асимметрия существенна и распределение признака в генеральной совокупности несимметрично. В противном случае асимметрия несущественна и ее наличие может быть вызвано случайными обстоятельствами.

Расчет для таблицы 3.2 Группировка населения по среднемесячной заработной плате, руб.

Левосторонняя, значительная асимметрия.

Расчет для таблицы 3.4 Группировка магазинов по розничному товарообороту, млн. руб.

1. Определим асимметрии по формуле (7.5):

Правосторонняя, значительная асимметрия.

Расчет для таблицы 3.6 Группировка транспортных организаций по грузообороту транспорта общего пользования (млн.т.км)

1. Определим асимметрии по формуле (7.5):

Правосторонняя, незначительная асимметрия.

РАСЧЕТ ЭКСЦЕССА РАСПРЕДЕЛЕНИЯ

Для симметричных распределений может быть рассчитан показатель эксцесса ():

где - центральный момент четвертого порядка; - средне квадратическое отклонение в четвертой степени.

Расчет для таблицы 3.2 Группировка населения по среднемесячной заработной плате, руб.

Расчет для таблицы 3.4 Группировка магазинов по розничному товарообороту, млн. руб.

Рассчитаем показатель эксцесса по формуле (7.7)

Островершинное распределение.

Расчет для таблицы 3.6 Группировка транспортных организаций по грузообороту транспорта общего пользования (млн.т.км)

Рассчитаем показатель эксцесса по формуле (7.7)

Плосковершинное распределение.

ОЦЕНКА ОДНОРОДНОСТИ СОВОКУПНОСТИ

Оценка однородности для таблицы 3.2 Группировка населения по среднемесячной заработной плате, руб.

Необходимо отметить, что хотя показатели асимметрии и эксцесса характеризуют непосредственно лишь форму распределения признака в пределах изучаемой совокупности, однако их определение имеет не только описательное значение. Часто асимметрия и эксцесс дают определенные указания для дальнейшего исследования социально - экономических явлений. Полученный результат свидетельствует о наличии значительной по величине и отрицательной по своему характеру асимметрии, нужно заметить, что асимметрия является левосторонней. Кроме того совокупность имеет плос-ковершинное распределение.

Оценка однородности для таблицы 3.4 Группировка магазинов по розничному товарообороту, млн. руб.

Полученный результат свидетельствует о наличии значительной по величине и положительной по своему характеру асимметрии, нужно заметить что асимметрия является правосторонней. А так же совокупность имеет остро-вершинное распределение.

Оценка однородности для таблицы 3.6 Группировка транспортных организаций по грузообороту транспорта общего пользования (млн.т.км)

Полученный результат свидетельствует о наличии незначительной по величине и положительной по своему характеру асимметрии, нужно заметить что асимметрия является правосторонней. Кроме того совокупность имеет плосковершинное распределение.

Найдем математическое ожидание Х 2 :

М (Х 2) = 1* 0, 6 + 4* 0, 2 + 25* 0, 19+ 10000* 0, 01 = 106, 15.

Видим, что М (X 2) значительно больше М (X ). Это объясняется тем, что после возведения в квадрат возможное значение величины X 2 , соответствующее значению x =100 величины X, стало равным 10 000, т. е. значительно увеличилось; вероятность же этого значения мала (0,01).

Таким образом, переход от М (X М (X 2)позволил лучше учесть влияние на математическое ожидание того возможного значения, которое велико и имеет малую вероятность. Разумеется, если бы величина X имела несколько больших и маловероятных значений, то переход к величине X 2 , а тем более к величинам X 3 , X 4 и т. д., позволил бы еще больше «усилить роль» этих больших, но маловероятных возможных значений. Вот почему оказывается целесообразным рассматривать математическое ожидание целой положительной степени случайной величины (не только дискретной, но и непрерывной).

Начальным моментом порядка k случайной величины X называют математическое ожидание величины X k:

v k = M (X ).

В частности,

v 1 = M (X ), v 2 = M (X 2).

Пользуясь этими моментами, формулу для вычисления дисперсии D (X ) = M (X 2)- [М (X )] 2 можно записать так:

D (X )= v 2 – . (*)

Кроме моментов случайной величины X целесообразно рассматривать моменты отклонения X-М (X ).

Центральным моментом порядка k случайной величины X называют математическое ожидание величины (Х-М (Х )) k:

В частности,

Легко выводятся соотношения, связывающие начальные и центральные моменты. Например, сравнивая (*) и (***), получим

m 2= v 2 – .

Нетрудно, исходя из определения центрального момента и пользуясь свойствами математического ожидания, получить формулы:

m 3= v 3 3 v 2 v 1 + 2 ,

m 4= v 4 4 v 3 v 1 + 6 v 2 + 3 .

Моменты более высоких порядков применяются редко.

Замечание. Моменты, рассмотренные здесь, называют теоретическими. В отличие от теоретических моментов, моменты, которые вычисляются по данным наблюдений, называют эмпирическими. Определения эмпирических моментов даны далее (см. гл. XVII, § 2).

Задачи

1. Известны дисперсии двух независимых случайных величин: D (X ) = 4, D (Y )=3. Найти дисперсию суммы этих величин.

Отв. 7.

2. Дисперсия случайной величины X равна 5. Найти дисперсию следующих величин: а) X -1; б) -2Х; в) ЗХ + 6.

Отв. а) 5; б) 20; в) 45.

3. Случайная величина X принимает только два значения: +С и -С, каждое с вероятностью 0,5. Найти дисперсию этой величины.

Отв. С 2 .

4. , зная закон ее распределения

X 0, 1
P 0, 4 0, 2 0, 15 0, 25

Отв. 67,6404.

5. Случайная величина X может принимать два возможных значения: х 1 с вероятностью 0,3 и x 2 с вероятностью 0,7, причем х 2 > х 1 . Найти x 1 и x 2 , зная, что М (Х ) = 2, D (X ) =0,21.

Отв. x 1 = 2, x 2 = 3.

6. Найти дисперсию случайной величины X -числа появлений событий А в двух независимых испытаниях, если М (Х ) = 0, 8.

Указание. Написать биномиальный закон распределения вероятностей числа появлений события А в двух независимых испытаниях.

Отв. 0, 48.

7. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа приборов таковы: р 1 = 0,3; р 2 = 0,4; p 3 = 0,5; р 4 = 0,6. Найти математическое ожидание и дисперсию числа отказавших приборов.

Отв. 1,8; 0,94.

8. Найти дисперсию случайной величины X - числа появлений события в 100 независимых испытаниях, в каждом из которых вероятность наступления события равна 0,7.

Отв. 21.

9. Дисперсия случайной величины D (Х ) = 6,25. Найти среднее квадратическое отклонение s(X ).

Отв. 2, 5.

10. Случайная величина задана законом распределения

X
P 0, 1 0, 5 0, 4

Найти среднее квадратическое отклонение этой величины.

Отв. 2, 2.

11. Дсперсия каждой из 9 одинаково распределенных взаимно независимых случайных величин равна 36. Найти дисперсию среднего арифметического этих величин.

Отв. 4.

12. Среднее квадратическое отклонение каждой из 16 одинаково распределенных взаимно независимых случайных величин равно 10. Найти среднее квадратическое отклонение среднего арифметического этих величин.

Отв. 2,5.

Глава девятая

ЗАКОН БОЛЬШИХ ЧИСЕЛ

Предварительные замечания

Как уже известно, нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые невозможно. Казалось бы, поскольку о каждой случайной величине мы располагаем в этом смысле весьма скромными сведениями, то вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. Оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в теоремах, носящих общее название закона больших чисел. К ним относятся теоремы Чебышева и Бернулли (имеются и другие теоремы, которые здесь не рассматриваются). Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли-простейшим. Для доказательства этих теорем мы воспользуемся неравенством Чебышева.

Неравенство Чебышева

Неравенство Чебышева справедливо для дискретных и непрерывных случайных величин. Для простоты ограничимся доказательством этого неравенства для дискретных величин.

Рассмотрим дискретную случайную величину X, заданную таблицей распределения:

X x 1 X 2 x n
p p 1 P 2 p n

Поставим перед собой задачу оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине положительного числа e. Если e достаточно мало, то мы оценим, таким образом, вероятность того, что X примет значения, достаточно близкие к своему математическому ожиданию. П. Л. Чебышев доказал неравенство, позволяющее дать интересующую нас оценку.

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа e, не меньше, чем 1-D (Х )/ e 2 :

Р (|Х -М (Х )|< e ) 1-D (X )/ e 2 .

Доказательство. Так как события, состоящие в осуществлении неравенств |Х-М (Х )|и |Х-М (Х )| e, противоположны, то сумма их вероятностей равна единице, т. е.

Р (|Х -М (Х )|< e )+ Р (|Х -М (Х )| e )= 1.

Отсюда интересующая нас вероятность

Р (|Х -М (Х )|< e )= 1- Р (|Х -М (Х )| e ). (*)

Таким образом, задача сводится к вычислению вероятности Р (| Х-М (Х ) | e ).

Напишем выражение дисперсии случайной величины X :

D (X )= [x 1 -M (X )] 2 p 1 + [x 2 -M (X )] 2 p 2 +…+ [x n -M (X )]2p n .

Очевидно, все слагаемые этой суммы неотрицательны.

Отбросим те слагаемые, у которых |x i -M (Х )|< e (для оставшихся слагаемых |x j -M (Х )| e ), вследствие чего сумма может только уменьшиться. Условимся считать для определенности, что отброшено k первых слагаемых (не нарушая общности, можно считать, что в таблице распределения возможные значения занумерованы именно в таком порядке). Таким образом,

D (X ) [x k + 1 -M (Х )] 2 p k + 1 + [x k + 2 -M (X )] 2 p k + z + . .. +[x n -M (X )] 2 p n .

Заметим, что обе части неравенства |x j - М (Х )| e (j = k +1, k + 2, ..., п )положительны, поэтому, возведя их в квадрат, получим равносильное неравенство |x j - М (Х )| 2 e 2 Воспользуемся этим замечанием и, заменяя в оставшейся сумме каждый из множителей |x j - М (Х )| 2 числом e 2 (при этом неравенство может лишь усилиться), получим

D (X ) e 2 (р к+ 1 + p k + 2 + … + р n ). (**)

По теореме сложения, сумма вероятностей р к+ 1 + p k + 2 + … + р n есть вероятность того, что X примет одно, безразлично какое, из значений x k + 1 , х к+ 2 ,....х п, а при любом из них отклонение удовлетворяет неравенству |x j - М (Х )| e Отсюда следует, что сумма р к+ 1 + p k + 2 + … + р n выражает вероятность

P (|X - М (Х )| e).

Это соображение позволяет переписать неравенство (**) так:

D (X ) e 2 P (|X - М (Х )| e) ,

P (|X - М (Х )| e) D (X ) / e 2 (***)

Подставляя (***) в (*), окончательно получим

P (|X - М (Х )| <e) 1- D (X ) / e 2 ,

что и требовалось доказать.

Замечание. Неравенство Чебышева имеет для практики ограниченное значение поскольку часто дает грубую, а иногда и тривиальную (не представляющую интереса) оценку. Например, если D (X )> e 2 и, следовательно, D (X )/ e 2 > 1, то 1- D (Х )/ e 2 < 0; таким образом, в этом случае неравенство Чебышева указывает лишь на то, что вероятность отклонения неотрицательна, а это и без того очевидно, так как любая вероятность выражается неотрицательным числом.

Теоретическое же значение неравенства Чебышева весьма велико. Ниже мы воспользуемся этим неравенством для вывода теоремы Чебышева.

Теорема Чебышева

Теорема Чебышева. Если Х 1 , Х 2 ,…, Х n , ... -попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С ), то, как бы мало ни было положительное число е, вероятность неравенства

Другими словами, в условиях теоремы

Таким образом, теорема Чебышева утверждает, что если рассматривается достаточно большое число независимых случайных величин, имеющих ограниченные дисперсии, то почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.

Доказательство. Введем в рассмотрение новую случайную величину - среднее арифметическое случайных величин

=(X 1 +X 2 +…+X n )/n.

Найдем математическое ожидание . Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математических ожиданий слагаемых), получим

M = . (*)

Применяя к величине неравенство Чебышева, имеем

Подставляя правую часть (***) в неравенство (**) (отчего последнее может быть лишь усилено), имеем

Отсюда, переходя к пределу при , получим

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

Теорема доказана.

Выше, формулируя теорему Чебышева, мы предполагали, что случайные величины имеют различные математические ожидания. На практике часто бывает, что случайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что дисперсии этих величин ограничены, то к ним будет применима теорема Чебышева.

Обозначим математическое ожидание каждой из случайных величин через а; в рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а. Мы можем сформулировать теорему Чебышева для рассматриваемого частного случая.

Если Х 1 , Х 2 , ..., Х п,... -попарно независимые случайные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число e > О, вероятность неравенства

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы будет иметь место равенство

Сущность теоремы Чебышева

Сущность доказанной теоремы такова: хотя отдельные независимые случайные величины могут принимать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения, близкие к определенному постоянному числу, а именно к числу (М (X 1)+ М (Х 2) +...+М (Х п ))/п (или к числу а в частном случае). Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных величин, но можно предвидеть, какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева справедлива не только для дискретных, но и для непрерывных случайных величин; она является ярким примером, подтверждающим справедливость учения диалектического материализма о связи между случайностью и необходимостью.