Числовые промежутки интервал отрезок луч. "числовые промежутки"

В) Числовая прямая

Рассмотрим числовую прямую (рис. 6):

Рассмотрим множество рациональных чисел

Каждое рациональное число изображается некоторой точкой на числовой оси. Так, на рисунке отмечены числа .

Докажем, что .

Доказательство. Пусть существует дробь : . Мы вправе считать эту дробь несократимой. Так как , то - число четное: - нечетное. Подставляя вместо его выражение, найдем: , откуда следует, что - четное число. Получили противоречие, которое доказывает утверждение.

Итак, не все точки числовой оси изображают рациональные числа. Те точки, которые не изображают рациональные числа, изображают числа, называемые иррациональными .

Любое число вида , , является либо целым, либо иррациональным.

Числовые промежутки

Числовые отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками.

Неравенство, задающее числовой промежуток Обозначение числового промежутка Название числового промежутка Читается так:
a ≤ x ≤ b [a; b ] Числовой отрезок Отрезок от a до b
a < x < b (a; b ) Интервал Интервал от a до b
a ≤ x < b [a; b ) Полуинтервал Полуинтервал от a до b , включая a .
a < x ≤ b (a; b ] Полуинтервал Полуинтервал от a до b , включая b .
x ≥ a [a; + ∞ ) Числовой луч Числовой луч от a до плюс бесконечности
x > a (a; + ∞ ) Открытый числовой луч Открытый числовой луч от a до плюс бесконечности
x ≤ a (- ∞; a ] Числовой луч Числовой луч от минус бесконечности до a
x < a (- ∞; a ) Открытый числовой луч Открытый числовой луч от минус бесконечности до a

Представим на координатной прямой числа a и b , а также число x между ними.

Множество всех чисел, отвечающих условию a ≤ x ≤ b , называется числовым отрезком илипросто отрезком . Обозначается так: [a; b ]-Читается так: отрезок от a до b.

Множество чисел, отвечающих условию a < x < b , называется интервалом . Обозначается так: (a; b )

Читается так: интервал от a до b.



Множества чисел, отвечающих условиям a ≤ x < b или a < x ≤ b , называются полуинтервалами . Обозначения:

Множество a ≤ x < b обозначается так:[a; b ),-читается так: полуинтервал от a до b , включая a .

Множество a < x ≤ b обозначается так:(a; b ],-читается так: полуинтервал от a до b , включая b .

Теперь представим луч с точкой a , справа и слева от которой - множество чисел.

a , отвечающих условию x ≥ a , называется числовым лучом .

Обозначается так: [a; + ∞ )-Читается так: числовой луч от a до плюс бесконечности.

Множество чисел справа от точки a , отвечающих неравенству x > a , называется открытым числовым лучом .

Обозначается так: (a; + ∞ )-Читается так: открытый числовой луч от a до плюс бесконечности.

a , отвечающих условию x ≤ a , называется числовым лучом от минус бесконечности до a .

Обозначается так:(- ∞; a ]-Читается так: числовой луч от минус бесконечности до a .

Множество чисел слева от точки a , отвечающих неравенству x < a , называется открытым числовым лучом от минус бесконечности до a .

Обозначается так: (- ∞; a )-Читается так: открытый числовой луч от минус бесконечности до a .

Множество действительных чисел изображается всей координатной прямой. Его называют числовой прямой . Обозначается она так: (- ∞; + ∞ )

3)Линейные уравнения и неравенства с одной переменной,их решения:

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение .

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.
Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2= .

Ответ: 0; .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.
Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х= , это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х= . Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.
Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]
Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение .

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то .

Б)Линейные неравенства с одной переменной.

Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

Такие замены осуществляются на основе следующих утверждений.

Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.

Пример 1. Решить неравенство: 2(х-3)+5(1-х)³3(2х-5).

Раскрыв скобки, получим 2х-6+5-5х³6х-15,






По данной аналитической модели назовите соответствующий числовой промежуток, для этого сделай клик по цифре, стоящей рядом. х>12 х 12 ВЕРНО! Проверка ОТКРЫТЫЙ ЛУЧ 12 х 12 ВЕРНО! Проверка 1 2 4 3 ОТКРЫТЫЙ ЛУЧ"> 12 х 12 ВЕРНО! Проверка 1 2 4 3 ОТКРЫТЫЙ ЛУЧ"> 12 х 12 ВЕРНО! Проверка 1 2 4 3 ОТКРЫТЫЙ ЛУЧ" title="По данной аналитической модели назовите соответствующий числовой промежуток, для этого сделай клик по цифре, стоящей рядом. х>12 х 12 ВЕРНО! Проверка 1 2 4 3 ОТКРЫТЫЙ ЛУЧ"> title="По данной аналитической модели назовите соответствующий числовой промежуток, для этого сделай клик по цифре, стоящей рядом. х>12 х 12 ВЕРНО! Проверка 1 2 4 3 ОТКРЫТЫЙ ЛУЧ">




По данной аналитической модели назовите соответствующий числовой промежуток, для этого сделай клик по цифре, стоящей рядом. х х -7 ВЕРНО! Проверка ЛУЧ


По данной геометрической модели назовите соответствующий числовой промежуток, для этого сделай клик по цифре, стоящей рядом. х -3 ВЕРНО! Проверка ЛУЧ


По данной геометрической модели назовите соответствующий числовой промежуток, для этого сделай клик мышью по цифре, стоящей рядом ВЕРНО! Проверка х ПОЛУИНТЕРВАЛ


Х 17 ВЕРНО! Проверка По данной геометрической модели назовите соответствующий числовой промежуток, для этого сделай клик мышью по цифре, стоящей рядом. ОТКРЫТЫЙ ЛУЧ


По данному обозначению назовите соответствующую геометрическую модель, для этого сделай клик по цифре, стоящей рядом. ВЕРНО! х 7 9 х 7 9 х 9 7 х ПОЛУИНТЕРВАЛ


ВЕРНО! По данному обозначению назовите соответствующую геометрическую модель, для этого сделай клик по цифре, стоящей рядом х 8 х 8 х 8 х ОТРЕЗОК


ВЕРНО! По данному обозначению назовите соответствующую геометрическую модель, для этого сделай клик по цифре, стоящей рядом. -8 х х х х ОТКРЫТЫЙ ЛУЧ


3 х -10-3, Выберите числа, принадлежащие данному промежутку, для этого сделай клик на числе.


8 19 х Выберите числа, принадлежащие данному промежутку, для этого сделай клик на числе. 8 19 х Выберите числа, принадлежащие данному промежутку, для этого сделай клик на числе.


Геометрическая модель ОбозначениеНазвание числового промежутка Аналитическая модель Заполните таблицу 2 х х х 3 ? Отрезок? ? ? Луч?? х 25 ?? Интервал? х -3 ??? ? Полуинтервал?? 2 х???



Среди множеств чисел имеются множества, где объектами выступают числовые промежутки. При указывании множества проще определить по промежутку. Поэтому записываем множества решений, используя числовые промежутки.

Данная статья дает ответы на вопросы о числовых промежутках, названиях, обозначениях, изображениях промежутков на координатной прямой, соответствии неравенств. В заключение будет рассмотрена таблица промежутков.

Определение 1

Каждый числовой промежуток характеризуется:

  • названием;
  • наличием обычного или двойного неравенства;
  • обозначением;
  • геометрическим изображением на координатой прямой.

Числовой промежуток задается при помощи любых 3 способов из выше приведенного списка. То есть при использовании неравенства, обозначения, изображения на координатной прямой. Данный способ наиболее применимый.

Произведем описание числовых промежутков с выше указанными сторонами:

Определение 2

  • Открытый числовой луч. Название связано с тем, что его опускают, оставляя открытым.

Этот промежуток имеет соответствующие неравенства x < a или x > a , где a является некоторым действительным числом. То есть на такое луче имеются все действительные числа, которые меньше a - (x < a) или больше a - (x > a) .

Множество чисел, которые будут удовлетворять неравенству вида x < a обозначается виде промежутка (− ∞ , a) , а для x > a , как (a , + ∞) .

Геометрический смыл отрытого луча рассматривает наличие числового промежутка. Между точками координатной прямой и ее числами имеется соответствие, благодаря которому прямую называем координатной. Если необходимо сравнить числа, то на координатной прямой большее число находится правее. Тогда неравенство вида x < a включает в себя точки, которые расположены левее, а для x > a – точки, которые правее. Само число не подходит для решения, поэтому на чертеже обозначают выколотой точкой. Промежуток, который необходим, выделяют при помощи штриховки. Рассмотрим рисунк, приведенный ниже.

Из вышеприведенного рисунка видно, что числовые промежутки соответствуют части прямой, то есть лучам с началом в a . Иначе говоря, называется лучами без начала. Поэтому он и получил название открытый числовой луч.

Рассмотрим несколько примеров.

Пример 1

При заданном строгом неравенстве x > − 3 задается открытый луч. Эту запись можно представить в виде координат (− 3 , ∞) . То есть это все точки, лежащие правее, чем - 3 .

Пример 2

Если имеем неравенство вида x < 2 , 3 , то запись (− ∞ , 2 , 3) является аналогичной при задании открытого числового луча.

Определение 3

  • Числовой луч. Геометрический смысл в том, что начало не отбрасывается, иначе говоря, луч оставляет за собой свою полноценность.

Его задание идет с помощью нестрогих неравенств вида x ≤ a или x ≥ a . Для такого вида приняты специальные обозначения вида (− ∞ , a ] и [ a , + ∞) , причем наличие квадратной скобки имеет значение того, что точка включена в решение или в множество. Рассмотрим рисунок, приведеный ниже.

Для наглядного примера зададим числовой луч.

Пример 3

Неравенство вида x ≥ 5 соответствует записи [ 5 , + ∞) , тогда получаем луч такого вида:

Определение 4

  • Интервал. Задавание при помощи интервалов записывается при помощи двойных неравенств a < x < b , где а и b являются некоторыми действительными числами, где a меньше b , а x является переменной. На таком интервале имеется множество точек и чисел, которые больше a , но меньше b . Обозначение такого интервала принято записывать в виде (a , b) . Наличие круглых скобок говорит о том, что число a и b не включены в это множество. Координатная прямая при изображении получает 2 выколотые точки.

Рассмотрим рисунок, приведенный ниже.

Пример 4

Пример интервала − 1 < x < 3 , 5 говорит о том, что его можно записать в виде интервала (− 1 , 3 , 5) . Изобразим на координатной прямой и рассмотрим.

Определение 5

  • Числовой отрезок. Данный промежуток отличается тем, что он включает в себя граничные точки, тогда имеет запись вида a ≤ x ≤ b . Такое нестрогое неравенство говорит о том, что при записи в виде числового отрезка применяют квадратные скобки [ a , b ] , значит, что точки включаются во множество и изображаются закрашенными.

Пример 5

Рассмотрев отрезок, получим, что его задание возможно при помощи двойного неравенства 2 ≤ x ≤ 3 , которое изображаем в виде 2 , 3 . На координатной прямой данный точки будут включены в решение и закрашены.

Определение 6 Пример 6

Если имеется полуинтервал (1 , 3 ] , тогда его обозначение можно в виде двойного неравенства 1 < x ≤ 3 , при чем на координатной прямой изобразится с точками 1 и 3 , где 1 будет исключена, то есть выколота на прямой.

Определение 7

Промежутки могут быть изображены в виде:

  • открытого числового луча;
  • числового луча;
  • интервала;
  • числового отрезка;
  • полуинтервала.

Чтобы упростить процесс вычисления, необходимо пользоваться специальной таблицей, где имеются обозначения всех видов числовых промежутков прямой.

Название Неравнство Обозначение Изображение
Открытый числовой луч x < a - ∞ , a
x > a a , + ∞
Числовой луч x ≤ a (- ∞ , a ]
x ≥ a [ a , + ∞)
Интервал a < x < b a , b
Числовой отрезок a ≤ x ≤ b a , b

Полуинтервал

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

7 класс Числовые промежутки Учитель математики: Бахвалова Г.С. Гимназия №52

Цели урока: 1.Ввести понятие числового промежутка; 2.Привить навыки изображения числовых промежутков на числовой прямой и умение их обозначать. 3.Развивать логическое мышление: анализировать, сравнивать. План урока: 1.Актуализация знаний: «Координатная ось». 2.Новая тема: «Числовые промежутки». 3.Обучающая самостоятельная работа. 4.Итоги урока.

Выполните задание: 1.Отметьте на числовой прямой точки с координатами: А(-2); В(5); О(0); С(5); D (-3).

Ответ: 1. А(-2); В(5); О(0); С(3); D (- 3). 0 А В С 1 0 D

Выполните задание: 2.Сравните числа: -2 и 5; 5 и 0; -2 и –3; 5 и 3; 0 и –2.

Ответ: -2 0; -2 > –3; 5 > 3; 0 > –2. Проверь себя

Выполните задание устно: 3.Какое из данных чисел на числовой прямой находится левее: -2 или 5; 5 или 0; -2 или –3; 5 или 3; 0 или –2. ВЫВОД: из двух чисел на числовой прямой меньшее число расположено левее, а большее – правее.

Отметим на координатной прямой точки с координатами – 3 и 2. Если точка расположена между ними, то ей соответствует число, которое больше –3 и меньше 2 . Верно и обратное: если число х удовлетворяет условию – 3Слайд 9

Множество всех чисел, удовлетворяющих условию 3Слайд 10

Число х, удовлетворяющее условию -3 ≤х≤ 2, изображается точкой, которая либо лежит между точками с координатами –3 и 2, либо совпадает с одной из них. Множество таких чисел обозначают [-3;2]. - 3 2 Запиши в тетрадь Запиши в тетрадь Запиши в тетрадь

Число х, удовлетворяющее условию х≤ 2, изображается точкой, которая либо лежит левее точки с координатой 2, либо совпадает с ней. Множество таких чисел обозначают (-∞;2]. 2 Запиши в тетрадь Запиши в тетрадь Запиши в тетрадь

Число х, удовлетворяющее условию х >-3 , изображается точкой, которая либо лежит правее точки с координатой -3. Множество таких чисел о бозначают (-3; +∞). - 3 Запиши в тетрадь Запиши в тетрадь Запиши в тетрадь

3 5 3 5 3 5 3 5 5 -7 3

Самостоятельная работа ВАРИАНТ 1 ВАРИАНТ 4 ВАРИАНТ 2 ВАРИАНТ 3 ВЫБЕРИ ВАРИАНТ Помоги мне! А мне, а мне. Выбери меня! Ты ведь мне поможешь?

ВАРИАНТ 1 1.Изобразите на координатной прямой числовые промежутки: а). ; б). (-2; + ∞); в). [ 3;5) ; г).(- ∞ ;5 ]. 2. Запишите числовой промежуток, изображенный на рисунке: 3. Какие из чисел -1,6; -1,5; -1; 0; 3; 5,1; 6,5 принадлежат промежутку: а). [-1,5;6,5]; б).(3; + ∞); в). (- ∞ ;1]. 3 7 -5 6 -7 в). а). б). 4. Укажите наибольшее целое число принадлежащее промежутку: а). [-12;-9]; б). (-1;17). СПАСИБО!

ВАРИАНТ 2 1.Изобразите на координатной прямой числовые промежутки: а). [ - 3; 0) ; б). [ - 3 ; + ∞); в). (- 3; 0) ; г).(- ∞ ; 0) . 2. Запишите числовой промежуток, изображенный на рисунке: 3. Какие из чисел - 2 , 2 ; - 2 , 1 ; -1; 0; 0,5 ; 1; 8 , 9 принадлежат промежутку: а). (- 2 , 2 ; 8 , 9 ]; б).(- ∞ ;0 ] ; в). (1 ;+ ∞) . -5 6 3 7 в). а). б). 4. Укажите наибольшее целое число принадлежащее промежутку: а). [-12;-9) ; б). [ -1;17 ] . 2 Помоги мне!

ВАРИАНТ 3 1.Изобразите на координатной прямой числовые промежутки: а). (-0,44 ;5) ; б). (10 ; + ∞); в). [ 0 ; 13) ; г).(- ∞ ; -0,44 ]. 2. Запишите числовой промежуток, изображенный на рисунке: 3. Назовите все целые чис ла, принадлежа щие промежутку: а). [- 3 ; 1 ]; б).(- 3; 1); в) [- 3 ; 1) ; г). (- 3 ; 1 ]; . 7 20 -8 6 -7 в). а). б). 4. Укажите наи мен ьшее целое число принадлежащее промежутку: а). [-12;-9]; б). (-1;17 ] . Спасибо, я очень рад!

ВАРИАНТ 4 1.Изобразите на координатной прямой числовые промежутки: а). [ -4 ; -0,29 ]; б). (- ∞ ;+ ∞); в). [ 1,7 ;5 ,9) ; г).(0,01;+ ∞) . 2. Запишите числовой промежуток, изображенный на рисунке: 3. Назовите все целые чис ла, принадлежа щие промежутку: а). [- 4 ; 3 ]; б).(-4 ; 3); в) [- 4 ; 3) ; г). (- 4 ; 3 ]; . -4 -1 -5 25 в). а). б). 4. Укажите наи мен ьшее целое число принадлежащее промежутку: а). [-12;-9) ; б). (-1;17 ] . -8 Молодец!

Вызываем тестовую программу Если у тебя остались свободные минуты,вызови тестовую программу, нажав на слово «ВЫЗЫВАЕМ» Домашняя работа Можно решить другой ВАРИАНТ

Домашняя работа 1). Изобразить на одной и той же координатной прямой два числовых промежутка таких, чтобы они имели общие точки (2 примера). 2). Изобразить на одной и той же координатной прямой два числовых промежутка таких, чтобы они не имели общих точек (2 примера). Завершение работы

СПАСИБО ЗА РАБОТУ!!!