Что такое длина дуги. Определение длины дуги

Изначально это выглядит так:

Рисунок 463.1 . а) имеющаяся дуга, б) определение длины хорды сегмента и высоты.

Таким образом, когда имеется дуга, мы можем соединить ее концы и получим хорду длиной L. Посредине хорды мы можем провести линию, перпендикулярную хорде и таким образом получим высоту сегмента H. Теперь, зная длину хорды и высоту сегмента, мы можем сначала определить центральный угол α, т.е. угол между радиусами, проведенными из начала и конца сегмента (на рисунке 463.1 не показаны), а затем и радиус окружности.

Решение подобной задачи достаточно подробно рассматривалось в статье "Расчет арочной перемычки ", поэтому здесь лишь приведу основные формулы:

tg(a /4) = 2Н/L (278.1.2)

а /4 = arctg(2H/L )

R = H /(1 - cos(a /2)) (278.1.3)

Как видим, с точки зрения математики никаких проблем с определением радиуса окружности нет. Данный метод позволяет определить значение радиуса дуги с любой возможной точностью. Это главное достоинство данного метода.

А теперь поговорим о недостатках.

Проблема данного метода даже не в том, что требуется помнить формулы из школьного курса геометрии, успешно забытые много лет назад - для того, чтобы напомнить формулы - есть интернет. А вот калькулятор с функцией arctg, arcsin и проч. есть далеко не у каждого пользователя. И хотя эту проблему также успешно позволяет решить интернет, но при этом не следует забывать, что мы решаем достаточно прикладную задачу. Т.е. далеко не всегда нужно определить радиус окружности с точностью до 0.0001 мм, точность 1 мм может быть вполне приемлема.

Кроме того, для того, чтобы найти центр окружности, нужно продлить высоту сегмента и отложить на этой прямой расстояние, равное радиусу. Так как на практике мы имеем дело с не идеальными измерительными приборами, к этому следует прибавить возможную погрешность при разметке, то получается, что чем меньше высота сегмента по отношению к длине хорды, тем больше может набежать погрешность при определении центра дуги.

Опять же не следует забывать о том, что мы рассматриваем не идеальный случай, т.е. это мы так сходу назвали кривую дугой. В действительности это может быть кривая, описываемая достаточно сложной математической зависимостью. А потому найденный таким образом радиус и центр окружности могут и не совпадать с фактическим центром.

В связи с этим я хочу предложить еще один способ определения радиуса окружности, которым сам часто пользуюсь, потому что этим способом определить радиус окружности намного быстрее и проще, хотя точность при этом значительно меньше.

Второй метод определения радиуса дуги (метод последовательных приближений)

Итак продолжим рассмотрение имеющейся ситуации.

Так как нам все равно необходимо найти центр окружности, то для начала мы из точек, соответствующих началу и концу дуги, проведем как минимум две дуги произвольного радиуса. Через пересечение этих дуг будет проходить прямая, на которой и находится центр искомой окружности.

Теперь нужно соединить пересечение дуг с серединой хорды. Впрочем, если мы из указанных точек проведем не по одной дуге, а по две, то данная прямая будет проходить через пересечение этих дуг и тогда искать середину хорды вовсе не обязательно.

Если расстояние от пересечения дуг до начала или конца рассматриваемой дуги больше, чем расстояние от пересечения дуг до точки, соответствующей высоте сегмента, то значит центр рассматриваемой дуги находится ниже на прямой, проведенной через пересечение дуг и середину хорды. Если меньше - то искомый центр дуги выше на прямой.

Исходя из этого на прямой принимается следующая точка, предположительно соответствующая центру дуги, и от нее производятся те же измерения. Затем принимается следующая точка и измерения повторяются. С каждой новой точкой разница измерений будет все меньше.

Вот собственно и все. Не смотря на столь пространное и мудреное описание, для определения радиуса дуги таким способом с точностью до 1 мм достаточно 1-2 минут.

Теоретически это выглядит примерно так:

Рисунок 463.2 . Определение центра дуги методом последовательных приближений.

А на практике примерно так:

Фотография 463.1 . Разметка заготовки сложной формы с разными радиусами.

Тут только добавлю, что иногда приходится находить и чертить несколько радиусов, потому на фотографии так много всего и намешано.

Круг, его части, их размеры и соотношения — вещи, с которыми ювелир постоянно сталкивается. Кольца, браслеты, касты, трубки, шары, спирали — много всего круглого приходится делать. Как же всё это посчитать, особенно если тебе посчастливилось в школе прогулять уроки геометрии?..

Давайте сначала рассмотрим, какие у круга бывают части и как они называются.

  • Окружность — линия, ограничивающая круг.
  • Дуга — часть окружности.
  • Радиус — отрезок, соединяющий центр круга с какой-либо точкой окружности.
  • Хорда — отрезок, соединяющий две точки окружности.
  • Сегмент — часть круга, ограниченная хордой и дугой.
  • Сектор — часть круга, ограниченная двумя радиусами и дугой.

Интересующие нас величины и их обозначения:


Теперь посмотрим, какие задачи, связанные с частями круга, приходится решать.

  • Найти длину развертки какой-либо части кольца (браслета). Задан диаметр и хорда (вариант: диаметр и центральный угол), найти длину дуги.
  • Есть рисунок на плоскости, надо узнать его размер в проекции после сгибания в дугу. Заданы длина дуги и диаметр, найти длину хорды.
  • Узнать высоту детали, полученной сгибанием плоской заготовки в дугу. Варианты исходных данных: длина дуги и диаметр, длина дуги и хорда; найти высоту сегмента.

Жизнь подскажет и другие примеры, а эти я привел только для того, чтобы показать необходимость задания каких-нибудь двух параметров для нахождения всех остальных. Вот этим мы и займемся. А именно, возьмем пять параметров сегмента: D, L, X, φ и H. Затем, выбирая из них все возможные пары, будем считать их исходными данными и путем мозгового штурма находить все остальные.

Чтобы зря не грузить читателя, подробных решений я приводить не буду, а приведу лишь результаты в виде формул (те случаи, где нет формального решения, я оговорю по ходу дела).

И еще одно замечание: о единицах измерения. Все величины, кроме центрального угла, измеряются в одних и тех же абстрактных единицах. Это значит, что если, к примеру, вы задаёте одну величину в миллиметрах, то другую не надо задавать в сантиметрах, а результирующие значения будут измеряться в тех же миллиметрах (а площади — в квадратных миллиметрах). То же самое можно сказать и про дюймы, футы и морские мили.

И только центральный угол во всех случаях измеряется в градусах и ни в чём другом. Потому что, как показывает практика, люди, проектирующие что-нибудь круглое, не склонны измерять углы в радианах. Фраза «угол пи на четыре» многих ставит в тупик, тогда как «угол сорок пять градусов» — понятна всем, так как это всего на пять градусов выше нормы. Однако, во всех формулах будет присутствовать в качестве промежуточной величины еще один угол — α. По смыслу это половина центрального угла, измеренная в радианах, но в этот смысл можно спокойно не вникать.

1. Даны диаметр D и длина дуги L

; длина хорды ;
высота сегмента ; центральный угол .

2. Даны диаметр D и длина хорды X

; длина дуги ;
высота сегмента ; центральный угол .

Поскольку хорда делит круг на два сегмента, у этой задачи не одно, а два решения. Чтобы получить второе, нужно в приведенных выше формулах заменить угол α на угол .

3. Даны диаметр D и центральный угол φ

; длина дуги ;
длина хорды ; высота сегмента .

4. Даны диаметр D и высота сегмента H

; длина дуги ;
длина хорды ; центральный угол .

6. Даны длина дуги L и центральный угол φ

; диаметр ;
длина хорды ; высота сегмента .

8. Даны длина хорды X и центральный угол φ

; длина дуги ;
диаметр ; высота сегмента .

9. Даны длина хорды X и высота сегмента H

; длина дуги ;
диаметр ; центральный угол .

10. Даны центральный угол φ и высота сегмента H

; диаметр ;
длина дуги ; длина хорды .

Внимательный читатель не мог не заметить, что я пропустил два варианта:

5. Даны длина дуги L и длина хорды X
7. Даны длина дуги L и высота сегмента H

Это как раз те два неприятных случая, когда у задачи нет решения, которое можно было бы записать в виде формулы. А задача-то не такая уж редкая. Например, у вас есть плоская заготовка длины L, и вы хотите согнуть ее так, чтобы ее длина стала X (или высота стала H). Какого диаметра взять оправку (ригель)?

Задача эта сводится к решению уравнений:
; — в варианте 5
; — в варианте 7
и хоть они и не решаются аналитически, зато легко решаются программным способом. И я даже знаю, где взять такую программу: на этом самом сайте, под именем . Всё то, что я тут длинно рассказываю, она делает за микросекунды.

Для полноты картины добавим к результатам наших вычислений длину окружности и три значения площадей — круга, сектора и сегмента. (Площади нам очень помогут при вычислении массы всяких круглых и полукруглых деталей, но об этом — в отдельной статье.) Все эти величины вычисляются по одним и тем же формулам:

длина окружности ;
площадь круга ;
площадь сектора ;
площадь сегмента ;

И в заключение еще раз напомню о существовании абсолютно бесплатной программы, которая выполняет все перечисленные вычисления, освобождая вас от необходимости вспоминать, что такое арктангенс и где его искать.

Инструкция

Если длина дуги (l) между крайними точками, задающими хорду, известна, а кроме нее в условиях дан и радиус окружности (R), задачу вычисления длины хорды (m) можно свести к расчету длины основания равнобедренного треугольника. Боковые стороны этого треугольника будут двумя радиусами окружности, а угол между ними будет центральным углом, который вам и нужно рассчитать в первую очередь. Для этого разделите длину дуги на радиус: l/R. Полученный результат выражен в радианах. Если вам удобнее производить вычисления , будет значительно сложнее - сначала умножьте длину дуги на 360, а затем поделите результат на удвоенное произведение Пи на радиус: l*360/(2*π*R) = l*180/(π*R).

Выяснив величину центрального угла, рассчитайте длину хорды . Для этого удвоенный радиус умножьте на синус половины центрального угла. Если вы выбрали расчеты в градусах, в общем виде полученную формулу запишите так: m = 2*R*sin(l*90/(π*R)). Для расчетов в радианах она будет содержать на одно математическое действие меньше m = 2*R*sin(l/(2*R)). Например, при длине дуги в 90 см и радиусе 60 см должна иметь длину 2*60*sin(90*90/(3,14*60)) = 120*sin(8100/188,4) = 120*sin(42,99°) ≈ 120*0,68 = 81,6 см при точности расчетов до двух после запятой.

Если в дополнение к длине дуги (l) в условиях задачи дана полная (L), выразите через нее радиус, разделив на удвоенное Пи. Затем подставьте это выражение в общую формулу из предыдущего шага: m = 2*(L/(2*π))*sin(l*90/(π*L/(2*π))). После упрощения выражения у вас должно получиться равенство для расчетов в градусах: m = L/π*sin(l*180/L). Для вычислений в радианах оно будет выглядеть так: m = L/π*sin(l*π/L). Например, если длина дуги составляет 90 см, а длина окружности - 376,8 см, длина хорды составит 376,8/3,14*sin(90*180/376,8) = 120*sin(42,99°) ≈ 120*0,68 = 81,6 см.

Понятие хорда в школьном курсе геометрии связано с понятием окружность.Окружностью называется плоская фигура, составленная из всех точек этой плоскости равностоящих от заданной плоскости. Радиусом окружности называется расстояние от центра до любой точки лежащей на ней.Ходой называется отрезок, соединяющий любые две точки, лежащие на окружности.

Инструкция

Для получения длины произвольной хорды необходимо ввести дополнительное .
Угол с вершиной в центре окружности центральным углом этой окружности.
Если известна градусная мера центрального угла??, то длина хорды, на которую она опирается, рассчитывается по формулам
h = 2 * R * sin(??/2)
h = R * v(2 * (1 - cos??))
h = 2 * R * cos??, где?? = (П - ??)/2, П – П

Видео по теме

Все чаще в повседневной практике приходится решать задачи, которые когда-то как семечки щелкали на уроках математики, но по прошествии лет, что-то подзабылось. Нахождение длины дуги окружности - одна из задач, с которой человек может столкнуться в жизни.

Вам понадобится

  • калькулятор, значение числа π = 3,14 , значение радиуса r и центрального угла α, взятых из условия задачи.

Инструкция

Для начала нужно определиться с понятиями. Окружность - это множество всех точек плоскости, находящихся на данном положительном расстоянии от некоторой данной точки плоскости, называемой центром (точка О). Дуга - часть окружности , расположенная между А и В этой окружности , где ОА и ОВ радиусы этой окружности . Чтобы различать эти дуги , на каждой из них отмечают промежуточную L и М. Таким образом, получаем две дуги ALB и AMB.

Итак, дуга окружности определяется радиусом окружности r и центральным углом?. Зная эти два , несложно длину дуги L по формуле:
L = ?r?/180
где? - числовая константа равная 3,14.
Подставив в формулу значения?, r, ? и вооружившись калькулятором, вы легко вычислите длину дуги L.

Необходимость вычислить длину дуги может возникнуть при выполнении самых разнообразных проектных работ. Это разработка арочных перекрытий, строительство мостов и тоннелей, прокладка автомобильных и железнодорожных путей и многое другое. Исходные условия для решения этой задачи могут быть очень разными. Для того, чтобы наиболее оптимальным способом вычислить длину дуги, необходимо знать радиус окружности и центральный угол.

Вам понадобится

  • - лист бумаги;
  • - циркуль;
  • - линейка;
  • - транспортир;
  • - компьютер с программой AutoCAD;
  • - калькулятор.

Инструкция

Постройте окружность с заданным радиусом. Принципы ее построение в AutoCAD те же самые, что и на листе бумаги. Освоив способы построения разных геометрических фигур классическим способом, вы очень быстро поймете, как это делается на компьютере. Разница заключается в том, что при обычном построении с помощью циркуля вы находите центр окружности по точке, куда ставится иголка. В AutoCAD найдите в верхнем меню кнопку «arc” или «Дуга». Выберите построение по центру, начальной точке и углу и введите нужные параметры. Обозначьте центр окружности как О.

С помощью карандаша и линейки или компьютерной мыши проведите радиус. Если вы чертите на листе, то с помощью транспортира отложите заданный размер угла. Для этого нулевую отметку транспортира совместите с точкой О, отметьте нужный угол и проведите через полученную точку второй радиус. Угол обозначьте как α. Можно назвать его и АОВ, если соответствующими буквами отметить точки пересечения с окружностью. Вам нужно найти длину дуги АВ.

Если размер угла задан в градусах, то длина дуги равна удвоенному произведению радиуса окружности на коэффициент π и на соотношение угла α к полному центрального угла окружность. Он составляет 360°. То есть ее можно найти по формуле L=2πRα/360°, где L – искомая длина дуги, R- радиус окружности, а α – размер угла в градусах. Угол может быть задан и в . Тогда длина дуги равна произведению радиуса на угол, то есть L=Rα. В этом случае остальная часть формулы уже сократилась при переводе градусов в .

Проектировщикам приходится рассчитывать длину дуги, знач только предположительную высоту моста или перекрытия и длину пролета. В этом случае сделайте чертеж. Пролет будет являться хордой, а высота - частью радиуса. Проведите ее из самой верхней точки будущей арки перпендикулярно к и продолжите дальше, до предполагаемого центра окружности. Высота делит

Часть фигуры, которая образует окружность, точки которой равноудалены, называется дугой. Если из точки центра окружности, провести лучи в точки, совпадающие с концами дуги, будет образован её центральный угол.

Определение длины дуги

Производится по следующей формуле:

где L – искомая длина дуги, π = 3,14 , r – радиус окружности, α – центральный угол.

L

3,14 × 10 × 85

14,82
Ответ:

Длина дуги окружности равна 14,82 сантиметра.

В элементарной геометрии под дугой понимается подмножество окружности, расположенной между двумя расположенными на ней точками. На практике решать задачи по определению ее длины инженерам и архитекторам приходится достаточно часто, поскольку этот геометрический элемент широко распространен в самых разнообразных конструкциях.

Пожалуй, первым, перед кем встала эта задача, были древние зодчие, которым так или иначе приходилось определять этот параметр для сооружения сводов, широко используемых для перекрытия промежутков между опорами в круглых, многоугольных или эллиптических зданиях. Если внимательно присмотреться к дошедшим до наших дней шедеврам древнегреческого, древнеримского и особенно арабского зодчества, то можно заметить, что в их конструкциях дуги и своды встречаются чрезвычайно часто. Творения современных архитекторов ими не так богаты, но эти геометрические элементы наличествуют, конечно же, и в них.

Длину различных дуг необходимо рассчитывать при сооружении автомобильных и железных дорог, а также автодромов, причем во многих случаях от правильности и точности вычислений во многом зависит безопасность движения. Дело в том, что многие повороты магистралей с точки зрения геометрии представляют собой именно дуги, и по движению по ним на транспорт воздействуют различные физические силы. Параметры их результирующей во многом определяются длиной дуги, а также ее центральным углом и радиусом.

Конструкторам машин и механизмов приходится вычислить длины различных дуг для правильной и точной компоновки составных частей различных агрегатов. В данном случае ошибки в расчетах чреваты тем, что важные и ответственные детали будут неправильно взаимодействовать друг с другом и механизм просто не сможет функционировать так, как планируют его создатели. В качестве примеров конструкций, изобилующих такими геометрическими элементами, как дуги, можно привести двигатели внутреннего сгорания, коробки переключения передач, дерево- и металлообрабатывающее оборудование, кузовные элементы легковых и грузовых автомобилей и т.д.

Дуги достаточно широко встречаются в медицине, в частности, в стоматологии. Например, они используются для исправления неправильного прикуса. Корректирующие элементы, называемые брекетами (или брекет-системами) и имеющие соответствующую форму, изготавливаются из специальных сплавов, и устанавливаются таким образом, чтобы изменить положение зубов. Само собой разумеется, что для того, чтобы лечение проходило успешно, эти дуги должны быть очень точно рассчитаны. Кроме того, дуги очень широко используются в травматологии, и, пожалуй, самым ярким примером тому является знаменитый аппарат Илизарова, изобретенный российским врачом в 1951 году и чрезвычайно успешно используемый по сей день. Неотъемлемыми его частями являются металлические дуги, снабженные отверстиями, через которые продеваются специальные спицы, и являющиеся основными опорам всей конструкции.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD