Что такое квадратный корень. Вычисление квадратного корня вручную. Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

Среди множества знаний, которые являются признаком грамотности, на первом месте стоит азбука. Следующим, таким же «знаковым» элементом, являются навыки сложения-умножения и, примыкающие к ним, но обратные по смыслу, арифметические операции вычитания-деления. Усвоенные в далеком школьном детстве навыки, служат верой и правдой денно и нощно: ТВ, газета, СМС, И везде читаем, пишем, считаем, складываем, вычитаем, умножаем. А, скажите, часто ли вам приходилось по жизни, извлекать корни, кроме, как на даче? Например, такая занимательная задачка, типа, корень квадратный из числа 12345… Есть еще порох в пороховницах? Осилим? Да нет ничего проще! Где тут мой калькулятор… А без него, врукопашную, слабо?

Сначала уточним, что же это такое - квадратный корень числа. Вообще говоря, «извлечь корень из числа» означает выполнить арифметическое действие противоположное возведению в степень - вот вам и единство противоположностей в жизненном приложении. допустим, квадрат, это умножение числа на самое себя, т.е., как учили в школе, Х * Х = А или в другой записи Х2 = А, а словами - «Х в квадрате равняется А». Тогда обратная задача звучит так: квадратный корень числа А, представляет собой число Х, которое будучи возведено в квадрат равно А.

Извлекаем квадратный корень

Из школьного курса арифметики известны способы вычислений «в столбик», которые помогают выполнить любые подсчеты с применением первых четырех арифметических действий. Увы… Для квадратных, и не только квадратных, корней таких алгоритмов не существует. А в таком случае, как извлечь квадратный корень без калькулятора? Исходя из определения квадратного корня вывод один - необходимо подбирать значение результата последовательным перебором чисел, квадрат которых приближается к значению подкоренного выражения. Только и всего! Не успеет пройти час-другой, как можно посчитать, используя хорошо известный прием умножения в «столбик», любой квадратный корень. При наличии навыков для этого достаточно пары минут. Даже не совсем продвинутый пользователь калькулятора или ПК делает это одним махом - прогресс.

А если серьезно, то вычисление квадратного корня часто выполняют, используя прием «артиллерийской вилки»: сначала берут число, квадрат которого, примерно, соответствует подкоренному выражению. Лучше, если «наш квадрат» чуть меньше этого выражения. Затем корректируют число по собственному умению-разумению, например, умножают на два, и… вновь возводят в квадрат. Если результат больше числа под корнем, последовательно корректируя исходное число, постепенно приближаются к его «коллеге» под корнем. Как видите - никакого калькулятора, только умение считать «в столбик». Конечно же, есть множество научно-аргументированных и оптимизированных алгоритмов вычислений квадратного корня, но для «домашнего применения» указанный выше прием дает 100% уверенность в результате.

Да, чуть не забыл, чтобы подтвердить свою возросшую грамотность, вычислим квадратный корень ранее указанного числа 12345. Делаем пошагово:

1. Возьмем, чисто интуитивно, Х=100. Подсчитаем: Х * Х = 10000. Интуиция на высоте - результат меньше 12345.

2. Попробуем, тоже чисто интуитивно, Х = 120. Тогда: Х * Х = 14400.И опять с интуицией порядок - результат больше 12345.

3. Выше получена «вилка» 100 и 120. Выберем новые числа - 110 и 115. Получаем, соответственно, 12100 и 13225 - вилка сужается.

4. Пробуем на «авось» Х=111. Получаем Х * Х = 12321. Это число уже достаточно близко к 12345. В соответствии с требуемой точностью «подгонку» можно продолжить или остановиться на полученном результате. Вот и все. Как и было обещано - все очень просто и без калькулятора.

Совсем немного истории…

Додумались до использования квадратных корней еще пифагорейцы, ученики школы и последователи Пифагора, за 800 лет до н.э. и тут же, «нарвались» на новые открытия в области чисел. И откуда что взялось?

1. Решение задачи с извлечением корня, дает результат в виде чисел нового класса. Их назвали иррациональными, иначе говоря, «неразумными», т.к. они не записываются законченным числом. Самый классический пример такого рода - квадратный корень из 2. Этот случай соответствует вычислению диагонали квадрата со стороной равной 1 - вот оно, влияние школы Пифагора. Оказалось, что у треугольника с вполне конкретным единичным размером сторон, гипотенуза имеет размер, который выражается числом, у которого «нет конца». Так в математике появились

2. Известно, что Оказалось, что эта математическая операция содержит еще один подвох - извлекая корень, мы не знаем, квадратом какого числа, положительного или отрицательного, является подкоренное выражение. Эта неопределенность, двойной результат от одной операции, так и записывается.

Изучение связанных с этим явлением проблем стало направлением в математике под названием теория комплексной переменной, имеющим большое практическое значение в математической физике.

Любопытно, что обозначение корня - радикал - применил в своей «Универсальной арифметике» все тот же вездесущий И. Ньютон, а в точности современный вид записи корня известен с 1690 года из книги француза Ролля «Руководство алгебры».

Пришло время разобрать способы извлечения корней . Они базируются на свойствах корней , в частности, на равенстве , которое справедливо для любого неотрицательного числа b.

Ниже мы по очереди рассмотрим основные способы извлечения корней.

Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п.

Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители.

Отдельно стоит остановиться на , что возможно для корней с нечетными показателями.

Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня.

Приступим.

Использование таблицы квадратов, таблицы кубов и т.д.

В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?

Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99 . Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83 . Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99 . На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889 , которое является квадратом числа 83 .


Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.

Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.

Допустим, нам нужно извлечь корень n -ой степени из числа a , при этом число a содержится в таблице n -ых степеней. По этой таблице находим число b такое, что a=b n . Тогда , следовательно, число b будет искомым корнем n -ой степени.

В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683 . Находим число 19 683 в таблице кубов, из нее находим, что это число является кубом числа 27 , следовательно, .


Понятно, что таблицы n -ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.

Разложение подкоренного числа на простые множители

Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем : после его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.

Пусть из натурального числа a извлекается корень n -ой степени, и его значение равно b . В этом случае верно равенство a=b n . Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p 1 , p 2 , …, p m в виде p 1 ·p 2 ·…·p m , а подкоренное число a в этом случае представляется как (p 1 ·p 2 ·…·p m) n . Так как разложение числа на простые множители единственно, то разложение подкоренного числа a на простые множители будет иметь вид (p 1 ·p 2 ·…·p m) n , что дает возможность вычислить значение корня как .

Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p 1 ·p 2 ·…·p m) n , то корень n -ой степени из такого числа a нацело не извлекается.

Разберемся с этим при решении примеров.

Пример.

Извлеките квадратный корень из 144 .

Решение.

Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=12 2 , откуда понятно, что квадратный корень из 144 равен 12 .

Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.

Разложим 144 на простые множители:

То есть, 144=2·2·2·2·3·3 . На основании с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2) 2 ·3 2 =(2·2·3) 2 =12 2 . Следовательно, .

Используя свойства степени и свойства корней , решение можно было оформить и немного иначе: .

Ответ:

Для закрепления материала рассмотрим решения еще двух примеров.

Пример.

Вычислите значение корня .

Решение.

Разложение на простые множители подкоренного числа 243 имеет вид 243=3 5 . Таким образом, .

Ответ:

Пример.

Является ли значение корня целым числом?

Решение.

Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.

Имеем 285 768=2 3 ·3 6 ·7 2 . Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.

Ответ:

Нет.

Извлечение корней из дробных чисел

Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде как p/q . Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби : корень из дроби равен частному от деления корня из числителя на корень из знаменателя.

Разберем пример извлечения корня из дроби.

Пример.

Чему равен квадратный корень из обыкновенной дроби 25/169 .

Решение.

По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5 , а квадратный корень из знаменателя равен 13 . Тогда . На этом извлечение корня из обыкновенной дроби 25/169 завершено.

Ответ:

Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.

Пример.

Извлеките кубический корень из десятичной дроби 474,552 .

Решение.

Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000 . Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13= (2·3·13) 3 =78 3 и 1 000=10 3 , то и . Осталось лишь завершить вычисления .

Ответ:

.

Извлечение корня из отрицательного числа

Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a и нечетного показателя корня 2·n−1 справедливо . Это равенство дает правило извлечения корней нечетной степени из отрицательных чисел : чтобы извлечь корень из отрицательного числа нужно извлечь корень из противоположного ему положительного числа, и перед полученным результатом поставить знак минус.

Рассмотрим решение примера.

Пример.

Найдите значение корня .

Решение.

Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью: . Применяем правило извлечения корня из обыкновенной дроби: . Осталось вычислить корни в числителе и знаменателе полученной дроби: .

Приведем краткую запись решения: .

Ответ:

.

Порязрядное нахождение значения корня

В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n -ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.

На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.

Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5 . Имеем 0 2 =0<5 , 10 2 =100>5 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.

Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.

Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .

Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.

Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9 , вычисляя соответственно 0 2 , 1 2 , …, 9 2 до того момента, пока не получим значение, большее подкоренного числа 5 . Все эти вычисления удобно представлять в виде таблицы:

Так значение разряда единиц равно 2 (так как 2 2 <5 , а 2 3 >5 ). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9 , сравнивая полученные значения с подкоренным числом 5 :

Так как 2,2 2 <5 , а 2,3 2 >5 , то значение разряда десятых равно 2 . Можно переходить к нахождению значения разряда сотых:

Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .

Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.

Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186 , таким образом, старшим разрядом является разряд десятков.

Определим его значение.

Так как 10 3 <2 151,186 , а 20 3 >2 151,186 , то значение разряда десятков равно 1 . Переходим к единицам.

Таким образом, значение разряда единиц равно 2 . Переходим к десятым.

Так как даже 12,9 3 меньше подкоренного числа 2 151,186 , то значение разряда десятых равно 9 . Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.

На этом этапе найдено значение корня с точностью до сотых: .

В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.

Список литературы.

  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Возведение в степень предполагает, что данное число необходимо умножить само на себя определенное количество раз. Например, возведение числа 2 в пятую степень будет выглядеть следующим образом:

Число, которое нужно умножать само на себя, называется основанием степени, а количество умножений – ее показателем. Возведению в степень соответствуют два противоположных действия: нахождение показателя и нахождение основания.

Извлечение корня

Нахождение основание степени называется извлечением корня. Это означает, что необходимо найти число, которое нужно возвести в степень n, чтобы получить данное.

Например, необходимо извлечь корень 4-й степени из числа 16, т.е. определить, нужно умножить само на себя 4 раза, чтобы в итоге получить 16. Это число – 2.

Такое арифметическое действие записывается с помощью особого знака – радикала: √, над которым слева указывается показатель степени.

Арифметический корень

Если показатель степени является четный числом, то корнем могут оказаться два числа с одинаковым модулем, но с – положительное и отрицательное. Так, в приведенном примере это могут быть числа 2 и -2.

Выражение должно быть однозначным, т.е. иметь один результат. Для этого и было введено понятие арифметического корня, который может представлять собой только положительное число. Быть меньше нуля арифметический корень не может.

Таким образом, в рассмотренном выше примере арифметическим корнем будет только число 2, а второй вариант ответа – -2 – исключается по определению.

Квадратный корень

Для некоторых степеней, которые используются чаще других, в существуют специальные названия, которые изначально связаны с геометрией. Речь идет о возведении во вторую и третью степени.

Во вторую степень длину стороны квадрата, когда нужно вычислить его площадь. Если же нужно найти объем куба, длину его ребра возводят в третью степень. Поэтому называется квадратом числа, а третья – кубом.

Соответственно, корень второй степени называется квадратным, а корень третьей степени – кубическим. Квадратный корень – единственный из корней, при записи которого над радикалом не ставится показатель степени:

Итак, арифметический квадратный корень из данного числа – это положительное число, которое необходимо возвести во вторую степень, чтобы получить данное число.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.