Хром сильный или слабый электролит. Как определить сильные и слабые электролиты

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.

1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3



сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.

Электролиты – это вещества, сплавы веществ либо растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, дозволено применяя теорию электролитической диссоциации.

Инструкция

1. Суть данной теории заключается в том, что при расплавлении (растворении в воде) фактически все электролиты раскладываются на ионы, которые бывают как позитивно, так и негативно заряженные (что и именуется электролитической диссоциацией). Под воздействием электрического тока негативные (анионы «-») движутся к аноду (+), а позитивно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит наименование «моляризация»).

2. Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к всеобщему числу введенных в раствор молекул (N). Получаете: a = n / N

3. Таким образом, мощные электролиты – вещества, всецело распадающиеся на ионы при растворении в воде. К крепким электролитам, как водится, относятся вещества с сильнополярными либо ионными связями: это соли, которые отлично растворимы, крепкие кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также мощные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В крепком электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные – фактически нет.

4. Слабые электролиты – такие вещества, которые диссоциируют на ионы лишь отчасти. Слабые электролиты совместно с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе крепкой концентрации ионов.К слабым относятся:- органические кислоты (примерно все) (C2H5COOH, CH3COOH и пр.);- некоторые из неорганических кислот (H2S, H2CO3 и пр.);- фактически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);- вода.Они фактически не проводят электрический ток, либо проводят, но дрянно.

Крепкое основание – неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) либо щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ?, Ва(ОН) ?.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н?РО?

Инструкция

1. Мощные основания проявляют химические свойства, характерные для всех гидроксидов. Присутствие щелочей в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте метилоранж, фенолфталеин либо опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем крепче основание, тем насыщеннее окрашивается индикатор.

2. Если нужно узнать какие именно щелочи вам представлены, то проведите добротный обзор растворов. Особенно распространенные мощные основания – гидроксиды лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом дозволено выделить Са(ОН) ?, Ва(ОН) ? и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.3 Са(ОН) ? + 2 Н?РО? –? Ca?(PO?)??+ 6 H?О3 Ва(ОН) ? +2 Н?РО? –? Ва?(PO?)??+ 6 H?О3 LiOH + Н?РО? –? Li?РО?? + 3 H?ОПроцедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени дозволено добротно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-алый цвет. Соли бария – в зеленый, а соли кальция – в красный.

3. Оставшиеся щелочи образуют растворимые ортофосфаты.3 NaOH + Н?РО?–? Na?РО? + 3 H?О3 KOH + Н?РО?–? K?РО? + 3 H?ОНеобходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ясно-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея наименьший комплект оборудования и реактивов вы определили все данные вам мощные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, впрочем, в растворенном либо расплавленном виде становится проводником. Отчего происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах либо расплавах диссоциируют на позитивно заряженные и негативно заряженные ионы, вследствие чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами владеет множество солей, кислот, оснований.

Инструкция

1. Все ли электролиты идентичны по силе, то есть являются классными проводниками тока? Нет, от того что многие вещества в растворах либо расплавах диссоциируют лишь в малой степени. Следственно электролиты подразделяются на крепкие, средней силы и слабые.

2. Какие вещества относятся к мощным электролитам? Такие вещества, в растворах либо расплавах которых диссоциации подвергаются фактически 100% молекул, причем вне зависимости от концентрации раствора. В перечень крепких электролитов входит безусловное множество растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

3. Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в значительно меньшей степени (на ионы распадаются от 3% до 30% молекул). Типичные представители таких электролитов – серная и ортофосфорная кислоты.

4. А как ведут себя в растворах либо расплавах слабые электролиты ? Во-первых, они диссоциируют в дюже малой степени (не огромнее 3% от всеобщего числа молекул), во-вторых, их диссоциация идет тем дрянней и неторопливей, чем выше насыщенность раствора. К таким электролитам относятся, скажем, нашатырный спирт (гидроксид аммония), множество органических и неорганических кислот (включая плавиковую – HF) и, разумеется, каждым нам знакомая вода. От того что лишь жалко малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

5. Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости от многих факторов: природы самого электролита, растворителя, температуры. Следственно само это распределение в знаменитой степени условно. Чай одно и то же вещество может при разных условиях быть и мощным электролитом, и слабым. Для оценки силы электролита была введена особая величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; мощные электролиты закону действующих масс не подчиняются.

Соли – это химические вещества, состоящие из катиона, то есть позитивно заряженного иона, металла и негативно заряженного аниона – кислотного остатка. Типов солей много: типичные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как дозволено определить основание соли?

Инструкция

1. Представим, у вас есть четыре идентичные емкости с жгучими растворами. Вы знаете, что это – растворы углекислого лития, углекислого натрия, углекислого калия и углекислого бария. Ваша задача: определить, какая соль содержится в всей емкости.

2. Припомните физические и химические свойства соединений этих металлов. Литий, натрий, калий – щелочные металлы первой группы, их свойства дюже схожи, активность усиливается от лития к калию. Барий – щелочноземельный металл 2-й группы. Его углекислая соль отменно растворяется в жгучей воде, но дрянно растворяется в холодной. Стоп! Вот и первая вероятность сразу определить, в какой емкости содержится углекислый барий.

3. Охладите емкости, скажем, разместив их в сосуд со льдом. Три раствора останутся прозрачными, а четвертый стремительно помутнеет, начнет выпадать белый осадок. Вот в нем-то и находится соль бария. Отложите эту емкость в сторону.

4. Дозволено стремительно определить углекислый барий и иным методом. Поочередно отливайте немножко раствора в иную емкость с раствором какой-нибудь сернокислой соли (скажем, сульфата натрия). Только ионы бария, связываясь с сульфат-ионами, мигом образуют плотный белый осадок.

5. Выходит, углекислый барий вы определили. Но как вам различить соли 3 щелочных металлов? Это достаточно легко сделать, вам потребуются фарфоровые чашки для выпаривания и спиртовка.

6. Отлейте малое число всего раствора в отдельную фарфоровую чашку и выпарите воду на огне спиртовки. Образуются мелкие кристаллики. Внесите их в пламя спиртовки либо горелки Бунзена – с поддержкой стального пинцета, либо фарфоровой ложечки. Ваша задача – подметить цвет запылавшего «язычка» пламени. Если это соль лития – цвет будет ясно-красным. Натрий окрасит пламя в интенсивный желтый цвет, а калий – в пурпурно-фиолетовый. Кстати, если бы таким же образом испытали соль бария – цвет пламени должен был быть зеленым.

Полезный совет
Один известный химик в молодости приблизительно так же разоблачил алчную хозяйку пансиона. Он посыпал остатки недоеденного блюда хлористым литием – веществом, безусловно безобидным в мелких числах. На дальнейший день за обедом ломтик мяса из поданного к столу блюда был сожжен перед спектроскопом – и жильцы пансиона увидели ясно-красную полосу. Хозяйка готовила еду из вчерашних остатков.

Обратите внимание!
Правда чистая вода проводит электрический ток дюже дрянно, она все-таки имеет измеримую электрическую проводимость, поясняемую тем, что вода немножко диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет
Множество электролитов – вещества враждебные, следственно при работе с ними будьте предельно осмотрительны и соблюдайте правила техники безопасности.

Электролиты - это вещества, сплавы веществ или растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, можно применяя теорию электролитической диссоциации.

Инструкция

  • Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые бывают как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные (анионы «-») движутся к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).
  • Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N
  • Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, относятся вещества с сильнополярными или ионными связями: это соли, которые хорошо растворимы, сильные кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные - практически нет.
  • Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.К слабым относятся:
    - органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
    - некоторые из неорганических кислот (H2S, H2CO3 и пр.);
    - практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
    - вода.Они практически не проводят электрический ток, или проводят, но плохо.

Измерение степени диссоциации различных электролитов показало, что отдельные электролиты при одинаковой нормальной концентрации растворов диссоциируют на ионы весьма различно.

Особенно велика разница в значениях степени диссоциации кислот. Например, азотная и соляная кислоты в 0,1 н. растворах почти полностью распадаются на ионы; угольная же, синильная и другие кислоты диссоциируют при тех же условиях лишь в не-знaчитeльнoй степени.

Из растворимых в воде оснований (щелочей) слабо диссоциирующим является гидрат окиси аммония, остальные щелочи хорошо диссоциируют. Все соли, за небольшим исключением, также хорошо диссоциируют на ионы.

Различие в значениях степени диссоциации отдельных кислот обусловливается характером валентной связи между атомами, образующими их молекулы. Чем более полярна связь между водородом и остальной частью молекулы, тем легче отщепляется , тем сильнее будет диссоциировать кислота.

Электролиты, хорошо диссоциирующие на ионы, получили название сильных электролитов, в отличие от слабых электролитов, образующих в водных растворах лишь незначительное число ионов. Растворы сильных электролитов сохраняют высокую электропроводность даже при очень больших концентрациях. Наоборот, электропроводность растворов слабых электролитов быстро падает с увеличением концентрации. к сильным электролитам относятся такие кислоты, как соляная, азотная, серная и некоторые другие, затем щелочи (кроме NH 4 OH) и почти все соли.

Многоооновные кислоты и многокислотные основания диссоциируют ступенчато. Так, например, молекулы серной кислоты в первую очередь диссоциируют по уравнению

H 2 SO 4 ⇄ H + HSO 4 ‘

или точнее:

H 2 SO 4 + H 2 O ⇄ H 3 O + HSO 4 ‘

Отщепление второго иона водорода по уравнению

HSO 4 ‘ ⇄ H + SO 4 »

или

HSO 4 ‘ + H 2 O ⇄ H 3 O + SO 4 »

идет уже значительно труднее, так как ему приходится преодолевать притяжение со стороны двухзарядного иона SO 4 », который, конечно, притягивает к себе ион водорода сильнее, чем однозарядный ион HSO 4 ‘. Поэтому вторая ступень диссоциации или, как говорят, вторичная диссоциация происходит в гораздо меньшей степени, чем первичная, и в обычных растворах серной кислоты содержится лишь небольшое число ионов SO 4 »

Фосфорная кислота Н 3 РО 4 диссоциирует в три ступени:

H 3 PO 4 ⇄ H + H 2 PO 4 ‘

H 2 PO 4 ⇄ H + HPO 4 »

HPO 4 » ⇄ H + PO 4 »’

Молекулы Н 3 РO 4 сильно диссоциируют на ионы Н и Н 2 РО 4 ‘. Ионы H 2 PO 4 ‘ ведут себя, как более слабая кислота, и диссоциируют на H и HPO 4 » в меньшей степени. Ионы же НРО 4 » диссоциируют, как очень слабая кислота, и почти не дают ионов Н

и PO 4 »’

Основания, содержащие более одной гидроксильной группы в молекуле, тоже диссоциируют ступенчато. Например:

Ва(ОН) 2 ⇄ ВаОН + ОН’

ВаОН ⇄ Ва + ОН’

Что касается солей, нормальные соли всегда диссоциируют на ионы металлов и кислотных остатков. Например:

СаСl 2 ⇄ Сa + 2Сl’ Na 2 SO 4 ⇄ 2Na + SO 4 »

Кислые соли, подобно многоосновным кислотам, диссоциируют ступенчато. Например:

NaHCO 3 ⇄ Na + НСО 3 ‘

HCO 3 ‘ ⇄ H + CO 3 »

Однако по второй ступени очень мала, так что раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли диссоциируют на ионы основных и кислотных остатков. Например:

Fe(OH)Cl 2 ⇄ FeOH + 2Сl»

Вторичной диссоциации ионов основных остатков на ионы металла и гидроксила почти не происходит.

В табл. 11 приведены числовые значения степени диссоциации некоторых кислот, оснований и солей в 0, 1 н. растворах.

С увеличением концентрации уменьшается. Поэтому в очень концентрированных растворах даже сильные кислоты диссоциированы сравнительно слабо. Для

Таблица 11

Кислот, оснований и солей в 0,1 н. растворах при 18°

Электролит Формула Степень диссоциаци и в %
Кислоты
Соляная HCl 92
Бромистоводородная НВr 92
Йодистоводородная HJ . 92
Азотная HNO 3 92
Серная H 2 SO 4 58
Сернистая H 2 SO 3 34
Фосфорная H 3 PO 4 27
Фтористоводородная HF 8,5
Уксусная CH 3 COOH 1,3
Уголная H 2 CO 3 0,17
Сероводородная H 2 S 0,07
Синильная HCN 0,01
Борная H 3 BO 3 0,01
Основания
Гидроксид бария Ва (OH) 2 92
Едкое кали кон 89
Едкий натр NaON 84
Гидроксид аммония NH 4 OH 1,3
Соли
Хлористый КСl 86
Хлористый аммоний NH4Cl 85
Хлористый NaCl 84
Азотнокислый KNO 3 83
AgNO 3 81
Уксуснокислый NaCH 3 COO 79
Хлористый ZnCl 2 73
Сернокислый Na 2 SO 4 69
Сернокислый ZnSO 4 40
Сернокислая

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик и Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c) 1/2 . Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO 2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO 2 + SO 4 2- + 4H + + 2e - = PbSO 4 + 2H 2 O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO 4 2- - 2e - = PbSO 4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.