Определение объема пирамиды. Объём пирамиды. Как найти высоту усеченной пирамиды

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками.

У данного многогранника есть множество различных свойств:

  • Его боковые ребра и прилегающие к ним двугранные углы равны между собой;
  • Площади боковых граней одинаковы;
  • В основании правильной четырехугольной пирамиды лежит квадрат;
  • Высота, опущенная из вершины пирамиды, пересекается с точкой пересечения диагоналей основания.

Все эти свойства помогают легко находить . Однако довольно часто помимо нее требуется рассчитать объем многогранника. Для этого применяется формула объема четырехугольной пирамиды:

То есть объем пирамиды равен одной третьей произведения высоты пирамиды на площадь основания. Так как равна произведению его равных сторон, то мы сразу вписываем в выражение объема формулу площади квадрата.
Рассмотрим пример расчета объема четырехугольной пирамиды.

Пусть дана четырехугольная пирамида, в основании которой лежит квадрат со стороной a = 6 см. Боковая грань пирамиды равна b = 8 см. Найдите объем пирамиды.

Чтобы найти объем заданного многогранника, нам потребуется длина его высоты. Поэтому мы найдем ее, применив теорему Пифагора. Для начала рассчитаем длину диагонали. В синем треугольнике она будет гипотенузой. Стоит также помнить, что диагонали квадрата равны между собой и в точке пересечения делятся пополам:


Теперь из красного треугольника найдем необходимую нам высоту h . Она будет равна:

Подставим необходимые значения и найдем высоту пирамиды:

Теперь, зная высоту, можем подставлять все значения в формулу объема пирамиды и рассчитывать необходимую величину:

Вот таким образом, зная несколько простых формул, мы смогли рассчитать объем правильной четырехугольной пирамиды. Не забывайте, что данная величина измеряется в кубических единицах.

Теорема.

Объем пирамиды равен одной трети произведения площади основания на высоту .

Доказательство:

Сначала докажем теорему для треугольной пирамиды, затем для произвольной.

1. Рассмотрим треугольную пирамиду ОАВС с объемом V, площадью основания S и высотой h . Проведем ось ох (ОМ2 - высота), рассмотрим сечение А1 В1 С1 пирамиды плоскостью, пер­пендикулярной к оси ох и, значит, параллельной плоскости основания. Обозначим через х абсциссу точки М 1 пересечения этой плоскости с осью ох, а через S{ x) - площадь сечения. Выразим S(x) через S , h и х . Заметим, что треугольники А 1 В 1 С 1 и АВС подобны. В самом деле А 1 В 1 II AB, поэтому треугольник ОА 1 В 1 подобен треугольнику ОАВ. С ледовательно, А 1 В 1 : А В= ОА 1: ОА .

Прямоугольные треугольники ОА 1 В 1 и ОАВ тоже подобны (они име­ют общий острый угол с вершиной О) . Поэтому , ОА 1: ОА = О 1 М 1 : ОМ = х: h . Таким образом А 1 В 1 : А В = х: h. Аналогично доказывается, что В1 С1: ВС = х: h и А1 С1: АС = х: h. Итак, треугольник А1 В1 С1 и АВС подобны с коэффициентом подобия х: h. Следовательно, S(x) : S = (х: h) ², или S(x) = S х ²/ h ².

Применим теперь основную формулу для вычисления объемов тел при a = 0, b = h получаем


2. Докажем теперь теорему для произвольной пирамиды с высотой h и площадью основания S . Такую пирамиду можно разбить на треугольные пи­рамиды с общей высотой h. Выразим объем каждой треугольной пирамиды по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель 1/3h, получим в скобках сумму оснований треугольных пирамид, т.е. площадь S оснований исходной пирамиды.

Таким образом, объем исходной пирамиды равен 1/3Sh . Теорема доказана.

Следствие:

Объем V усеченной пирамиды, высота которой равна h, а площади основания равны S и S 1 , вычисляются по формуле

h - высота пирамиды

S верх. - площадь верхнего основания

S ниж. - площадь нижнего основания

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

Здесь разберём примеры связанные с понятием объёма. Для решения подобных заданий обязательно нужно знать формулу объёма пирамиды:

S

h – высота пирамиды

Основанием может быть любой многоугольник. Но в большинстве задач на ЕГЭ речь в условии, как правило, идёт о правильных пирамидах. Напомню одно из её свойств:

Вершина правильной пирамиды проецируется в центр её основания

Посмотрите на проекцию правильной треугольной, четырёхугольной и шестиугольной пирамид (ВИД СВЕРХУ):


Можете на блоге, где разбирались задачи связанные с нахождением объёма пирамиды. Рассмотрим задачи:

27087. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна корню из трёх.

S – площадь основания пирамиды

h – высота пирамиды

Найдём площадь основания пирамиды, это правильный треугольник. Воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Ответ: 0,25

27088. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен корню из трёх.

Такие понятия как высота пирамиды и характеристики её основания связаны формулой объёма:

S – площадь основания пирамиды

h – высота пирамиды

Сам объём нам известен, площадь основания можем найти, так как известны стороны треугольника, который является основанием. Зная указанные величины без труда найдём высоту.

Для нахождения площади основания воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Таким образом, подставив данные значения в формулу объема можем вычислить высоту пирамиды:

Высота равна трём.

Ответ: 3

27109. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

Объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Высота нам известна. Необходимо найти площадь основания. Напомню, что вершина правильной пирамиды проецируется в центр её основания. Основанием правильной четырёхугольной пирамиды является квадрат. Мы можем найти его диагональ. Рассмотрим прямоугольный треугольник (выделен синим):

Отрезок соединяющий центр квадрата с точкой В это катет, который равен половине диагонали квадрата. Этот катет можем вычислить по теореме Пифагора:

Значит BD = 16. Вычислим площадь квадрата воспользовавшись формулой площади четырёхугольника:

Следовательно:

Таким образом, объём пирамиды равен:

Ответ: 256

27178. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Высота пирамиды и её и объём известны, значит можем найти площадь квадрата, который является основанием. Зная площадь квадрата, мы сможем найти его диагональ. Далее рассмотрев прямоугольный треугольник по теореме Пифагора вычислим боковое ребро:

Найдём площадь квадрата (основания пирамиды):

Вычислим диагональ квадрата. Так как его площадь равна 50, то сторона будет равна корню из пятидесяти и по теореме Пифагора:

Точка О делит диагональ BD пополам, значит катет прямоугольного треугольника ОВ = 5.

Таким образом, можем вычислить чему равно боковое ребро пирамиды:

Ответ: 13

245353. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Как уже неоднократно было сказано – объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Боковое ребро перпендикулярное основанию равно трём, это означает, что высота пирамиды равна трём. Основания пирамиды – это многоугольник, площадь которого равна:

Таким образом:

Ответ: 27

27086. Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Слово «пирамида» невольно ассоциируется с величественными великанами в Египте, верно хранящими покой фараонов. Может быть поэтому пирамиду как безошибочно узнают все, даже дети.

Тем не менее, попробуем дать ей геометрическое определение. Представим на плоскости несколько точек (А1,А2,..., Ап) и еще одну (Е), не принадлежайшую ей. Так вот, если точку Е (вершину) соединить с вершинами многоугольника, образованного точками А1,А2,..., Ап (основание), получится многогранник, который и называют пирамидой. Очевидно, что вершин у многоугольника в основании пирамиды может быть сколько угодно, и в зависимости от их количества пирамиду можно назвать треугольной и четырехугольной, пятиугольной и т.д.

Если внимательно присмотреться к пирамиде, то станет ясно, почему ее определяют еще и по-другому - как геометрическую фигуру, имеющую в основании многоугольник, а в качестве боковых граней - треугольники, объединенные общей вершиной.

Поскольку пирамида - пространственная фигура, то и у нее есть такая количественная характеристика, как вычисляют по хорошо известной равного трети произведения основания пирамиды на ее высоту:

Объем пирамиды при выводе формулы первоначально рассчитывается для треугольной, взяв за основу постоянное соотношение, связывающее эту величину с объемом треугольной призмы, имеющей то же основание и высоту, которая, как оказывается, в три раза превышает этот объем.

А поскольку любая пирамида разбивается на треугольные, и ее объем не зависит от выполняемых при доказательстве построений, правомерность приведенной формулы объема - очевидна.

Особняком среди всех пирамид стоят правильные, у которых в основании лежит Что же касается , то она должна «оканчиваться» в центре основания.

В случае неправильного многоугольника в основании для вычисления площади основания потребуется:

  • разбить его на треугольники и квадраты;
  • подсчитать площадь каждого из них;
  • сложить полученные данные.

В случае правильного многоугольника в основании пирамиды, его площадь рассчитывают по готовым формулам, поэтому объем правильной пирамиды вычисляется совсем просто.

Например, чтобы вычислить объем четырехугольной пирамиды, если она правильная, возводят длину стороны правильного четырехугольника (квадрата) в основании в квадрат и, умножив на высоту пирамиды, делят полученное произведение на три.

Объем пирамиды можно вычислить, используя и другие параметры:

  • как треть произведения радиуса шара, вписанного в пирамиду, на площадь ее полной поверхности;
  • как две трети произведения расстояния между двумя произвольно взятыми скрещивающимися ребрами и площади параллелограмма, который образуют середины оставшихся четырех ребер.

Объем пирамиды вычисляется просто и в случае, когда его высота совпадает с одним из боковых ребер, то есть в случае прямоугольной пирамиды.

Говоря о пирамидах, нельзя обойти вниманием также усеченные пирамиды, полученные сечением пирамиды параллельной основанию плоскостью. Их объем практически равен разности объемов целой пирамиды и отсеченной вершины.

Первым объем пирамиды, правда не совсем в его современном виде, однако равным 1/3 объема известной нам призмы, нашел Демокрит. Его метод подсчета Архимед назвал «без доказательства», поскольку Демокрит подходил к пирамиде, как к фигуре, сложенной из бесконечно тонких, подобных пластинок.

К вопросу нахождения объема пирамиды «обратилась» и векторная алгебра, используя для этого координаты ее вершин. Пирамида, построенная на тройке векторов a,b,c, равна одной шестой от модуля смешанного произведения заданных векторов.