Планетарная туманность. Большая ВселеннаяПланетарные туманности. Туманность Кошачий глаз

Планетарные туманности в большинстве своём представляют собой тусклые объекты и, как правило, не видны невооружённым глазом. Первой открытой планетарной туманностью была туманность Гантель в созвездии Лисички : Шарль Мессье , занимавшийся поиском комет , при составлении своего каталога туманностей (неподвижных объектов, похожих при наблюдении неба на кометы) в 1764 году занёс её в каталог под номером M27. В 1784 году Уильям Гершель , первооткрыватель Урана , при составлении своего каталога выделил их в отдельный класс туманностей (class IV nebulae ) и предложил для них термин «планетарная туманность» из-за их видимого сходства с диском Урана .

Необычность природы планетарных туманностей обнаружилась в середине XIX века , с началом использования в наблюдениях метода спектроскопии . Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей - объектов, выделявшихся своей необычностью:

Одними из самых загадочных из этих замечательных объектов являются те, которые при телескопическом наблюдении имеют вид круглых или слегка овальных дисков. …Замечателен и их зеленовато-голубой цвет, чрезвычайно редкий для одиночных звёзд. Кроме того, в этих туманностях нет признаков центрального сгущения. По этим признакам планетарные туманности резко выделяются как объекты, которым присущи свойства, совершенно отличающиеся от свойств Солнца и неподвижных звёзд. Из этих соображений, а также благодаря их яркости, я избрал эти туманности как наиболее подходящие для спектроскопического исследования .

Другой проблемой был химический состав планетарных туманностей: Хаггинс сравнением с эталонными спектрами сумел идентифицировать линии азота и водорода , однако самая яркая из линий с длиной волны 500,7 нм не наблюдалась в спектрах известных тогда химических элементов. Было выдвинуто предположение, что эта линия соответствует неизвестному элементу. Ему заранее дали название небулий - по аналогии с идеей, приведшей к открытию гелия при спектральном анализе Солнца в 1868 году .

Предположения об открытии нового элемента небулия не подтвердились. В начале XX века Генри Расселл выдвинул гипотезу о том, что линия на 500,7 нм соответствует не новому элементу, а старому элементу в неизвестных условиях.

Возобновление термоядерных реакций позволяет прекратиться дальнейшему сжатию ядра. Выгорающий гелий вскоре создаёт инертное ядро, состоящее из углерода и кислорода , окружённое оболочкой из горящего гелия. Термоядерные реакции с участием гелия очень чувствительны к температуре. Скорость протекания реакции пропорциональна T 40 , то есть увеличение температуры всего на 2 % приведёт к удвоению скорости протекания реакции. Это делает звезду очень нестабильной: малый прирост температуры вызывает быстрое увеличение скорости хода реакций, повышая выделение энергии, что, в свою очередь, заставляет увеличиваться температуру. Верхние слои горящего гелия начинают быстро расширяться, температура понижается, реакция замедляется. Всё это может быть причиной мощных пульсаций, иногда достаточно сильных, чтобы выбросить значительную часть атмосферы звезды в космическое пространство.

Выброшенный газ формирует расширяющуюся оболочку вокруг обнажившегося ядра звезды. По мере того, как всё большая часть атмосферы отделяется от звезды, проявляются всё более и более глубокие слои с более высокими температурами. При достижении обнажённой поверхностью (фотосферой звезды) температуры в 30 000 К энергия испускаемых ультрафиолетовых фотонов становится достаточной для ионизации атомов в выброшенном веществе, что заставляет его светиться. Таким образом, облако становится планетарной туманностью.

Продолжительность жизни

Вещество планетарной туманности разлетается от центральной звезды со скоростью в несколько десятков километров в секунду. В то же время, по мере истечения вещества центральная звезда остывает, излучая остатки энергии; термоядерные реакции прекращаются, так как звезда теперь не обладает достаточной массой для поддержания температуры, требуемой для синтеза углерода и кислорода. В конце концов, звезда остынет настолько, что перестанет излучать достаточно ультрафиолета для ионизации отдалившейся газовой оболочки. Звезда становится белым карликом , а газовое облако рекомбинирует , становясь невидимым. Для типичной планетарной туманности время от образования до рекомбинации составляет 10 000 лет.

Галактические переработчики

Планетарные туманности играют значительную роль в эволюции галактик. Ранняя Вселенная состояла в основном из водорода и гелия , но со временем в результате термоядерного синтеза в звёздах образовались более тяжёлые элементы. Таким образом, вещество планетарных туманностей имеет высокое содержание углерода , азота и кислорода , а по мере расширения и проникновения в межзвёздное пространство оно обогащает его этими тяжёлыми элементами, в общем называемыми астрономами металлами .

Последующие поколения звёзд, формирующиеся из межзвёздного вещества, будут содержать большее начальное количество тяжёлых элементов; хотя их присутствие в составе звёзд остаётся незначительным, они ощутимо влияют на их эволюцию. Звёзды, сформировавшиеся вскоре после образования Вселенной , содержат относительно малые количества металлов - их относят к звёздам II типа . Звёзды, обогащённые тяжёлыми элементами, принадлежат к звёздам I типа (см. Звёздное население).

Характеристики

Физические характеристики

Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на см³, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10-100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на см³. По мере старения туманностей их расширение приводит к уменьшению плотности.

Излучение центральной звезды нагревает газы до температур порядка 10 000 . Парадоксально, что температура газа нередко повышается с увеличением расстояния от центральной звезды. Это происходит по той причине, что чем большей энергией обладает фотон , тем менее вероятно, что он будет поглощён. Поэтому во внутренних областях туманности поглощаются малоэнергетические фотоны, а оставшиеся, обладающие высокой энергией, поглощаются во внешних областях, вызывая рост их температуры.

Туманности можно разделить на бедные материей и бедные излучением . Согласно этой терминологии, в первом случае туманность не обладает достаточным количеством материи для поглощения всех ультрафиолетовых фотонов, излучаемых звездой. Поэтому видимая туманность полностью ионизирована. Во втором же случае центральная звезда испускает недостаточно ультрафиолетовых фотонов, чтобы ионизировать весь окружающий газ, и ионизационный фронт переходит в нейтральное межзвёздное пространство.

Так как бо́льшая часть газа планетарной туманности ионизирована (то есть является плазмой), значительный эффект на её структуру оказывает действие магнитных полей , вызывая такие феномены, как волокнистость и нестабильность плазмы.

Количество и распределение

На сегодняшний день в нашей галактике , состоящей из 200 миллиардов звёзд, известно 1500 планетарных туманностей. Их краткая по сравнению со звёздной продолжительность жизни является причиной их малого числа. В основном, все они лежат в плоскости Млечного Пути , причём большей частью сосредоточившись вблизи центра галактики, и практически не наблюдаются в звёздных скоплениях.

Текущие вопросы в изучении планетарных туманностей

Одна из проблем в изучении планетарных туманностей - это точное определение расстояния до них. Для некоторых близлежащих планетарных туманностей возможно вычислить удалённость от нас, используя измеренный параллакс расширения: снимки с высоким разрешением, полученные несколько лет назад, демонстрируют расширение туманности перпендикулярно к лучу зрения , а спектроскопический анализ доплеровского смещения даст возможность вычислить скорость расширения вдоль луча зрения. Сравнение углового расширения с полученной скоростью расширения сделает возможным вычисление расстояния до туманности.

Существование такого разнообразия форм туманностей является темой жарких дискуссий. Широко распространено мнение, что причиной этому может быть взаимодействие между веществом, удаляющимся от звезды с различными скоростями. Некоторые астрономы считают, что двойные звёздные системы ответственны, по крайней мере, за наиболее сложные очертания планетарных туманностей. Недавние исследования подтвердили наличие у нескольких планетарных туманностей мощных магнитных полей, предположения о чём уже неоднократно выдвигались. Магнитные взаимодействия с ионизированным газом также могут играть некоторую роль в становлении формы некоторых из них.

На данный момент существуют две различных методики обнаружения металлов в туманности, основывающиеся на различных типах спектральных линий. Иногда эти два метода дают совершенно непохожие результаты. Некоторые астрономы склонны объяснять это наличием слабых флуктуаций температуры в пределах планетарной туманности. Другие полагают, что различия в наблюдениях слишком разительны, чтобы объяснить их при помощи температурных эффектов. Они выдвигают предположения о существовании холодных сгустков, содержащих очень малое количество водорода. Однако сгустки, наличие которых, по их мнению, способно объяснить разницу в оценке количества металлов, ни разу не наблюдались.

См. также

Библиография

  1. Аллер Л. , Лиллер У. Планетарные туманности. - М .: Мир, 1971.
  2. Костякова Е. Б. Физика планетарных туманностей. - М .: Наука, 1982.
  3. Потташ С. Р. Планетарные туманности. - М .: Мир, 1987.
  4. Jordan, S., Werner, K., O’Toole, S. J. (2005), Discovery of magnetic fields in central stars of planetary nebulae , Astronomy & Astrophysics , 432, 273.
  5. Parker, Q. A., Hartley, M., Russell, D. et al. (2003) A Rich New Vein of Planetary Nebulae From the AAO/UKST Hα Survey , Planetary Nebulae: Their Evolution and Role in the Universe , Eds. Sun Kwok, Michael Dopita, and Ralph Sutherland, 25.
  6. Soker, N. (2002), Why every bipolar planetary nebula is «unique» , Monthly Notices of the Royal Astronomical Society , 330, 481.

Напишите отзыв о статье "Планетарная туманность"

Ссылки

  • , SEDS Messier Pages (англ.)
  • (англ.)
  • (англ.)

Отрывок, характеризующий Планетарная туманность

– Очень хороша, – сказал князь Андрей.
– Очень, – сказал Пьер.
Проходя мимо, князь Василий схватил Пьера за руку и обратился к Анне Павловне.
– Образуйте мне этого медведя, – сказал он. – Вот он месяц живет у меня, и в первый раз я его вижу в свете. Ничто так не нужно молодому человеку, как общество умных женщин.

Анна Павловна улыбнулась и обещалась заняться Пьером, который, она знала, приходился родня по отцу князю Василью. Пожилая дама, сидевшая прежде с ma tante, торопливо встала и догнала князя Василья в передней. С лица ее исчезла вся прежняя притворность интереса. Доброе, исплаканное лицо ее выражало только беспокойство и страх.
– Что же вы мне скажете, князь, о моем Борисе? – сказала она, догоняя его в передней. (Она выговаривала имя Борис с особенным ударением на о). – Я не могу оставаться дольше в Петербурге. Скажите, какие известия я могу привезти моему бедному мальчику?
Несмотря на то, что князь Василий неохотно и почти неучтиво слушал пожилую даму и даже выказывал нетерпение, она ласково и трогательно улыбалась ему и, чтоб он не ушел, взяла его за руку.
– Что вам стоит сказать слово государю, и он прямо будет переведен в гвардию, – просила она.
– Поверьте, что я сделаю всё, что могу, княгиня, – отвечал князь Василий, – но мне трудно просить государя; я бы советовал вам обратиться к Румянцеву, через князя Голицына: это было бы умнее.
Пожилая дама носила имя княгини Друбецкой, одной из лучших фамилий России, но она была бедна, давно вышла из света и утратила прежние связи. Она приехала теперь, чтобы выхлопотать определение в гвардию своему единственному сыну. Только затем, чтоб увидеть князя Василия, она назвалась и приехала на вечер к Анне Павловне, только затем она слушала историю виконта. Она испугалась слов князя Василия; когда то красивое лицо ее выразило озлобление, но это продолжалось только минуту. Она опять улыбнулась и крепче схватила за руку князя Василия.
– Послушайте, князь, – сказала она, – я никогда не просила вас, никогда не буду просить, никогда не напоминала вам о дружбе моего отца к вам. Но теперь, я Богом заклинаю вас, сделайте это для моего сына, и я буду считать вас благодетелем, – торопливо прибавила она. – Нет, вы не сердитесь, а вы обещайте мне. Я просила Голицына, он отказал. Soyez le bon enfant que vous аvez ete, [Будьте добрым малым, как вы были,] – говорила она, стараясь улыбаться, тогда как в ее глазах были слезы.
– Папа, мы опоздаем, – сказала, повернув свою красивую голову на античных плечах, княжна Элен, ожидавшая у двери.
Но влияние в свете есть капитал, который надо беречь, чтоб он не исчез. Князь Василий знал это, и, раз сообразив, что ежели бы он стал просить за всех, кто его просит, то вскоре ему нельзя было бы просить за себя, он редко употреблял свое влияние. В деле княгини Друбецкой он почувствовал, однако, после ее нового призыва, что то вроде укора совести. Она напомнила ему правду: первыми шагами своими в службе он был обязан ее отцу. Кроме того, он видел по ее приемам, что она – одна из тех женщин, особенно матерей, которые, однажды взяв себе что нибудь в голову, не отстанут до тех пор, пока не исполнят их желания, а в противном случае готовы на ежедневные, ежеминутные приставания и даже на сцены. Это последнее соображение поколебало его.
– Chere Анна Михайловна, – сказал он с своею всегдашнею фамильярностью и скукой в голосе, – для меня почти невозможно сделать то, что вы хотите; но чтобы доказать вам, как я люблю вас и чту память покойного отца вашего, я сделаю невозможное: сын ваш будет переведен в гвардию, вот вам моя рука. Довольны вы?
– Милый мой, вы благодетель! Я иного и не ждала от вас; я знала, как вы добры.
Он хотел уйти.
– Постойте, два слова. Une fois passe aux gardes… [Раз он перейдет в гвардию…] – Она замялась: – Вы хороши с Михаилом Иларионовичем Кутузовым, рекомендуйте ему Бориса в адъютанты. Тогда бы я была покойна, и тогда бы уж…
Князь Василий улыбнулся.
– Этого не обещаю. Вы не знаете, как осаждают Кутузова с тех пор, как он назначен главнокомандующим. Он мне сам говорил, что все московские барыни сговорились отдать ему всех своих детей в адъютанты.
– Нет, обещайте, я не пущу вас, милый, благодетель мой…
– Папа! – опять тем же тоном повторила красавица, – мы опоздаем.
– Ну, au revoir, [до свиданья,] прощайте. Видите?
– Так завтра вы доложите государю?
– Непременно, а Кутузову не обещаю.
– Нет, обещайте, обещайте, Basile, [Василий,] – сказала вслед ему Анна Михайловна, с улыбкой молодой кокетки, которая когда то, должно быть, была ей свойственна, а теперь так не шла к ее истощенному лицу.
Она, видимо, забыла свои годы и пускала в ход, по привычке, все старинные женские средства. Но как только он вышел, лицо ее опять приняло то же холодное, притворное выражение, которое было на нем прежде. Она вернулась к кружку, в котором виконт продолжал рассказывать, и опять сделала вид, что слушает, дожидаясь времени уехать, так как дело ее было сделано.
– Но как вы находите всю эту последнюю комедию du sacre de Milan? [миланского помазания?] – сказала Анна Павловна. Et la nouvelle comedie des peuples de Genes et de Lucques, qui viennent presenter leurs voeux a M. Buonaparte assis sur un trone, et exaucant les voeux des nations! Adorable! Non, mais c"est a en devenir folle! On dirait, que le monde entier a perdu la tete. [И вот новая комедия: народы Генуи и Лукки изъявляют свои желания господину Бонапарте. И господин Бонапарте сидит на троне и исполняет желания народов. 0! это восхитительно! Нет, от этого можно с ума сойти. Подумаешь, что весь свет потерял голову.]
Князь Андрей усмехнулся, прямо глядя в лицо Анны Павловны.
– «Dieu me la donne, gare a qui la touche», – сказал он (слова Бонапарте, сказанные при возложении короны). – On dit qu"il a ete tres beau en prononcant ces paroles, [Бог мне дал корону. Беда тому, кто ее тронет. – Говорят, он был очень хорош, произнося эти слова,] – прибавил он и еще раз повторил эти слова по итальянски: «Dio mi la dona, guai a chi la tocca».
– J"espere enfin, – продолжала Анна Павловна, – que ca a ete la goutte d"eau qui fera deborder le verre. Les souverains ne peuvent plus supporter cet homme, qui menace tout. [Надеюсь, что это была, наконец, та капля, которая переполнит стакан. Государи не могут более терпеть этого человека, который угрожает всему.]
– Les souverains? Je ne parle pas de la Russie, – сказал виконт учтиво и безнадежно: – Les souverains, madame! Qu"ont ils fait pour Louis XVII, pour la reine, pour madame Elisabeth? Rien, – продолжал он одушевляясь. – Et croyez moi, ils subissent la punition pour leur trahison de la cause des Bourbons. Les souverains? Ils envoient des ambassadeurs complimenter l"usurpateur. [Государи! Я не говорю о России. Государи! Но что они сделали для Людовика XVII, для королевы, для Елизаветы? Ничего. И, поверьте мне, они несут наказание за свою измену делу Бурбонов. Государи! Они шлют послов приветствовать похитителя престола.]
И он, презрительно вздохнув, опять переменил положение. Князь Ипполит, долго смотревший в лорнет на виконта, вдруг при этих словах повернулся всем телом к маленькой княгине и, попросив у нее иголку, стал показывать ей, рисуя иголкой на столе, герб Конде. Он растолковывал ей этот герб с таким значительным видом, как будто княгиня просила его об этом.
– Baton de gueules, engrele de gueules d"azur – maison Conde, [Фраза, не переводимая буквально, так как состоит из условных геральдических терминов, не вполне точно употребленных. Общий смысл такой: Герб Конде представляет щит с красными и синими узкими зазубренными полосами,] – говорил он.
Княгиня, улыбаясь, слушала.
– Ежели еще год Бонапарте останется на престоле Франции, – продолжал виконт начатый разговор, с видом человека не слушающего других, но в деле, лучше всех ему известном, следящего только за ходом своих мыслей, – то дела пойдут слишком далеко. Интригой, насилием, изгнаниями, казнями общество, я разумею хорошее общество, французское, навсегда будет уничтожено, и тогда…
Он пожал плечами и развел руками. Пьер хотел было сказать что то: разговор интересовал его, но Анна Павловна, караулившая его, перебила.
– Император Александр, – сказала она с грустью, сопутствовавшей всегда ее речам об императорской фамилии, – объявил, что он предоставит самим французам выбрать образ правления. И я думаю, нет сомнения, что вся нация, освободившись от узурпатора, бросится в руки законного короля, – сказала Анна Павловна, стараясь быть любезной с эмигрантом и роялистом.
– Это сомнительно, – сказал князь Андрей. – Monsieur le vicomte [Господин виконт] совершенно справедливо полагает, что дела зашли уже слишком далеко. Я думаю, что трудно будет возвратиться к старому.
– Сколько я слышал, – краснея, опять вмешался в разговор Пьер, – почти всё дворянство перешло уже на сторону Бонапарта.
– Это говорят бонапартисты, – сказал виконт, не глядя на Пьера. – Теперь трудно узнать общественное мнение Франции.
– Bonaparte l"a dit, [Это сказал Бонапарт,] – сказал князь Андрей с усмешкой.
(Видно было, что виконт ему не нравился, и что он, хотя и не смотрел на него, против него обращал свои речи.)
– «Je leur ai montre le chemin de la gloire» – сказал он после недолгого молчания, опять повторяя слова Наполеона: – «ils n"en ont pas voulu; je leur ai ouvert mes antichambres, ils se sont precipites en foule»… Je ne sais pas a quel point il a eu le droit de le dire. [Я показал им путь славы: они не хотели; я открыл им мои передние: они бросились толпой… Не знаю, до какой степени имел он право так говорить.]
– Aucun, [Никакого,] – возразил виконт. – После убийства герцога даже самые пристрастные люди перестали видеть в нем героя. Si meme ca a ete un heros pour certaines gens, – сказал виконт, обращаясь к Анне Павловне, – depuis l"assassinat du duc il y a un Marietyr de plus dans le ciel, un heros de moins sur la terre. [Если он и был героем для некоторых людей, то после убиения герцога одним мучеником стало больше на небесах и одним героем меньше на земле.]
Не успели еще Анна Павловна и другие улыбкой оценить этих слов виконта, как Пьер опять ворвался в разговор, и Анна Павловна, хотя и предчувствовавшая, что он скажет что нибудь неприличное, уже не могла остановить его.
– Казнь герцога Энгиенского, – сказал мсье Пьер, – была государственная необходимость; и я именно вижу величие души в том, что Наполеон не побоялся принять на себя одного ответственность в этом поступке.
– Dieul mon Dieu! [Боже! мой Боже!] – страшным шопотом проговорила Анна Павловна.
– Comment, M. Pierre, vous trouvez que l"assassinat est grandeur d"ame, [Как, мсье Пьер, вы видите в убийстве величие души,] – сказала маленькая княгиня, улыбаясь и придвигая к себе работу.
– Ah! Oh! – сказали разные голоса.
– Capital! [Превосходно!] – по английски сказал князь Ипполит и принялся бить себя ладонью по коленке.
Виконт только пожал плечами. Пьер торжественно посмотрел поверх очков на слушателей.
– Я потому так говорю, – продолжал он с отчаянностью, – что Бурбоны бежали от революции, предоставив народ анархии; а один Наполеон умел понять революцию, победить ее, и потому для общего блага он не мог остановиться перед жизнью одного человека.
– Не хотите ли перейти к тому столу? – сказала Анна Павловна.
Но Пьер, не отвечая, продолжал свою речь.
– Нет, – говорил он, все более и более одушевляясь, – Наполеон велик, потому что он стал выше революции, подавил ее злоупотребления, удержав всё хорошее – и равенство граждан, и свободу слова и печати – и только потому приобрел власть.
– Да, ежели бы он, взяв власть, не пользуясь ею для убийства, отдал бы ее законному королю, – сказал виконт, – тогда бы я назвал его великим человеком.
– Он бы не мог этого сделать. Народ отдал ему власть только затем, чтоб он избавил его от Бурбонов, и потому, что народ видел в нем великого человека. Революция была великое дело, – продолжал мсье Пьер, выказывая этим отчаянным и вызывающим вводным предложением свою великую молодость и желание всё полнее высказать.
– Революция и цареубийство великое дело?…После этого… да не хотите ли перейти к тому столу? – повторила Анна Павловна.
– Contrat social, [Общественный договор,] – с кроткой улыбкой сказал виконт.
– Я не говорю про цареубийство. Я говорю про идеи.
– Да, идеи грабежа, убийства и цареубийства, – опять перебил иронический голос.
– Это были крайности, разумеется, но не в них всё значение, а значение в правах человека, в эманципации от предрассудков, в равенстве граждан; и все эти идеи Наполеон удержал во всей их силе.
– Свобода и равенство, – презрительно сказал виконт, как будто решившийся, наконец, серьезно доказать этому юноше всю глупость его речей, – всё громкие слова, которые уже давно компрометировались. Кто же не любит свободы и равенства? Еще Спаситель наш проповедывал свободу и равенство. Разве после революции люди стали счастливее? Напротив. Mы хотели свободы, а Бонапарте уничтожил ее.
Князь Андрей с улыбкой посматривал то на Пьера, то на виконта, то на хозяйку. В первую минуту выходки Пьера Анна Павловна ужаснулась, несмотря на свою привычку к свету; но когда она увидела, что, несмотря на произнесенные Пьером святотатственные речи, виконт не выходил из себя, и когда она убедилась, что замять этих речей уже нельзя, она собралась с силами и, присоединившись к виконту, напала на оратора.
– Mais, mon cher m r Pierre, [Но, мой милый Пьер,] – сказала Анна Павловна, – как же вы объясняете великого человека, который мог казнить герцога, наконец, просто человека, без суда и без вины?
– Я бы спросил, – сказал виконт, – как monsieur объясняет 18 брюмера. Разве это не обман? C"est un escamotage, qui ne ressemble nullement a la maniere d"agir d"un grand homme. [Это шулерство, вовсе не похожее на образ действий великого человека.]
– А пленные в Африке, которых он убил? – сказала маленькая княгиня. – Это ужасно! – И она пожала плечами.
– C"est un roturier, vous aurez beau dire, [Это проходимец, что бы вы ни говорили,] – сказал князь Ипполит.
Мсье Пьер не знал, кому отвечать, оглянул всех и улыбнулся. Улыбка у него была не такая, какая у других людей, сливающаяся с неулыбкой. У него, напротив, когда приходила улыбка, то вдруг, мгновенно исчезало серьезное и даже несколько угрюмое лицо и являлось другое – детское, доброе, даже глуповатое и как бы просящее прощения.
Виконту, который видел его в первый раз, стало ясно, что этот якобинец совсем не так страшен, как его слова. Все замолчали.
– Как вы хотите, чтобы он всем отвечал вдруг? – сказал князь Андрей. – Притом надо в поступках государственного человека различать поступки частного лица, полководца или императора. Мне так кажется.
– Да, да, разумеется, – подхватил Пьер, обрадованный выступавшею ему подмогой.
– Нельзя не сознаться, – продолжал князь Андрей, – Наполеон как человек велик на Аркольском мосту, в госпитале в Яффе, где он чумным подает руку, но… но есть другие поступки, которые трудно оправдать.
Князь Андрей, видимо желавший смягчить неловкость речи Пьера, приподнялся, сбираясь ехать и подавая знак жене.

Вдруг князь Ипполит поднялся и, знаками рук останавливая всех и прося присесть, заговорил:
– Ah! aujourd"hui on m"a raconte une anecdote moscovite, charmante: il faut que je vous en regale. Vous m"excusez, vicomte, il faut que je raconte en russe. Autrement on ne sentira pas le sel de l"histoire. [Сегодня мне рассказали прелестный московский анекдот; надо вас им поподчивать. Извините, виконт, я буду рассказывать по русски, иначе пропадет вся соль анекдота.]
И князь Ипполит начал говорить по русски таким выговором, каким говорят французы, пробывшие с год в России. Все приостановились: так оживленно, настоятельно требовал князь Ипполит внимания к своей истории.
– В Moscou есть одна барыня, une dame. И она очень скупа. Ей нужно было иметь два valets de pied [лакея] за карета. И очень большой ростом. Это было ее вкусу. И она имела une femme de chambre [горничную], еще большой росту. Она сказала…
Тут князь Ипполит задумался, видимо с трудом соображая.
– Она сказала… да, она сказала: «девушка (a la femme de chambre), надень livree [ливрею] и поедем со мной, за карета, faire des visites». [делать визиты.]
Тут князь Ипполит фыркнул и захохотал гораздо прежде своих слушателей, что произвело невыгодное для рассказчика впечатление. Однако многие, и в том числе пожилая дама и Анна Павловна, улыбнулись.
– Она поехала. Незапно сделался сильный ветер. Девушка потеряла шляпа, и длинны волоса расчесались…
Тут он не мог уже более держаться и стал отрывисто смеяться и сквозь этот смех проговорил:
– И весь свет узнал…
Тем анекдот и кончился. Хотя и непонятно было, для чего он его рассказывает и для чего его надо было рассказать непременно по русски, однако Анна Павловна и другие оценили светскую любезность князя Ипполита, так приятно закончившего неприятную и нелюбезную выходку мсье Пьера. Разговор после анекдота рассыпался на мелкие, незначительные толки о будущем и прошедшем бале, спектакле, о том, когда и где кто увидится.

Поблагодарив Анну Павловну за ее charmante soiree, [очаровательный вечер,] гости стали расходиться.
Пьер был неуклюж. Толстый, выше обыкновенного роста, широкий, с огромными красными руками, он, как говорится, не умел войти в салон и еще менее умел из него выйти, то есть перед выходом сказать что нибудь особенно приятное. Кроме того, он был рассеян. Вставая, он вместо своей шляпы захватил трехугольную шляпу с генеральским плюмажем и держал ее, дергая султан, до тех пор, пока генерал не попросил возвратить ее. Но вся его рассеянность и неуменье войти в салон и говорить в нем выкупались выражением добродушия, простоты и скромности. Анна Павловна повернулась к нему и, с христианскою кротостью выражая прощение за его выходку, кивнула ему и сказала:
– Надеюсь увидать вас еще, но надеюсь тоже, что вы перемените свои мнения, мой милый мсье Пьер, – сказала она.
Когда она сказала ему это, он ничего не ответил, только наклонился и показал всем еще раз свою улыбку, которая ничего не говорила, разве только вот что: «Мнения мнениями, а вы видите, какой я добрый и славный малый». И все, и Анна Павловна невольно почувствовали это.
Князь Андрей вышел в переднюю и, подставив плечи лакею, накидывавшему ему плащ, равнодушно прислушивался к болтовне своей жены с князем Ипполитом, вышедшим тоже в переднюю. Князь Ипполит стоял возле хорошенькой беременной княгини и упорно смотрел прямо на нее в лорнет.
– Идите, Annette, вы простудитесь, – говорила маленькая княгиня, прощаясь с Анной Павловной. – C"est arrete, [Решено,] – прибавила она тихо.
Анна Павловна уже успела переговорить с Лизой о сватовстве, которое она затевала между Анатолем и золовкой маленькой княгини.
– Я надеюсь на вас, милый друг, – сказала Анна Павловна тоже тихо, – вы напишете к ней и скажете мне, comment le pere envisagera la chose. Au revoir, [Как отец посмотрит на дело. До свидания,] – и она ушла из передней.
Князь Ипполит подошел к маленькой княгине и, близко наклоняя к ней свое лицо, стал полушопотом что то говорить ей.
Два лакея, один княгинин, другой его, дожидаясь, когда они кончат говорить, стояли с шалью и рединготом и слушали их, непонятный им, французский говор с такими лицами, как будто они понимали, что говорится, но не хотели показывать этого. Княгиня, как всегда, говорила улыбаясь и слушала смеясь.
– Я очень рад, что не поехал к посланнику, – говорил князь Ипполит: – скука… Прекрасный вечер, не правда ли, прекрасный?
– Говорят, что бал будет очень хорош, – отвечала княгиня, вздергивая с усиками губку. – Все красивые женщины общества будут там.
– Не все, потому что вас там не будет; не все, – сказал князь Ипполит, радостно смеясь, и, схватив шаль у лакея, даже толкнул его и стал надевать ее на княгиню.
От неловкости или умышленно (никто бы не мог разобрать этого) он долго не опускал рук, когда шаль уже была надета, и как будто обнимал молодую женщину.
Она грациозно, но всё улыбаясь, отстранилась, повернулась и взглянула на мужа. У князя Андрея глаза были закрыты: так он казался усталым и сонным.
– Вы готовы? – спросил он жену, обходя ее взглядом.
Князь Ипполит торопливо надел свой редингот, который у него, по новому, был длиннее пяток, и, путаясь в нем, побежал на крыльцо за княгиней, которую лакей подсаживал в карету.
– Рrincesse, au revoir, [Княгиня, до свиданья,] – кричал он, путаясь языком так же, как и ногами.
Княгиня, подбирая платье, садилась в темноте кареты; муж ее оправлял саблю; князь Ипполит, под предлогом прислуживания, мешал всем.
– Па звольте, сударь, – сухо неприятно обратился князь Андрей по русски к князю Ипполиту, мешавшему ему пройти.

Эти загадочные объекты, смотрящие на людей из глубин космоса, давным-давно привлекали внимание тех, для кого наблюдения за небом стало частью жизни. Еще в каталоге древнегреческого ученого Гиппарха отмечено несколько туманных объектов на звездном небе. А его коллега, Птолемей, добавил в свой каталог еще пять туманностей к уже известным. До изобретения Галилея телескопа не так уж много объектов этого типа можно было увидеть невооруженным глазом. Но уже в 1610 году направленный на небо примитивный телескоп конструкции Галилея обнаружил там туманность Ориона. Еще через два года была открыта туманность Андромеды. И с тех пор по мере совершенствования телескопов начались все новые и новые открытия, приведшие со временем к выделению особого класса звездных объектов – туманностей.

Через некоторое время известных туманностей стало достаточно много для того, что бы они начали мешать поиску новых объектов, таких, как например кометы. И вот, в 1784 году французский астроном Шарль Мессье, занимавшийся как раз поиском комет, составляет первый в мире каталог космических туманностей, который был издан несколькими частями. Всего их туда вошло 110 на тот момент известных объекта этого класса.
При составлении каталога, Мессье давал им номера М1, М2 и так далее, до М110. Многие объекты этого каталога до сих пор имеют такое обозначение.

Однако, в те времена не было известно, что природа различных туманностей совершенно отличается друг от друга. Для астрономов это были просто туманные пятна, отличающиеся от обычных звезд.
Теперь же, благодаря достижениям астрономии, мы знаем о туманностях несравнимо больше. Что же представляют из себя эти загадочные объекты, и чем они отличаются друг от друга?

Прежде всего, многие наверное удивятся, когда узнают, что существуют не только светлые туманности. Сегодня известно множество объектов, называющихся темные туманности. Они представляют из себя плотные облака межзвездной пыли и газа, которые являются непрозрачными для света из-за его поглощения содержащейся в туманности пылью. Такие туманности отчетливо выделяются на фоне звездного неба или на фоне светлых туманностей. Классическим примером такой туманности является туманность Угольный Мешок в созвездии Южного Креста. Нередко бывает, что такая туманность служит материалом для образования в ее области новых звезд из-за большого количества межзвездного вещества.

Что касается светлых туманностей, то они тоже содержат и газ и пыль. Однако, причиной свечения такой туманности могут являться несколько факторов. Во-первых, это наличие внутри такой туманности или же рядом с ней звезды. В этом случае, если звезда не слишком горячая, то туманность светится за счет света, отражаемого и рассеиваемого входящей в ее состав космической пылью. Такая туманность называется отражательной туманностью. Классический пример подобного объекта – известное, пожалуй, всем, скопление Плеяды.

Другим видом светлой туманности являются ионизированные туманности. Такие туманности образуются в результате сильной ионизации входящего в их состав межзвездного газа. Причиной этому является излучение близкой горячей звезды или же другого объекта, являющегося источником мощного излучения, в том числе ультрафиолетового и рентгеновского. Так, яркие ионизированные туманности имеются в ядрах активных галактик и квазаров. Ряд таких туманностей, известных так же под названием Область H II, являются местами активного звездообразования. Образующиеся внутри нее горячие молодые звезды ионизируют туманность мощным ультрафиолетовым излучением.

Еще одним видом космических туманностей являются планетарные туманности. Эти объекты возникают в результате сброса внешней оболочки звездой-гигантом, массой от 2.5 до 8 солнечных. Такой процесс происходит при вспышке Новой звезды (не путать со взрывом сверхновой, это разные вещи!), когда часть звездного вещества выбрасывается в космическое пространство. Такие туманности имеют форму кольца или диска, а так же сферы (для Новых звезд).

Взрыв Сверхновой так же оставляет после себя светящуюся туманность, разогретую в процессе взрыва до нескольких миллионов градусов. Это гораздо более яркие светлые туманности, чем обычные планетарные туманности. Срок их жизни по космическим меркам совсем небольшой – не более 10 тысяч лет, после чего они сливаются с окружающим межзвездным пространством.

Более редким и экзотическим видом туманностей являются туманности вокруг звезд Вольфа-Райе. Это звезды с очень высокой температурой и светимостью, обладающие мощным излучением и скоростью истечения звездного вещества со своей поверхности (свыше 1000 километров в секунду). Такие звезды ионизируют межзвездный газ в радиусе нескольких парсек. Однако, звезд такого типа известно очень немного (в нашей Галактике – чуть более 230), поэтому и туманностей такого типа соответственно мало.

Как видите, наши знания о космических туманностях сегодня достаточно обширны, хотя, конечно же, есть еще очень много неясного в процессах их образования и жизни. Однако, это совсем не мешает нам так же любоваться их красотой, как это делали наши менее осведомленные предки.

В пятой статье серии «Наблюдения за объектами дальнего космоса» я познакомлю вас с некоторыми рекомендациями по наблюдению планетарных туманностей. В предыдущих четырёх статьях вы узнали как наблюдать за шаровыми, рассеянными звёздными скоплениями, галактиками и диффузными туманностями. Все рекомендации предпочтительны для телескопов с апертурой от 110 мм. Для «планетарок» лучше диаметр объектива от 150 мм.

Практически все планетарные туманности имеют очень небольшой угловой размер, который сравним с размерами Юпитера (40″). Поверхностная яркость этих туманностей достаточно велика. Рекомендуется использовать увеличение телескопа: 80х - 200х.

Но есть планетарные туманности с низкой яркостью, для них нет смысла использовать окуляр с больши́м увеличением или рассеивающую линзу Барлоу, которая даёт бо́льшее увеличение. Для таких туманностей сложно подобрать рекомендации и дать советы по использованию увеличения, всё очень субъективно и читатель сможет выбрать (подобрать) сам. К неярким «планетаркам» можно отнести: M 27, M 76, M 97, NGC 4361).

Планетарная туманность со слабой поверхностной яркостью

Напоминаю, когда нашли искомый объект для наблюдения (в нашем случае планетарную туманность) руководствуйтесь следующей инструкцией. Она поможет вам узнать и получить как можно больше информации на практике. Не забывайте вести записи, это ускорит ваш процесс запоминания и в дальнейшем пригодится для сравнения объектов с другими этого же типа, а также научит вас различать и замечать тонкости каждого из объектов.

Наблюдение планетарной туманности

  1. Как всегда начинаем с оценки углового размера искомого объекта. Для лучшей и более точной оценки сравните её с планетой Юпитер, которую можно увидеть на таком же увеличении.
  2. Какую форму имеет туманность? Полая внутри, круглая, овальная, непонятная? Можно ли увидеть и дать хоть сколько информации о краях туманности? Какие они?
  3. Равномерно ли от центра к краям распределена яркость? Может отдельный участок насыщенный, другой менее или просматривается некоторая цветность?
  4. Какой общий цвет виден в телескоп? Туманность полностью серая? Или может голубовато-серая? Виднеется красноватый оттенок?
  5. Оглянитесь вокруг. Что можете сказать о звёздах за «планетаркой», вокруг неё? Есть ли очень яркие, ?
  6. Какой примерно блеск имеет исследуемый объект?
  7. В последнюю очередь, когда глаз и мозг усвоил достаточно информации - определите, на что похожа туманность? Есть ли сходство с каким-то предметом?

И всё… Оторвитесь на несколько секунд от телескопа, дайте отдохнуть глазам. Представьте перед собой то, что только что наблюдали. Взгляните ещё раз в окуляр, зафиксируйте. Сверьтесь со своими записями. Если всё хорошо, то наблюдения за этой планетарной туманностью можно заканчивать и после короткой паузы переключаться на новый объект.

Вот таких несколько простых, но на мой взгляд очень полезных и нужных рекомендаций стоит придерживаться при наблюдении планетарных туманностей . До новых статей, берегите свои глаза и не упускайте ни одной безоблачной звёздной ночи.

Наблюдая небо в телескоп, иногда можно наткнуться на любопытные туманности с округлыми очертаниями. Это планетарные туманности - объекты, соответствующие заключительной фазе существования звезд, подобных Солнцу. По сути дела, каждая из них представляет собой шарообразную оболочку из газа, внешний слой звезды, выброшенный ею после утраты собственной стабильности. Эти оболочки затем увеличиваются, расширяются и постепенно становятся все более слабыми. Наблюдать такие туманности непросто: большинство из них обладает низкой поверхностной яркостью и малым угловым размером. Как и в случаях с другими туманностями, для наблюдения необходимы темные безлунные ночи. Очень редко идентификации планетарной туманности может помочь маленькая звездочка, расположенная в ее центре и давшая ей начало.

Туманность Кольцо

Из всех планетарных туманностей, видимых на небосводе, самая известная среди любителей астрономии - безусловно, туманность М57, которая также имеет название Кольцо. Она расположена в летнем созвездии Лира на расстоянии около 2300 световых лет от Земли.

Открыл эту туманность в 1779 году французский астроном Антуан Даркье де Пельпуа. Он описал ее как идеальный диск размером приблизительно равный Юпитеру, но имеющий блеклое свечение и похожий на исчезающую планету. Впоследствии, в 1785 году, английский астроном Вильям Гершель определил ее как«небесную достопримечательность». Он думал, что эта туманность представляет собой звездное кольцо.

С дырой

В вашем телескопе М57 будет выглядеть маленьким туманным пятнышком округлой формы. Имеет смысл рассматривать ее при среднем увеличении, например, через 12,5-мм окуляр Плёссля, обеспечивающий 80-кратное увеличение. При первом взгляде вы обнаружите округлые очертания. После нескольких минут адаптации, если воздух будет прозрачным и неподвижным и со стороны Луны будут отсутствовать помехи, вы сможете разглядеть некоторые детали. Повышая увеличение, вы даже различите центральное «отверстие», особенно если будете смотреть «рассеянным зрением», то есть, концентрируя взгляд не на самом «отверстии», а на его периферии.

Центральная звезда

Эта туманность родилась от звезды, находящейся в ее центре и сегодня превратившейся в белый карлик. Температура поверхности этой звезды превышает 100000 градусов. Ее звездная величина составляет 14,7 - таким образом, она недоступна вашему телескопу. В 1800 году ее открыл немецкий философ и астроном Фридрих фон Хан.

Туманность расширяется со скоростью приблизительно 20-30 км/с, и поэтому ее видимые размеры увеличиваются примерно на 1 секунду дуги в столетие.

Формирование туманностей

После того как были открыты первые планетарные туманности, их округлые очертания навели астрономов на мысль о том, что эти небесные объекты связаны с чем-то похожим на планеты, скорее всего - на газовые гиганты или же на формирующуюся планетную систему. По этой причине английский астроном Вильям Гершель (незадолго до этого открывший планету Уран) предложил для таких объектов термин «планетарная туманность». Их истинная природа была установлена лишь в середине XIX века благодаря спектроскопии (технике, позволяющей «расщепить» свет, поступающий от небесного тела, на его основные цвета). Тогда стало ясно, что перед нами - особый тип туманности.

Умирающая звезда

Все планетарные туманности происходят от звезд, находящихся на завершающей стадии своего существования. Как мы уже отмечали, звезда с массой, сравнимой с массой Солнца, после своего рождения проживает длительную стадию стабильности, в ходе которой растапливает водородные ядра, давая начало ядрам гелия. Когда содержащийся в центральной части звезды водород заканчивается, эта часть нагревается и достигает температуры в 100 млн градусов. Вследствие этого наружные слои расширяются, после чего охлаждаются: звезда превращается в красный гигант. В этот момент она утрачивает стабильность, и ее внешние слои могут-быть выброшены наружу. Именно они и образуют оболочку шарообразной формы вокруг того, что остается от звезды - вокруг белого карлика.

Расширение

Оболочка, окружающая звезду, расширяется со скоростью в несколько десятков километров в секунду и образует планетарную туманность с характерной шарообразной формой. Планетарные туманности, однако, ожидает довольно быстрый конец: по мере расширения в космосе они разреживаются и в результате становятся неразличимы на небесном своде. На это уходит около 25000 лет - совсем небольшой период в жизни любой звезды.

Планетарные туманности через телескоп

При наблюдении планетарных туманностей возникают несколько иные сложности, чем при наблюдении диффузных туманностей например, туманности Ориона. Планетарные туманности не отличаются большими угловыми размерами. За исключением туманности Улитка (по-английски Helix), они выглядят на небосклоне небольшими и сконцентрированными. Поэтому их бывает непросто отличить от звезд.

Туманность Улитка

Помимо М57, вы можете наблюдать в ваш телескоп еще примерно дюжину планетарных туманностей. Первой среди них будет именно туманность Улитка из созвездия Водолей.Она достигает внушительного размера - приблизительно 13 минут дуги (что соответствует реальному размеру примерно в 3 световых года).

Неслучайно эта туманность является также одной из самых близких к Солнечной системе. Несмотря на звездную величину 7,6, из-за своих размеров она распространяет свечение на весьма обширную зону ночного неба. В телескоп эта туманность кажется зеленоватой. Видна она довольно слабо. Внутри нее космический телескоп «Хаббл» разглядел тысячи газовых шариков, образовавшихся, видимо, в тот момент, когда умирающая звезда выбросила в космос свою внешнюю оболочку.

Туманность Сатурн

В том же зодиакальном созвездии Водолей интерес для наблюдения вызывает туманность NCG 7009, известная под именем «туманность Сатурн». Вильям Гершель открыл ее в 1782 году. Основная сложность при наблюдении этой туманности - ее размер, составляющий менее 2 минут дуги.

Тем не менее при 50-кратном увеличении можно понять, что это не звезда, а при 100-150-кратном - различить характерную вытянутую форму. Именно за эту форму туманность и получила свое название, совпадающее с названием планеты с кольцами.

Еще одной легко доступной для наблюдения туманностью является М27 из созвездия Лисичка. Ее называют также «туманностью Гантель». Ее видимый диаметр составляет примерно 8 минут дуги, а совокупная звездная величина равна 7,4. По оценкам астрономов, эта туманность образовалась 3000-4000 лет тому назад. При большом увеличении вы можете разглядеть ее вытянутую
форму, за которую она и получила свое имя.

Есть еще уменьшенная версия М27, по крайней мере, по мнению англосаксонских астрономов, которые называют Маленькой Гантелью планетарную туманность М76. Она была открыта Мешеном в 1780 году, однако ее принадлежность к планетарным туманностям была признана только в 1918-м. Звездочка в центре М76 величиной 16,6 является слишком слабой для вашего телескопа.

Призрак и Сова

Гораздо более сложной для наблюдения является туманность NGC3242, имеющая также любопытное название Призрак Юпитера. Оно объясняется тем, что в телескопе ее диаметр сопоставим с диаметром Юпитера. С помощью 25-мм окуляра Плёссля при 40-кратном увеличении можно разглядеть ее без особых трудностей, а при увеличении свыше 100 - даже различить ее округлую форму.

Забавное название носит и туманность М97, четвертая туманность, помещенная в каталог Мессье. Она расположена в созвездии Большая Медведица. Ирландский астроном Уильям варсонс в 1848 году назвал ее Совой, поскольку два темных пятна внутри нее напоминают совиные глаза.

При увеличении чуть больше 100 вы сможете различить не только округлую форму туманности, но и две темные области внутри нее. Считается, что возраст М97 примерно 8000 лет.

Снежок

Довольно сложно различить на небе туманность NGl 7662, или Голубой Снежок, в созвездии Андромеда. На самом деле, несмотря на название, в телескопе она имеет красноватый оттенок.

При увеличении свыше 100 тоже можно рассмотреть «отверстие» в ее центре. Преимущество наблюдения этой туманности в том, что она находится в созвездии, которое очень высоко поднимается на нашем небе в конце осени.

Белые карлики

Планетарная туманность NGC 1514, открытая Вильямом Гершелем в 1790 году в созвездии Телец, очень сложна для наблюдения, поскольку она слабо светится и едва заметна на небесном фоне. Гораздо проще различить белый карлик в ее центре, имеющий звездную величину 9,4 NGC 1514 можно найти примерно в 8 градусах на северо-восток от Плеяд. Другой планетарной туманностью с белым карликом, доступным вашему телескопу, является NGC6826, расположенная в созвездии Лебедь. Это небольшая и слабая туманность: в телескоп она будет казаться размытой звездой, и, только доведя увеличение до максимального, вы сможете рассмотреть ее круговую оболочку. Впрочем, если небо очень темное, то, возможно, вы заметите в ее центре звездочку величиной 10,4.

То же самое можно сказать о планетарной туманности NGC2392, известной также под названием Эскимос, в созвездии Близнецы. Внутри маленькой, слабой голубоватой туманности будет виден белый карлик величиной 10,5.

Планетарные туманности в объективе «Хаббла»

Многие планетарные туманности, к сожалению, остаются недоступными для наблюдений в любительский телескоп. Хотя часто речь идет о великолепных, очень зрелищных объектах, одних из самых красивых на небе. Космический телескоп «Хаббл» сфотографировал некоторые из этих туманностей, и теперь мы можем оценить их сверкающие цвета и любопытные формы.

Несмотря на то, что вы не сможете наблюдать их в ваш телескоп, стоит рассказать о наиболее эффектных и интересных планетарных туманностях.

Кошачий Глаз

Можно начатьстуманности Кошачий Глаз (NGC 6543) в созвездии Дракон. В 1864 году Уильям Хёггинс исследовал спектроскопом ее свет (такому анализу планетарная туманность тогда подверглась впервые). Хотя она была открыта еще в 1786-м, лишь недавно телескоп «Хаббл» раскрыл ее сложную и тонкую структуру, состоящую из концентрических газовых оболочек, струек и узелков. Астрономы пришли к выводу, что примерно каждые 1500 лет центральная звезда испускает новую оболочку. Изображения, снятые с промежутком приблизительно в 10 лет, показали, что эта туманность расширяется.

Туманность NGC 6369 находится в созвездии Змееносец на расстоянии от 2000 до 5000 световых лет. Ее сине-зеленое кольцо, достигающее реального диаметра примерно в 1 световой год, обозначает границу района, в котором ультрафиолетовый свет звезды ионизировал газ, то есть вырвал электроны из их атомов. Внешняя часть туманности имеет более выраженный красный оттенок, поскольку на большем расстоянии от звезды процесс ионизации менее интенсивен. Облако расширяется со скоростью примерно 20 км/с. За счет этого оно рассеется в межзвездном пространстве и затем примерно через 10000 лет исчезнет.

NGC 6543, туманность Кошачий Глаз - внутренняя область, изображение в псевдоцвете (красный - Hα; синий - нейтральный кислород, 630 нм; зелёный - ионизированный азот, 658,4 нм)

Планетарная туманность - астрономический объект, состоящий из ионизированной газовой оболочки и центральной , . Планетарные туманности образуются при сбросе внешних слоёв (оболочек) и сверхгигантов с массой до 1.4 солнечных на завершающей стадии их эволюции. Планетарная туманность - быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду со вспышками , играет важную роль в химической эволюции , выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами - продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза - водорода и гелия, такие как углерод, азот, кислород и кальций).

В последние годы при помощи снимков, полученных , удалось выяснить, что многие планетарные туманности имеют очень сложную и своеобразную структуру. Несмотря на то, что приблизительно пятая часть из них имеет околосферическую форму, большинство не обладает какой бы то ни было сферической симметрией. Механизмы, благодаря которым возможно образование такого многообразия форм, остаются на сегодняшний день до конца не выясненными. Считается, что большую роль в этом могут играть взаимодействие и , и межзвёздной среды.

История исследований

Туманность Гантель в условных цветах

Планетарные туманности в большинстве своём представляют собой тусклые объекты и, как правило, не видны невооружённым глазом. Первой открытой планетарной туманностью была туманность Гантель в созвездии Лисички: Шарль Мессье, занимавшийся поиском , при составлении своего каталога туманностей (неподвижных объектов, похожих при наблюдении неба на кометы) в 1764 году занёс её в каталог под номером M27. В 1784 году Уильям Гершель, первооткрыватель , при составлении своего каталога выделил их в отдельный класс туманностей (class IV nebulae )и предложил для них термин «планетарная туманность» из-за их видимого сходства с диском Урана.

Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей - объектов, выделявшихся своей необычностью:

Одними из самых загадочных из этих замечательных объектов являются те, которые при телескопическом наблюдении имеют вид круглых или слегка овальных дисков. …Замечателен и их зеленовато-голубой цвет, чрезвычайно редкий для одиночных звёзд. Кроме того, в этих туманностях нет признаков центрального сгущения. По этим признакам планетарные туманности резко выделяются как объекты, которым присущи свойства, совершенно отличающиеся от свойств и неподвижных звёзд. Из этих соображений, а также благодаря их яркости, я избрал эти туманности как наиболее подходящие для спектроскопического исследования.

При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз), M27 (Гантель), M57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд:

Несомненно, что туманности 37 H IV (NGC 3242), Struve 6 (NGC 6572), 73 H IV (NGC 6826), 1 H IV (NGC 7009), 57 M, 18 H. IV (NGC 7662) и 27 M не могут более считаться скоплениями звёзд того же типа, к которым относятся неподвижные звёзды и наше Солнце. <…> эти объекты обладают особой и отличной от них структурой <…> мы, по всей вероятности, должны считать эти объекты огромными массами светящегося газа или пара.

Другой проблемой был химический состав планетарных туманностей: Хаггинс сравнением с эталонными спектрами сумел идентифицировать линии азота и водорода, однако самая яркая из линий с длиной волны 500,7 нм не наблюдалась в спектрах известных тогда химических элементов. Было выдвинуто предположение, что эта линия соответствует неизвестному элементу. Ему заранее дали название небулий - по аналогии с идеей, приведшей к открытию гелия при спектральном анализе Солнца в 1868 году.

Предположения об открытии нового элемента небулия не подтвердились. В начале XX века Генри Расселл выдвинул гипотезу о том, что линия на 500,7 нм соответствует не новому элементу, а старому элементу в неизвестных условиях.

В 20-х годах XX века было показано, что в очень разрежённых газах атомы и ионы могут переходить в возбуждённые метастабильные состояния, которые при более высоких плотностях из-за соударений частиц не могут достаточно долго существовать. В 1927 году Боуэн идентифицировал линию небулия 500,7 нм как возникающую при переходе из метастабильного состояния в основное дважды ионизированного атома кислорода (OIII). Спектральные линии такого типа, наблюдаемые только при чрезвычайно низких плотностях, называют запрещёнными линиями . Таким образом, спектроскопические наблюдения дали возможность оценить верхний предел плотности газа туманностей. Вместе с тем, спектры планетарных туманностей, полученных на щелевых спектрометрах, показали «изломанность» и расщепление линий вследствие доплеровских сдвигов излучающих областей туманности, движущихся с различными скоростями, что позволило оценить скорости расширения планетарных туманностей в 20-40 км/с.

Несмотря на достаточно подробное понимание строения, состава и механизма излучения планетарных туманностей, вопрос об их происхождении оставался открытым до середины 50-х годов XX века, пока И. С. Шкловский не обратил внимание, что если проэкстраполировать параметры планетарных туманностей к моменту начала их расширения, то получившийся набор параметров совпадает со свойствами красных гигантов, а свойства их ядер - со свойствами горячих белых карликов. В настоящее время эта теория происхождения планетарных туманностей подтверждена многочисленными наблюдениями и расчётами.

К концу XX века совершенствование технологий позволило более детально изучить планетарные туманности. Космические телескопы позволили исследовать их спектры за пределами видимого диапазона, что невозможно было сделать раньше, проводя наблюдения с поверхности . Наблюдения в инфракрасном и ультрафиолетовом диапазонах волн дали новую, гораздо более точную оценку температуры, плотности и химического состава планетарных туманностей. Применение технологии ПЗС-матриц позволило проводить анализ существенно менее чётких спектральных линий. Использование космического телескопа «Хаббл» раскрыло чрезвычайно сложную структуру планетарных туманностей, ранее считавшихся простыми и однородными.

Происхождение

Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика - ядра звезды (в центре), сталкиваясь со сброшенной оболочкой - медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Наше Солнце представляет собой звезду средней величины, и лишь небольшое количество звёзд превосходят его по массе. Звёзды с массой в несколько раз больше солнечной на заключительном этапе существования превращаются в сверхновые. Звёзды средней и малой массы в конце эволюционного пути создают планетарные туманности.

Типичная звезда с массой в несколько раз меньше солнечной светит на протяжении большей части своей жизни благодаря реакциям термоядерного синтеза гелия из водорода в её ядре (часто вместо термина «термоядерный синтез» употребляется термин «горение», в данном случае - горение водорода). Энергия, высвобождаемая в этих реакциях, удерживает звезду от коллапса под силой собственного притяжения, делая её тем самым стабильной.

По прошествии нескольких миллиардов лет запас водорода иссякает, и энергии становится недостаточно для сдерживания внешних слоёв звезды. Ядро начинает сжиматься и нагреваться. В настоящее время температура ядра Солнца составляет приблизительно 15 млн К, но после того, как запас водорода будет исчерпан, сжатие ядра заставит температуру подняться до отметки в 100 млн К. При этом внешние слои охлаждаются и значительно увеличиваются в размерах из-за очень высокой температуры ядра. Звезда превращается в красный гигант. Ядро на этом этапе продолжает сжиматься и нагреваться; при достижении температуры в 100 млн К начинается процесс синтеза углерода и кислорода из гелия.

Возобновление термоядерных реакций позволяет прекратиться дальнейшему сжатию ядра. Выгорающий гелий вскоре создаёт инертное ядро, состоящее из углерода и кислорода, окружённое оболочкой из горящего гелия. Термоядерные реакции с участием гелия очень чувствительны к температуре. Скорость протекания реакции пропорциональна T 40 , то есть увеличение температуры всего на 2 % приведёт к удвоению скорости протекания реакции. Это делает звезду очень нестабильной: малый прирост температуры вызывает быстрое увеличение скорости хода реакций, повышая выделение энергии, что, в свою очередь, заставляет увеличиваться температуру. Верхние слои горящего гелия начинают быстро расширяться, температура понижается, реакция замедляется. Всё это может быть причиной мощных пульсаций, иногда достаточно сильных, чтобы выбросить значительную часть атмосферы звезды в космическое пространство.

Выброшенный газ формирует расширяющуюся оболочку вокруг обнажившегося ядра звезды. По мере того, как всё большая часть атмосферы отделяется от звезды, проявляются всё более и более глубокие слои с более высокими температурами. При достижении обнажённой поверхностью (фотосферой звезды) температуры в 30 000 К энергия испускаемых ультрафиолетовых фотонов становится достаточной для ионизации атомов в выброшенном веществе, что заставляет его светиться. Таким образом, облако становится планетарной туманностью.

Продолжительность жизни

Компьютерное моделирование формирования планетарной туманности из звезды с диском неправильной формы, иллюстрирующее, как малая начальная асимметрия может в результате привести к образованию объекта со сложной структурой.

Вещество планетарной туманности разлетается от центральной звезды со скоростью в несколько десятков километров в секунду. В то же время, по мере истечения вещества центральная звезда остывает, излучая остатки энергии; термоядерные реакции прекращаются, так как звезда теперь не обладает достаточной массой для поддержания температуры, требуемой для синтеза углерода и кислорода. В конце концов, звезда остынет настолько, что перестанет излучать достаточно ультрафиолета для ионизации отдалившейся газовой оболочки. Звезда становится белым карликом, а газовое облако рекомбинирует, становясь невидимым. Для типичной планетарной туманности время от образования до рекомбинации составляет 10 000 лет.

Галактические переработчики

Планетарные туманности играют значительную роль в эволюции галактик. Ранняя состояла в основном из водорода и гелия, но со временем в результате термоядерного синтеза в звёздах образовались более тяжёлые элементы. Таким образом, вещество планетарных туманностей имеет высокое содержание углерода, азота и кислорода, а по мере расширения и проникновения в межзвёздное пространство оно обогащает его этими тяжёлыми элементами, в общем называемыми астрономами металлами.

Последующие поколения звёзд, формирующиеся из межзвёздного вещества, будут содержать большее начальное количество тяжёлых элементов; хотя их присутствие в составе звёзд остаётся незначительным, они ощутимо влияют на их эволюцию. Звёзды, сформировавшиеся вскоре после образования Вселенной, содержат относительно малые количества металлов - их относят к звёздам II типа . Звёзды, обогащённые тяжёлыми элементами, принадлежат к звёздам I типа .

Характеристики

Физические характеристики

Типичная планетарная туманность имеет среднюю протяжённость в один и состоит из сильно разреженного газа плотностью около 1000 частиц на см³, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10-100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на см³. По мере старения туманностей их расширение приводит к уменьшению плотности.

Излучение центральной звезды нагревает газы до температур порядка 10 000 К. Парадоксально, что температура газа нередко повышается с увеличением расстояния от центральной звезды. Это происходит по той причине, что чем большей энергией обладает фотон, тем менее вероятно, что он будет поглощён. Поэтому во внутренних областях туманности поглощаются малоэнергетические фотоны, а оставшиеся, обладающие высокой энергией, поглощаются во внешних областях, вызывая рост их температуры.

Туманности можно разделить на бедные материей и бедные излучением . Согласно этой терминологии, в первом случае туманность не обладает достаточным количеством материи для поглощения всех ультрафиолетовых фотонов, излучаемых звездой. Поэтому видимая туманность полностью ионизирована. Во втором же случае центральная звезда испускает недостаточно ультрафиолетовых фотонов, чтобы ионизировать весь окружающий газ, и ионизационный фронт переходит в нейтральное межзвёздное пространство.

Так как бо́льшая часть газа планетарной туманности ионизирована (то есть является плазмой), значительный эффект на её структуру оказывает действие магнитных полей, вызывая такие феномены, как волокнистость и нестабильность плазмы.

Количество и распределение

На сегодняшний день в нашей Галактике, состоящей из 200 миллиардов звёзд, известно 1500 планетарных туманностей. Их краткая по сравнению со звёздной продолжительность жизни является причиной их малого числа. В основном, все они лежат в плоскости , причём большей частью сосредоточившись вблизи центра галактики, и практически не наблюдаются в .

Использование ПЗС-матриц вместо фотоплёнки в астрономических исследованиях позволило значительно расширить список известных планетарных туманностей.

Структура

Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность. Причины такого разнообразия форм до конца не выяснены, но считается, что большую роль могут играть гравитационные взаимодействия звёзд в двойных системах. По другой версии, имеющиеся планеты нарушают равномерное растекание материи при образовании туманности. В январе 2005 года американские астрономы объявили о первом обнаружении магнитных полей вокруг центральных звёзд двух планетарных туманностей, а затем выдвинули предположение, что именно они частично или полностью ответственны за создание формы этих туманностей. Существенная роль магнитных полей в планетарных туманностях была предсказана Григором Гурзадяном ещё в 1960-е годы. Есть также предположение, что биполярная форма может быть обусловлена взаимодействием ударных волн от распространения фронта детонации в слое гелия на поверхности формирующегося белого карлика (например, в туманностях Кошачий Глаз, Песочные Часы, Муравей).

Текущие вопросы в изучении планетарных туманностей

Одна из проблем в изучении планетарных туманностей - это точное определение расстояния до них. Для некоторых близлежащих планетарных туманностей возможно вычислить удалённость от нас, используя измеренный параллакс расширения: снимки с высоким разрешением, полученные несколько лет назад, демонстрируют расширение туманности перпендикулярно к лучу зрения, а спектроскопический анализ доплеровского смещения даст возможность вычислить скорость расширения вдоль луча зрения. Сравнение углового расширения с полученной скоростью расширения сделает возможным вычисление расстояния до туманности.

Существование такого разнообразия форм туманностей является темой жарких дискуссий. Широко распространено мнение, что причиной этому может быть взаимодействие между веществом, удаляющимся от звезды с различными скоростями. Некоторые астрономы считают, что двойные звёздные системы ответственны, по крайней мере, за наиболее сложные очертания планетарных туманностей. Недавние исследования подтвердили наличие у нескольких планетарных туманностей мощных магнитных полей, предположения о чём уже неоднократно выдвигались. Магнитные взаимодействия с ионизированным газом также могут играть некоторую роль в становлении формы некоторых из них.

На данный момент существуют две различных методики обнаружения металлов в туманности, основывающиеся на различных типах спектральных линий. Иногда эти два метода дают совершенно непохожие результаты. Некоторые астрономы склонны объяснять это наличием слабых флуктуаций температуры в пределах планетарной туманности. Другие полагают, что различия в наблюдениях слишком разительны, чтобы объяснить их при помощи температурных эффектов. Они выдвигают предположения о существовании холодных сгустков, содержащих очень малое количество водорода. Однако сгустки, наличие которых, по их мнению, способно объяснить разницу в оценке количества металлов, ни разу не наблюдались.