Процесс испарения воды происходит. Испарение. Испарение - это что такое

Нам всем с детства хорошо известен один серьёзный жизненный факт. Для того чтобы остудить горячий чай, необходимо налить его в холодное блюдце и продолжительно дуть над его поверхностью. Когда тебе шесть-семь лет, особо не задумываешься над законами физики, просто принимаешь их как данное или, выражаясь физически, принимаешь их за аксиому. Однако, постигая со временем науки, мы обнаруживаем интересные сходства аксиом и последовательных доказательств, плавно переводя наши детские предположения во взрослые теоремы. То же самое и с горячим чаем. Никто из нас и подумать не мог, что такой способ его охлаждения напрямую связан с испарением жидкости.

Физика процесса

Для того чтобы ответить на вопрос, от чего зависит скорость испарения жидкости, надо разобраться в самой физике процесса. Испарение - это процесс фазового перехода вещества из жидкого агрегатного состояния в газообразное. Испаряться может любое в том числе очень вязкое. С виду и не скажешь, что некая желеобразная жижа может терять часть своей массы за счет испарения, но при определённых условиях именно это и происходит. Твердое тело также может испаряться, только такой процесс называется сублимацией.

Как происходит

Начав разбираться, от чего зависит скорость испарения жидкости, следует отталкиваться от того, что это эндотермический процесс, то есть процесс, проходящий с поглощением теплоты. Теплота (теплота испарения) передаёт энергию молекулам вещества, увеличивая их скорость и повышая вероятность их отрыва, ослабляя при этом силы молекулярного сцепления. Отрываясь от основной массы вещества, самые быстрые молекулы вырываются за его границы, и вещество теряет свою массу. При этом вылетевшие молекулы жидкости мгновенно вскипают, осуществляя при отрыве процесс фазового перехода, и их выход идёт уже в газообразном состоянии.

Применение

Понимая, от каких причин зависит скорость испарения жидкости, можно грамотно регулировать технологические процессы, происходящие на их основе. Например, работу кондиционера, в теплообменнике-испарителе которого кипит хладагент, забирая теплоту из охлаждаемого помещения, или вскипание воды в трубах промышленного котла, теплота которой передается на нужды отопления и ГВС. Осознание того, от каких условий зависит скорость испарения жидкости, предоставляет возможность конструировать и производить современное и технологичное оборудование компактных размеров и с повышенным коэффициентом теплопередачи.

Температура

Жидкое агрегатное состояние крайне неустойчиво. При наших земных н. у. (понятие "нормальных условий", т.е. пригодных для жизни людей) оно периодически стремится перейти в твердую или газообразную фазу. Как это происходит? От чего зависит скорость испарения жидкости?

Первичный критерий - это, естественно, температура. Чем сильнее мы нагреваем жидкость, тем больше энергии мы подводим к молекулам вещества, тем больше молекулярных связей мы разрываем, тем быстрее идёт процесс фазового перехода. Апофеоз достигается при устойчивом пузырьковом кипении. Вода кипит при 100 ºС при атмосферном давлении. Поверхность кастрюли или, например, чайника, где она кипит, только на первый взгляд идеально гладкая. При многократном увеличении картинки мы увидим бесконечные острые пики, как в горах. Теплота точечно подводится к каждому из этих пиков, и из-за малой поверхности теплообмена вода моментально вскипает, образуя пузырёк воздуха, который поднимается к поверхности, где и схлопывается. Именно поэтому такое кипение называют пузырьковым. Скорость при этом максимальная.

Давление

Второй важный параметр, от чего зависит скорость испарения жидкости, - это давление. При снижении давления ниже атмосферного вода начинает закипать при меньших температурах. На этом принципе основана работа знаменитых скороварок - специальных кастрюль, откуда откачивался воздух, и вода кипела уже при 70-80 ºС. Повышение давления, наоборот, увеличивает температуру закипания. Это полезное свойство используется при подаче перегретой воды от ТЭЦ в ЦТП и ИТП, где для сохранения потенциала переносимой теплоты воду подогревают до температур 150-180 градусов, когда надо исключить возможность её вскипания в трубах.

Другие факторы

Интенсивный обдув поверхности жидкости с температурой выше, чем температура подаваемой воздушной струи, - это ещё один фактор, от чего зависит скорость испарения жидкости. Примеры этого можно взять из повседневной жизни. Обдув ветром глади озера или тот пример, с которого мы начали повествование: обдув горячего чая, налитого в блюдце. Он остывает за счет того, что, отрываясь от основной массы вещества, молекулы забирают часть энергии с собой, охлаждая его. Здесь можно увидеть еще и влияние площади поверхности. Блюдце шире, чем кружка, поэтому с её квадратуры потенциально может уйти большее количество массы воды.

На скорость испарения также влияет тип самой жидкости: какие-то жидкости испаряются быстрее, другие, наоборот, медленнее. Важное влияние на процесс испарения оказывает и состояние окружающего воздуха. При высоком абсолютном влагосодержании (сильно влажном воздухе, например, рядом с морем) процесс испарения пойдёт медленнее.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

Парообразованием называется процесс перехода жидкости в газ (пар).
Процесс обратный парообразованию называется конденсацией.
Парообразование может происходить как испарение с поверхности жидкости или в виде кипения.

До сих пор речь шла о процессе парообразования, когда исходным агрегатным состоянием вещества была жидкость. Но, существует ещё один интересный вид парообразования, когда твердое тело, минуя жидкое состояние, превращается в газ.
Такой вид парообразования называется возгонкой.
Такой особенностью обладают, например, кристаллы йода, нафталина, обычного и "сухого" льда.

Обратный процесс превращения газа непосредственно в твердое вещество называется сублимацией.

ИСПАРЕНИЕ

Испарение - это парообразование с поверхности жидкости.
При этом жидкость покидают более быстрые молекулы, обладающие большей скоростью.
При любой температуре в жидкости находятся такие молекулы, которые обладают достаточной кинетической энергией, чтобы преодолеть силы сцепления между молекулами и совершить работу выхода из жидкости.

Скорость испарения жидкости зависит от:
1) от рода вещества;
2) от площади поверхности испарения;
3) от температуры жидкости;
4) от скорости удаления паров с поверхности жидкости, т.е. от наличия ветра.

Испарение происходит при любой температуре.

С повышением температуры скорость испарения жидкости возрастает, так как возрастает средняя кинетическая энергия ее молекул, а следовательно, возрастает и число таких молекул, у которых кинетическая энергия достаточна для испарения.

Скорость испарения возрастает и при ветре, который удаляет с поверхности жидкости ее пар и тем самым препятствует возвращению молекул в жидкость

При испарении температура жидкости понижается, т.к. внутренняя энергия жидкости уменьшается из-за потери быстрых молекул.
Но, если подводить к жидкости тепло, то ее температура может не изменяться.

ИСПАРЕНИЕ СУХОЕ - ВОЗГОНКА.

Если выстиранное сырое бельё вывесить на морозе, то оно замерзает и становится жеским, как фанера. Однако через некоторое время оно становится вновь мягким и, что удивительно, абсолютно сухим!
Лёд переходит из твердого состояния непосредственно в пар, минуя плавление.
Это и есть „сухое“ испарение или возгонка.

Возгонка льда возможна практически при любой отрицательной температуре в сухом воздухе, что практически бывает при сильном морозе.

Интересно, что иней на деревьях и снег в тучах образуются в результате процесса, обратного возгонке, - так называемой сублимации, прямого перехода водяного пара в твёрдую фазу. Центрами кристаллизации здесь служат микроскопические пылинки и кристаллики соли, взвешенные в воздухе.

ИНТЕРЕСНОЕ О СУХОМ ИСПАРЕНИИ

О чем поет чайная ложка?

Если прижать ложку к кусочку сухого льда, то можно услышать громкий завывающий звук, который длится недолго. Прикладывая к ложке различное усилие, можно менять высоту тона и громкость звука.
Явление можно объяснить тем, что тепло металла быстро превращает в газ тот участок льда, которого коснулась ложка. Обильно выделяясь, углекислый газ с силой вырывается из-под ложки, она колеблется и, подобно мембране телефона, колеблет воздух, – мы слышим звук.

Вы знаете, что существует, так называемый, «сухой лед», который используется при продаже мороженого. «Сухой лёд» - это твердый диоксид углерода (СО2.) «Сухой лед», имея температуру около минус 80градусов по Цельсию, из твердого состояния сразу превращается в газ, минуя жидкое состояние. Такой замечательный процесс испарения называется возгонкой.

Нельзя помещать сухой лед в закрытый контейнер, например, в полиэтиленовую бутылку из- под напитков. Это опасно, так как при испарении сухой лед расширяется примерно в 800 раз, что может привести к взрыву

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

СТАВИМ ОПЫТ

Если наполнить пластмассовую бутылку на 4/5 горячим кипятком, закрыть пробкой и встряхнуть, то пробка может вылететь. Оказывается при встряхивании увеличивается поверхность испарения, что приводит к увеличению давления пара.

А В ЗАСУШЛИВЫХ РАЙОНАХ

Для уменьшения испарения с поверхности жидкости используются адсорбционные пленки, которые могут тонким слоем покрывать все поверхность воды. Свойства таких пленок используется для уменьшения испарения воды с поверхности водоемов в засушливых районах. Для создания таких пленок применяется, например, твердое вещество - гексадеканол. В Австралии с его помощью ежегодно сохраняется около 10 миллионов литров воды с каждого гектара водной поверхности.

КАК ИСПАРЕНИЕ ПОМОГАЕТ

Оказалось, что при постепенном нагревании и в сухом воздухе человек способен выдержать повышение температуры до 160С. Английские физики Благден и Чентри, проводили часы в натопленной печи, испытывая возможности человеческого организма. Английский физик Тиндаль высказался по этому поводу так: «Можно сварить яйца и изжарить бифштекс в воздухе помещения, в котором люди остаются без вреда для себя».

Наш организм борется с нагреванием с помощью выделения пота.
Испарение пота поглощает значительное количество тепла из прилегающего к телу слоя воздуха, и тем понижается его температуру. Это возможно, если тело не соприкасается непосредственно с источником тепла и воздух сухой.

Человек теряет из организма воду испарением с поверхности кожи и испарением из дыхательных путей.
При занятиях спортом человек теряет с потом около 1-2 литров жидкости в час. А при длительной физической нагрузке, особенно в жару, выделение воды с потом может достигать 3-6 литров.

В начале ХХ в. на карнавалах показывали интересный трюк. В жидкий свинец трюкач погружал кисть руки. Как же человеческое тело выдерживало столь высокую температуру?
При соприкосновении мокрых пальцев с горячим жидким металлом, вода вследствие интенсивного испарения «одевала» их в «паровую перчатку», которая непродолжительное время могла служить защитой: излучения и проводимости было недостаточно для того, чтобы ощутимо поднять температуру кожи и вызвать ожог. Но влаги на потной руке было недостаточно и требовалось дополнительное смачивание.

Сварите в кастрюльке куриное яйцо. Достаньте его ложкой из кипятка и быстро, пока оно еще влажное, возьмите его в руки. Хотя яйцо и горячее, все же его можно удержать в руках. Испаряющаяся с поверхности яйца жидкость защитит ваши руки. Через несколько секунд яйцо высохнет, и удерживать его вы уже не сможете – слишком горячо.

Чтобы удостовериться, нагрелся ли утюг, вы прижимаете смоченный слюной палец к поверхности утюга.
Защита пальца от ожога осуществляется за счет влаги.
Тепло, поступающее от утюга к телу, идет на испарение воды.
Пока жидкость не улетучилась, вам комфортно.

Всем знакомо выражение: "Во рту пересохло". Рассказывают, что вождь одной из африканских деревень, чтобы определить, кто из двух подозреваемых говорит правду, приказал каждому лизнуть горячий нож. «Детектор лжи» сработал, и истина восторжествовала. А ведь лжец был определен в соответствии с законами физики!

Почему трещит лучина?
«Лучина трещит и мечет искры – к ненастью».
При повышенной влажности деревянные предметы отсыревают. При горении из них интенсивно испаряется влага. Увеличиваясь в объеме, пар с треском разрывает волокна древесины.

Как огурец от жары спасается...
Оказывается, температура огурца в любую жару на несколько градусов ниже температуры воздуха.
Чем это можно объяснить?

Почему летом дождевые капли крупные, а осенью мелкие?
Падающие летом мелкие дождевые капли обычно не достигают поверхности земли, так как они либо испаряются, либо поднимаются восходящими токами воздуха. Крупные же капли, образовавшихся во многих случаях от слияния меньших, достигают земли, не успев по пути испариться.

Осенью, когда температура воздуха заметно падает, мелкие холодные капельки дождя не успевают испариться, и вся их масса достигает поверхности земли.

ЗНАЕШЬ ОТВЕТ?

Когда стираешь одежду зимой, требуется несколько дней, чтобы она высохла. А если постирать ее летним днем, то она высыхает до вечера.
В чём дело?

Почему сырые дрова, даже разгоревшись, дают меньше тепла, чем сухие?

Почему вода гасит огонь костра?

Потейте на здоровье!

Существует два способа перехода жидкости в газообразное состояние: испарение и кипение.

Два этих способа отличаются тем, что испарение происходит с поверхности жидкости, а кипение происходит по всему объёму.

Кипение – быстрый процесс, и от кипящей воды за короткий срок не остаётся и следа, она превращается в пар.

Испарение происходит при любой температуре вне зависимости от давления, которое в обычных условиях всегда близко к 760 мм рт. ст. Испарение, в отличие от кипения, очень медленный процесс. Флакон с одеколоном, который мы забыли закрыть, окажется пустым через несколько дней; больше времени простоит блюдце с водой, но рано или поздно и оно окажется сухим.

Скорость испарения зависит от нескольких причин:

А) Скорость испарения зависит от рода жидкости.

Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.

Б) Испарение происходит тем быстрее, чем выше температура жидкости.

Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.

В) Скорость испарения жидкости зависит от площади её поверхности.

Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.

Г) Испарение жидкости происходит быстрее при ветре.

Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Для исследования потребуется:

А) стеклянные сосуды различной площади сечения, мензурки

Б) весы школьные

В) жидкости различной плотности (вода пресная, спирт, масло подсолнечное)

Г) морковь, картофель, яблоко, хлеб чёрный

Д) термометр

А) Исследование зависимости скорости испарения от рода испаряемых жидкостей.

Для исследования этой зависимости учащиеся берут 3 одинаковых сосуда, наполняя их спиртом, водой пресной, подсолнечным маслом и наблюдают испарение. Записывают дату и время начала эксперимента, последовательно фиксируя время полного испарения каждой исследуемой жидкости. По результатам измерений составляют таблицу, куда записывают скорость испарения жидкости по степени их уменьшения.

Вид жидкости 24. 11. 25. 11. 27. 11. 1. 12. 10. 12. 15. 12. 20. 12.

2006 2006 2006 2006 2006 2006 2006

Вода пресная 10мг 8мг 5мг 2мг 1мг 0мг 0мг

Спирт 10мг 7мг 4мг 0мг 0мг 0мг 0мг

Масло подсол. 10мг 9,5мг 9мг 8мг 7мг 6мг 5мг

Так как процесс испарения широко используется при сушке плодов, ягод, овощей и грибов, то это задание имеет важное практическое значение. Учащиеся экспериментально определяют процент выхода сушёных продуктов каждого вида, составляют таблицу выхода сушёных сельскохозяйственных продуктов:

Вид продукта Масса свежего продукта Масса сушёного продукта Выход сушёного продукта в % от первоначальной массы

Яблоки 207г 300мг 31г 15%

Морковь 34г 300мг 4г 900мг 14%

Картофель 80г 710мг 16г 9мг 21%

Хлеб (чёрный) 46г 100мг 25г 250мг 55%

Практическое применение результатов теории и эксперимента.

На основании полученных данных, учащиеся решили высчитать реальную прибыль от одной буханки чёрного хлеба, для изготовления сухариков.

1. буханка хлеба (750г) – 10 руб.

1. пачка сухариков (50 г) – 6 руб.

Используя табличные данные, высчитали, сколько сухариков получается из одной буханки хлеба:

46,1 г – 25,25 г Итого: 411г

Подсчитаем, сколько получится из этих сухариков пачек:

411/50 = 8,2 (пачек)

Тогда стоимость одной пачки:

8,2 * 6 = 49,2 (руб.)

49,2 – 10 = 39,2 (руб.)

Но, надо учитывать расходы на производство, заработную плату рабочим и упаковку. Хотя часть суммы может быть компенсирована тем, что хлеб приобретался не свежий, а не реализованный в срок.

По полученным данным, испарение жидкости зависит от их плотности: чем больше плотность, тем медленнее испаряется жидкость.

Вид жидкости Плотность жидкости, кг/куб. м Время испарения, часы.

Вода пресная 1000 580

Спирт 800 145

Масло подсолнечное 1000 5800

Обращает на себя внимание тот факт, что при одинаковой плотности пресной воды и подсолнечного масла, скорость испарения у этих жидкостей различная (плотность масла ученики высчитали сами, используя мензурку и ученические весы). Воспользовавшись дополнительной литературой и знаниями, уже полученными из курса химии, можно объяснить этот факт тем, что вода является веществом неорганическим, причём между молекулами особая связь – водородная. Эта связь является очень слабой. Масло относится к органическим веществам. Это сложные эфиры трехатомного спирта глицерина и карбоновых кислот. Из-за сложного строения – эта связь будет значительно устойчивее.

Б) Исследование испарения от температуры жидкости.

На газовую плиту устанавливается сосуд с водой и доводится до кипения. Затем учащиеся опускают сосуды с жидкостями: спиртом и пресной водой. По таблице температур кипения веществ находим, что температура кипения воды – 100 градусов, а спирта – 78 градусов. Объём жидкостей и площадь испарения одинаковая.

Название вещества Испарение при комнатной температуре, часы. Испарение при температуре кипения, часы.

Спирт 30 0,07

Вода пресная 120 0,25

Исследование показало, что при повышенной температуре испарение проходит быстрее, чем при комнатной температуре. Объясняется это явление тем, что при повышении температуры, скорость молекул возрастает, и они с лёгкостью покидают поверхность жидкости.

В) Исследование зависимости скорости испарения от площади поверхности испаряемых жидкостей.

Для эксперимента потребуется:

А) 3 рода жидкости (вода пресная, спирт, масло подсолнечное)

Б) 3 набора мензурок, в каждом из которых по 3 мензурки с различной площадью свободной поверхности.

Высчитываем площади поверхностей испаряемых жидкостей:

Вид жидкости Диаметр мензурки, см Площадь сечения, см

Большая 6,6 34,1946

Средняя 3,5 9,61625

Маленькая 3 7,065

Вид жидкости Время испарения, часы, большая Время испарения, часы, средняя Время испарения, часы, маленькая

Вода пресная 120 420 580

Спирт 30 105 145

Масло подсолнечное 1200 4100 5800

(Эксперимент с маслом учащиеся вычислили, используя соотношение испарившейся части масла и времени за которое оно испарилось)

После окончания эксперимента пришли к выводу: скорость испарения прямо пропорциональна площади свободной поверхности. В эксперименте нужно учесть неточность и погрешность измерений.

Г) Исследование зависимости скорости испарения от ветра.

Для эксперимента потребуется:

А) 2 рода жидкости (спирт, вода пресная)

Б) 4 одинаковых сосудов.

Название вещества Без ветра, часы С ветром, часы

Вода пресная 120 19

Эксперимент показывает, что при ветре испарение проходит быстрее, чем в безветрие. Этим опытом объясняется быстрое высыхание белья и луж после дождя.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.