Сложение действительных чисел. Действительные числа и действия с ними. Определение и примеры действительных чисел

Тема № 1.

Действительные числа.Числовые выражения. Преобразование числовых выражений

I. Теоретический материал

Основные понятия

· Натуральные числа

· Десятичная запись числа

· Противоположные числа

· Целые числа

· Обыкновенная дробь

· Рациональные числа

· Бесконечная десятичная дробь

· Период числа, периодическая дробь

· Иррациональные числа

· Действительные числа

· Арифметические действия

· Числовое выражение

· Значение выражения

· Обращение десятичной дроби в обыкновенную

· Обращение обыкновенной дроби в десятичную

· Обращение периодической дроби в обыкновенную

· Законы арифметических действий

· Признаки делимости

Числа, употребляемые при счете предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называются натуральными . Любое натуральное число можно записать с помощью десяти цифр : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую запись чисел называют десятичной.

Например : 24; 3711; 40125.

Множество натуральных чисел принято обозначать N .

Два числа, отличающиеся друг от друга только знаком, называются противоположными числами.

Например , числа 7 и – 7.

Числа натуральные, им противоположные, а также число нуль составляют множество целых Z .

Например : – 37; 0; 2541.

Число вида , где m – целое число, n – натуральное число, называется обыкновенной дробью . Заметим, что любое натуральное число можно представить в виде дроби со знаменателем 1.

Например : , .

Объединение множеств целых и дробных чисел (положительных и отрицательных) составляет множество рациональных чисел. Его принято обозначать Q .

Например : ; – 17,55; .

Пусть дана десятичная дробь. Ее значение не изменится, если справа приписать любое число нулей.

Например : 3,47 = 3,470 = 3,4700 = 3,47000… .

Такая десятичная дробь называется бесконечной десятичной дробью.

Любую обыкновенную дробь можно представить в виде бесконечной десятичной дроби.

Последовательно повторяющаяся группа цифр после запятой в записи числа называется периодом , а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической . Для краткости принято период записывать один раз, заключая его в круглые скобки.



Например : 0,2142857142857142857… = 0,2(142857).

2,73000… = 2,73(0).

Бесконечные десятичные непериодические дроби называются иррациональными числами.

Объединение множеств рациональных и иррациональных чисел составляет множество действительных чисел. Его принято обозначать R .

Например : ; 0,(23); 41,3574…

Число является иррациональным.

Для всех чисел определены действия трёх ступеней:

· действия I ступени: сложение и вычитание;

· действия II ступени: умножение и деление;

· действия III ступени: возведение в степень и извлечение корня.

Выражение, составленное из чисел, знаков арифметических действий и скобок, называется числовым.

Например : ; .

Число, полученное в результате выполнения действий, называется значением выражения .

Числовое выражение не имеет смысла , если содержит деление на нуль.

При нахождении значения выражения выполняются последовательно действия III ступени, II ступени и в конце действия I ступени. При этом необходимо учитывать размещение в числовом выражении скобок.

Преобразование числового выражения заключается в последовательном выполнении арифметических действий над входящими в него числами с использованием соответствующих правил (правило сложения обыкновенных дробей с разными знаменателями, умножения десятичных дробей и др.). Задания на преобразование числовых выражений в учебных пособиях встречаются в следующих формулировках: «Найдите значение числового выражения», «Упростите числовое выражение», «Вычислите» и др.

При нахождении значений некоторых числовых выражений приходится выполнять действия с дробями разного вида: обыкновенными, десятичными, периодическими. В этом случае бывает необходимо обратить обыкновенную дробь в десятичную или выполнить обратное действие – заменить периодическую дробь обыкновенной.

Чтобы обратить десятичную дробь в обыкновенную , достаточно в числителе дроби записать число, стоящее после запятой, а в знаменателе – единицу с нулями, причем нулей должно быть столько, сколько цифр находится справа от запятой.

Например : ; .

Чтобы обратить обыкновенную дробь в десятичную , надо разделить ее числитель на знаменатель по правилу деления десятичной дроби на целое число.

Например : ;

;

.

Чтобы обратить периодическую дробь в обыкновенную , надо:

1) из числа, стоящего до второго периода, вычесть число, стоящее до первого периода;

2) записать эту разность числителем;

3) в знаменателе написать цифру 9 столько раз, сколько цифр в периоде;

4) дописать в знаменателе столько нулей, сколько цифр между запятой и первым периодом.

Например : ; .

Законы арифметических действий над действительными числами

1. Переместительный (коммутативный) закон сложения: от перестановки слагаемых значение суммы не меняется:

2. Переместительный (коммутативный) закон умножения: от перестановки множителей значение произведения не меняется:

3. Сочетательный (ассоциативный) закон сложения: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой:

4. Сочетательный (ассоциативный) закон умножения: значение произведения не изменится, если какую-либо группу множителей заменить их произведением:

.

5. Распределительный (дистрибутивный) закон умножения относительно сложения: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения:

Свойства 6 – 10 называют законами поглощения 0 и 1.

Признаки делимости

Свойства, позволяющие в некоторых случаях, не производя деление, определить, делится ли одно число на другое, называются признаками делимости .

Признак делимости на 2. Число делится на 2 тогда и только тогда, когда запись числа оканчивается на четную цифру. То есть на 0, 2, 4, 6, 8.

Например : 12834; –2538; 39,42.

Признак делимости на 3 . Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например : 2742; –17940.

Признак делимости на 4 . Число, содержащее не менее трех цифр, делится на 4 тогда и только тогда, когда делится на 4 двузначное число, образованное последними двумя цифрами заданного числа.

Например : 15436; –372516.

Признак делимости на 5 . Число делится на 5 тогда и только тогда, когда его последняя цифра либо 0, либо 5.

Например : 754570; –4125.

Признак делимости на 9 . Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например : 846; –76455.

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелœепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинœейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем крайне важно понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - ϶ᴛᴏ числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (ᴛ.ᴇ. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа - ϶ᴛᴏ числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа - ϶ᴛᴏ числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, к примеру . В случае если, к примеру, попытаться записать число в виде десятичной дроби, используя известный алгоритм делœения уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».

Вообще, периодическая дробь - ϶ᴛᴏ бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

К примеру, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа - ϶ᴛᴏ числа, ĸᴏᴛᴏᴩᴏᴇ применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - ϶ᴛᴏ числа, которые получаются в результате выполнения различных операций с рациональными числами (к примеру, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел - ϶ᴛᴏ .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения

Урок №2.

Тема урока. Действительные числа.

Цель урока. Ввести понятие действительного числа. Действия с действительными числами.

Ход урока.

I. Организационный момент. Сообщение темы и цели урока.

II . Повторение пройденного материала.

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения знаний (самостоятельная работа).

1 вариант. 2 вариант.

1. Найдите значения выражений:

1) ; 2) ; 3) 1) 2) 3)

2. Вычислить:

1) 2) 1) 2)

3) 4) 3) ; 4)

III . Изучение нового материала.

1.Рациональных чисел недостаточно для решения задач измерения. Так диагональ квадрата с единичной стороной не может быть измерена, если использовать только рациональные числа(2,5т.л. до н.э.)

Для задач измерения можно выбрать стандартную величину - длину отрезка и задать числа геометрически – отрезками, а точнее их отношениями к выбранному единичному отрезку (единице масштаба). Если назвать числом отношение отрезка к единичному, то возникает задача записи числа. Удобна запись числа в виде десятичной дроби, отражающей некоторый процесс измерения.

Измеряя диагональ квадрата со стороной 1, мы сначала отложим целый

единичный отрезок и получим число 1. В остатке будем откладывать деся-

тую часть единичного отрезка. Она отложится 4 раза, и останется отрезок

длины, меньшей . Получим десятичную дробь 1,4. Затем делим

снова на 10 частей, откладываем новый отрезок в остатке и записываем

результат. Получим последовательность десятичных дробей с увеличива-

ющимся количеством знаков после запятой: 1; 1.4; 1,41; 1,414; 1,4142;… .

Эту последовательность удобно представить в виде одной беско-

нечной десятичной дроби 1,414213562373095…, которую и можно считать

числом. Итак, по определению действительное число – это бесконечная

непериодическая десятичная дробь.

2. Конечная десятичная дробь. Рациональное число, представленное

Дробью, в знаменателе которой стоят только двойки и пятерки, запишется

конечной десятичной дробью, так как на каком-то шаге десятичный процесс измерения закончится – некоторая доля единичного отрезка отложится в остатке целое число раз.

Например:

Если у некоторой несократимой дроби в знаменателе есть простые числа, отличные от 2 и 5, то процесс десятичного измерения станет периодическим, и цифры (одна или несколько) начнут периодически повторяться.

Например:

3. Иррациональные числа – это числа, не являющиеся рациональными. Они записываются бесконечными непериодическими десятичными дробями.

Например: .

Объединение множества рациональных и иррациональных чисел образует множество действительных чисел R . ( ).

4 . Зачем понадобились действительные числа, и хватает ли их для решения задач?

Добавление к рациональным числам иррациональных чисел было вызвано необходимостью измерения длины любых отрезков. С помощью так построенных действительных чисел можно измерять многие другие величины, которые были названы скалярными .

5 . Почему диагональ квадрата со стороной, равной единице, нельзя измерить рациональным числом?

6. Действия над действительными числами.

Бесконечная десятичная дробь – это последовательность приближений конечными десятичными дробями к данному действительному числу. Для выполнения арифметических операций над ними эти операции делаются с конечными десятичными дробями.

Например: . Получим:

Аналогично (с помощью калькулятора).

Действительные числа можно изобразить точками на числовой оси. Если два числа b изображены точками на числовой оси, то расстояние между А и В равно модулю разности чисел a u b : Свойства:

I v . Закрепление пройденного материала.

1. Ответить на вопросы.

1) Всякое ли целое число является рациональным? (Да)

2) Является ли число иррациональным? (Нет)

3) Всегда ли сумма рациональных чисел является рациональным числом? (Нет. Сумма периодических дробей.)

4) Может ли при сложении иррациональных чисел получиться рациональное число? (Нет)

5) Может ли частное от деления рационального числа на иррациональное быть рациональным числом? (Нет)

6) Всегда ли квадрат иррационального числа является рациональным числом? (Нет. ).

2. Решение примеров.

1) Приведите примеры рациональных и иррациональных чисел.

2) Укажите рациональные и иррациональные числа:

3) Верно ли, что: а) . б)


В данной статье собраны основные сведения про действительные числа . Сначала дано определение действительных чисел и приведем примеры. Дальше показано положение действительных чисел на координатной прямой. А в заключение разобрано, как действительные числа задаются в виде числовых выражений.

Навигация по странице.

Определение и примеры действительных чисел

Действительные числа в виде выражений

Из определения действительных чисел понятно, что действительными числами являются:

  • любое натуральное число ;
  • любое целое число ;
  • любая обыкновенная дробь (как положительная, так и отрицательная);
  • любое смешанное число;
  • любая десятичная дробь (положительная, отрицательная, конечная, бесконечная периодическая, бесконечная непериодическая).

Но очень часто действительные числа можно видеть в виде , и т.п. Более того, сумма, разность, произведение и частное действительных чисел также представляют собой действительные числа (смотрите действия с действительными числами ). К примеру, - это действительные числа.

А если пойти дальше, то из действительных чисел с помощью арифметических знаков, знаков корня, степеней, логарифмических, тригонометрических функций и т.п. можно составлять всевозможные числовые выражения, значения которых также будут действительными числами. Например, значения выражений и есть действительные числа.

В заключение этой статьи заметим, что следующим этапом расширения понятия числа является переход от действительных чисел к комплексным числам .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (т.е. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа – это числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, например . Если, например, попытаться записать число в виде десятичной дроби, используя известный алгоритм деления уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».



Вообще, периодическая дробь – это бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

Например, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа – это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел – это .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения