Атомы.  атом это что такое атом: определение — философия.нэс

от гр. а - отрицательная частица и temnein - разделять): наименьший элемент тела, являющийся, как показывает само слово, неделимым (по крайней мере так считалось вплоть до начала нашего века).

Отличное определение

Неполное определение ↓

АТОМ

(греч. ?????? - неделимый) - мельчайшая частица хим. элемента, сохраняющая его свойства. Понятие «А.» как мельчайшей неделимой частицы вещества (материи) было введено в V в. до н.э. Демокритом. Философы и естествоиспытатели XVI- XVIII вв. использовали это понятие наряду с терминами «корпускула» (лат. corpuscula - маленькое тельце) и «индивид» (лат. individuum - букв. неделимый) примерно в том же смысле. До конца XIX в. в физике и химии господствовало представление о неделимости А., но после открытия Дж.Дж.Томсоном электрона (1897) стало ясно, что А. имеет сложную структуру. В результате опытов Э.Резерфорда (1909-11) была установлена ядерная модель А. Первая квантовая теория А. была разработана Н.Бором (1911-13). По совр. представлениям А. состоит из ядра и электронных оболочек. Ядро состоит из протонов и нейтронов; в нем сосредоточена практически вся масса А. и весь положительный заряд: qя = Ze, где Z - порядковый номер элемента в табл. Менделеева, e = 1,6 · 10-19 Кл - элементарный заряд. Число протонов в ядре Np = Z. Электроны движутся вокруг ядра, образуя электронные оболочки. Число электронов в А. также равно Z. Их отрицательный заряд -Ze нейтрализует положительный заряд ядра, что и приводит к нейтральности А. Число нейтронов в ядре Nн = A–Z, где A - массовое число (целое число, ближайшее к массе А. в табл. Менделеева). Электроны по энергетическим состояниям и оболочкам распределяются в соответствии с принципом Паули. Средний размер А. равен ~10-10 м, его ядра ~10-15 м. Ф.М.Дягилев

Каждый день мы пользуемся какими-нибудь предметами: берем их в руки, совершаем над ними любые манипуляции - переворачиваем, рассматриваем, в конце концов, ломаем. А вы никогда не задумывались о том, из чего состоят эти предметы? "Чего уж здесь думать? Из металла/дерева/пластика/ткани!" - недоуменно ответят многие из нас. Отчасти это правильный ответ. А из чего состоят эти материалы - металл, дерево, пластик, ткань и многие другие вещества? Сегодня мы и обсудим этот вопрос.

Молекула и атом: определение

У знающего человека ответ на него прост и банален: из атомов и молекул. Но некоторые люди озадачиваются и начинают сыпать вопросами: "Что такое атом и молекула? Как они выглядят?" и т.д., и т.п. Ответим на эти вопросы по порядку. Ну, во-первых, что такое атом и молекула? Скажем вам сразу, что эти определения - не одно и то же. И даже более того - это совершенно разные термины. Итак, атом - это самая маленькая часть химического элемента, которая является носителем его свойств, частица вещества мизерных массы и размеров. А молекула - это электрически нейтральная частица, которую образуют несколько соединенных атомов.

Что такое атом: строение

Атом состоит из электронной оболочки и (фото). В свою очередь ядро состоит из протонов и нейтронов, а оболочка - из электронов. В атоме протоны заряжены положительно, электроны - отрицательно, а нейтроны вообще не заряжены. Если число протонов соответствует то атом является электронейтральным, т.е. если мы прикоснемся к веществу, образованному из молекул с такими атомами, то не почувствуем ни малейшего электрического импульса. И даже сверхмощные ЭВМ его не уловят по причине отсутствия последнего. Но случается так, что протонов больше, чем электронов, и наоборот. Тогда такие атомы правильнее будет называть ионами. Если в нем больше протонов, то он электрически положительный, если же преобладают электроны - электрически отрицательный. В каждом определенном атоме есть строгое количество протонов, нейтронов и электронов. И его можно высчитать. Шаблон для решения задач по нахождению количества этих частиц выглядит так:

Хим. элемент - R (вставить название элемента)
Протоны (p) - ?
Электроны (е) - ?
Нейтроны (n) - ?
Решение:
р = порядковый № хим. элемента R в периодической системе им Д.И. Менделеева
е = р
n = А r (R) - № R

Что такое молекула: строение

Молекула - это наименьшая частица химического вещества, то есть она уже непосредственно входит в его состав. Молекула определенного вещества состоит из нескольких одинаковых или различных атомов. Особенности строения молекул зависят от физических свойств вещества, в котором они присутствуют. Молекулы состоят из электронов и атомов. Расположение последних можно узнать с помощью структурной формулы. позволяет определить ход химической реакции. Обычно они нейтральные (не имеют электрического заряда), и у них нет неспаренных электронов (все валентности являются насыщенными). Однако они могут быть и заряженными, тогда их правильное название - ионы. Также у молекул могут быть неспаренные электроны и ненасыщенные валентности - в этом случае их называют радикалами.

Заключение

Теперь вы знаете, что такое атом и Все без исключения вещества состоят из молекул, а последние, в свою очередь, построены из атомов. Физические свойства вещества определяют расположение и связь атомов и молекул в нем.

Атом (от греч. άτομοσ - неделимый) - наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из плотного ядра из положительно заряженных протонов и электрически нейтральных нейтронов, которое окружено гораздо большей облаком отрицательно заряженных электронов. Когда число протонов соответствует числу электронов, атом электрически нейтрален, в противном случае это ион, с определенным зарядом. Атомы классифицируются по числу протонов и нейтронов: число протонов определяет химический элемент, а число нейтронов определяет нуклид элемента.

Образуя между собой связи, атомы объединяются в молекулы и большие по размеру твердые тела.

О существовании мельчайших частиц вещества человечество догадывалось еще с давних времен, однако подтверждения существования атомов было получено лишь в конце 19-го века. Но почти сразу же стало понятно, что атомы, в свою очередь, имеют сложное строение, которой определяются их свойства.

Концепция атома как наименьшей неделимой частицы материи впервые была предложена древнегреческими философами. В 17-м и 18-м веках химики установили, что химические вещества вступают в реакции в определенных пропорциях, которые выражаются с помощью малых чисел. Кроме того они выделили определенные простые вещества, которые назвали химическими элементами. Эти открытия привели к возрождению идеи о неделимые частицы. Развитие термодинамики и статистической физики показал, что тепловые свойства тел можно объяснить движением таких частиц. В конце концов были экспериментально определены размеры атомов.

В конце 19-го и в начале 20-го веков, физики открыли первую из субатомных частиц - электрон, а несколько позже атомное ядро, таким образом показав, что атом не является неделим. Развитие квантовой механики позволил объяснить не только строение атомов, а также ихни свойства: оптические спектры, способность вступать в реакции и образовывать молекулы, т.

Общая характеристика строения атома

Современные представления о строении атома базируются на квантовой механике.

На популярном уровне строении атома можно изложить в рамках волновой модели, которая опирается на модель Бора, но учитывает также дополнительные сведения по квантовой механике.

По этой модели:

Атомы состоят из элементарных частиц (протонов, электронови нейтронов). Масса атома в основном сосредоточена в ядре, поэтому большая часть объема относительно пустая. Ядро окружено электронами. Количество электронов равно числу протонов в ядре, число протонов определяет порядковый номер элемента в периодической системе. В нейтральном атоме суммарный отрицательный заряд электронов равен положительному заряду протонов. Атомы одного элемента с разным количеством нейтронов называются изотопами.
В центре атома находится крошечное, положительно заряженное ядро, состоящее из протонов и нейтронов.
Ядро атома примерно в 10 000 раз меньше, чем сам атом. Таким образом, если увеличить атом до размеров аэропорту Борисполь, размер ядра будет меньше размера шарика для настольного тенниса.
Ядро окружено электронной облаком, которое занимает большую часть его объема. В электронной облаке можно выделить оболочки, для каждых из которых существует несколько возможных орбиталей. Заполненные орбитали составляют электронную конфигурацию, характерную для каждого химического элемента.
Каждая орбиталь может содержать до двух электронов, характеризуются тремя квантовыми числами: основным, орбитальным и магнитным.
Каждый электрон на орбитали имеет уникальное значение четвертой квантового числа: спина.
Орбитали определяются специфическим распределением вероятности того, где именно можно найти электрон. Примеры орбиталей и их обозначения приведены на рисунке справа. «Границей» орбитали считается расстояние, на котором вероятность того что электрон может находиться вне ее меньше 90%.
Каждая оболочка может содержать не более от строго определенного числа электронов. Например, ближайшая к ядру оболочка может иметь максимум два электрона, следующая - 8, третья от ядра - 18 и так далее.
Когда электроны присоединяются к атому, они опускаются на орбиталь с низкой энергией. Только электроны внешней оболочки могут участвовать в образовании межатомных связей. Атомы могут отдавать и присоединять электроны, становясь положительно или отрицательно заряженными ионами. Химические свойства элемента определяются тем, с какой легкостью ядро может отдавать или приобретать электроны. Это зависит как от числа электронов так и от степени заполненности внешней оболочки.
Размер атома

Размер атома является величиной, трудно поддается измерению, ведь центральное ядро окружает размыта электронное облако. Для атомов, образующих твердые кристаллы, расстояние между смежными узлами кристаллической решетки может служить приближенным значением их размера. Для атомов, кристаллов не формируют, используют другие техники оценки, включая теоретические расчеты. Например, размер атома водорода оценивают как 1,2 × 10-10 м. Это значение можно сравнить с размером протона (что является ядром атома водорода): 0,87 × 10-15 м и убедиться в том, что ядро атома водорода в 100 000 раз меньше, чем сам атом. Атомы других элементов сохраняют приблизительно то же соотношение. Причиной этого является то, что элементы с большим позитивно-заряженным ядром притягивают электроны сильнее.

Еще одной характеристикой размеров атома радиус ван дер Ваальса - расстояние, на которую до данного атома может приблизиться другой атом. Межатомные расстояния в молекулах характеризуются длиной химических связей или ковалентной радиусом.

Ядро

Основная масса атома сосредоточена в ядре, которое состоит из нуклонов: протонов и нейтронов, связанных между собой силами ядерного взаимодействия.

Количество протонов в ядре атома определяет его атомным номером и то, которому элементу принадлежит атом. Например, атомы углерода содержат 6 протонов. Все атомы с определенным атомным номером имеют одинаковые физические характеристики и проявляют одинаковые химические свойства. В периодической таблице элементы перечислены в порядке возрастания атомного номера.

Общее количество протонов и нейтронов в атоме элемента определяет его атомную массу, поскольку протон и нейтрон имеют массу приблизительно равную 1 а.е.м.. Нейтроны в ядре не влияют на то, которому элементу принадлежит атом, но химический элемент может иметь атомы с одинаковым количеством протонов и разным количеством нейтронов. Такие атомы имеют одинаковый атомный номер, но разную атомную массу, и называются изотопами элемента. Когда пишут название изотопа, после нее пишут атомную массу. Например, изотоп углерод-14 содержит 6 протонов и 8 нейтронов, что в сумме составляет атомную массу 14. Другой популярный метод нотации состоит в том, что атомная масса сказывается верхним индексом перед символом элемента. Например, углерод-14 обозначается, как 14C.

Атомная масса элемента приведена в периодической таблице является усредненным значением массы изотопов встречающихся в природе. Усреднение проводится согласно распространенности изотопа в природе.

С увеличением атомного номера растет положительный заряд ядра, а, следовательно, кулоновское отталкивание между протонами. Чтобы удержать протоны вместе необходимо все больше нейтронов. Однако большое количество нейтронов нестабильна, и это обстоятельство накладывает ограничение на возможный заряд ядра и число химических элементов, существующих в природе. Химические элементы с большими атомными номерами имеют очень малый время жизни, могут быть созданы только при бомбардировке ядер легких элементов ионами, и наблюдаются лишь во время экспериментов с использованием ускорителей. По состоянию на февраль 2008 тяжелым синтезированным химическим элементом является унуноктий

Многие изотопов химических элементов нестабильны и распадаются со временем. Это явление используется радиоелементним тест для определения возраста объектов имеет большое значение для археологии и палеонтологии.

Модель Бора

Модель Бора - первая физическая модель, которая сумела правильно описать оптические спектры атома водорода. После развития точных методов квантовой механики модель Бора имеет только историческое значение, но благодаря своей простоте она до сих пор широко преподается и используется для качественного понимания строения атома.

Модель Бора базируется на планетарной модели Резерфорда, описывающий атом как маленькое положительно заряженное ядро с отрицательно заряженными электронами на орбитах на разных уровнях, что напоминает структуру солнечной системы. Резерфорд предложил планетарную модель, чтобы объяснить результаты своих экспериментов по рассеянию альфа-частиц металлической фольгой. По планетарной моделью атом состоит из тяжелого ядра, вокруг которого вращаются электроны. Но то, чем электроны, вращающиеся вокруг ядра, не падают по спирали на него, было непостижимым для тогдашних физиков. Действительно, согласно классической теории электромагнетизма электрон, который вращается вокруг ядра должен излучать электромагнитные волны (свет), что привело бы к постепенной потере им энергии и падения на ядро. Поэтому, каким образом атом может вообще существовать? Более того, исследование электромагнитного спектра атомов показали, что электроны в атоме могут излучать свет только определенной частоты.

Эти трудности были преодолены в модели предложенной Нильсом Бором в 1913, которая постулирует, что:

Электроны могут находиться только на орбитах, имеющих дискретные квантованные энергии. То есть возможны не любые орбиты, а лишь некоторые специфические. Точные значения энергий допустимых орбит зависят от атома.
Законы классической механики не действуют, когда электроны переходят из одной допустимой орбиты на другую.
Когда электрон переходит с одной орбиты на другую, разница в энергии излучается (или поглощается) единственным квантом света (фотоном), частота которого напрямую зависит от энергетической разницы между двумя орбитами.

где ν - это частота фотона, E - разность энергий, а h - константа пропорциональности, также известная как постоянная Планка.
Определив, что можно записать

где ω это угловая частота фотона.
Допустимые орбиты зависят от квантованных значений углового орбитального момента L, описываемая уравнением

где n = 1,2,3,...
и называется квантовым числом углового момента.
Эти предположения позволили объяснить результаты тогдашних наблюдений, например, почему спектр состоит из дискретных линий. Предположение (4) утверждает, что наименьшее значение n - это 1. Соответственно, наименьший допустимый радиус атома равен 0,526 Å (0,0529 нм = 5,28 · 10-11 м). Это значение известно как радиус Бора.

Иногда модель Бора называют Полуклассическая, потому, что, хотя она включает некоторые идеи квантовой механики, она не является полным квантовомеханических описанием атома водорода. Однако модель Бора была значительным шагом к созданию такого описания.

При строгом квантовомеханической описании атома водорода уровни энергии находятся из решения стационарного уравнения Шредингера. Эти уровни характеризуются тремя указанными выше квантовыми числами, формула для квантования углового момента другая, квантовое число углового момента равен нулю для сферических s-орбиталей, единицы для вытянутых гантелеобразную p-орбиталей и т.д. (см. рисунок вверху).

Энергия атома и его квантование

Значение энергии, которые может иметь атом, исчисляются и интерпретируются, исходя из положений квантовой механики. При этом учитываются такие факторы, как электростатическое взаимодействие электронов с ядром и электронов между собой, спины электронов, принцип Тождественные частицы. В квантовой механике состояние, в котором находится атом описывается волновой функцией, которую можно найти из решения уравнения Шредингера. Существует определенный набор состояний, каждое из которых имеет определенное значение энергии. Состояние с наименьшей энергией называется основным состоянием. Другие состояния называются возбужденными. Атом находится в возбужденном состоянии конечное время, излучая рано или поздно квант электромагнитного поля (фотон) и переходя в основное состояние. В основном состоянии атом может находиться долго. Чтобы возбудиться, ему нужна внешняя энергия, которая может поступить к нему только из внешней среды. Атом излучает или поглощает свет только определенных частот, соответствующих разности энергий его состояний.

Возможные состояния атома индексируются квантовыми числами, такими как спин, квантовое число орбитального момента, квантовое число полного момента. Подробнее об их классификации можно прочитать в статье электронные терм

Электронные оболочки сложных атомов

Сложные атомы имеют десятки, а для очень тяжелых элементов, даже сотни электронов. Согласно принципу Тождественные частицы электронные состояния атомов формируются всеми электронами, и невозможно определить, где находится каждый из них. Однако, в так называемом одноэлектронном приближении, можно говорить об определенных энергетические состояния отдельных электронов.

Согласно этим представлениям существует определенный набор орбиталей, которые заполняются электронами атома. Эти орбитали образуют определенную электронную конфигурацию. На каждой орбитали может находиться не более двух электронов (принцип запрета Паули). Орбитали группируются в оболочки, каждая из которых может иметь лишь определенное фиксированное число орбиталей (1, 4, 10 и т.д.). Орбитали подразделяют на внутренние и внешние. В основном состоянии атома внутренние оболочки полностью заполнены электронами.

На внутренних орбиталях электроны находятся очень близко к ядру и сильно к нему привязаны. Чтобы вырвать электрон из внутренней орбитали нужно предоставить ему большую энергию, до нескольких тысяч электрон-вольт. Такую энергию электрон на внутренней оболочке может получить лишь поглотив квант рентгеновского излучения. Энергии внутренних оболочек атомов индивидуальны для каждого химического элемента, а потому по спектру рентгеновского поглощения можно идентифицировать атом. Это обстоятельство используют в рентгеновском анализе.

На внешней оболочке электроны находятся далеко от ядра. Именно эти электроны участвуют в формировании химических связей, поэтому внешнюю оболочку называют валентной, а электроны внешней оболочки валентными электронами.

Квантовые переходы в атоме

Между различными состояниями атомов возможны переходы, вызванные внешним возмущением, чаще электромагнитным полем. Вследствие квантования состояний атома оптические спектры атомов состоят из отдельных линий, если энергия кванта света не превышает энергию ионизации. При более высоких частотах оптические спектры атомов становятся непрерывными. Вероятность возбуждения атома светом падает с дальнейшим ростом частоты, но резко возрастает при определенных характерных для каждого химического элемента частотах в рентгеновском диапазоне.

Возбужденные атомы излучают кванты света с теми же частотами, на которых происходит поглощение.

Переходы между различными состояниями атомов могут вызываться также взаимодействием с быстрыми заряженными частицами.

Химические и физические свойства атома

Химические свойства атома определяются в основном валентными электронами - электронами на внешней оболочке. Количество электронов на внешней оболочке определяет валентность атома.

Атомы последнего столбца периодической таблице элементов имеют полностью заполненную внешнюю оболочку, а для перехода электрона на следующую оболочку нужно предоставить атома очень большую энергию. Поэтому эти атомы инертны, не склонны вступать в химические реакции. Инертные газы изреживаются и кристаллизуются только при очень низких температурах.

Атомы первого столбца периодической таблицы элементов имеют на внешней оболочке один электрон, и является химически активными. Их валентность равна 1. Характерным типом химической связи для этих атомов в кристаллизованного состоянии является металлический связь.

Атомы второго столбика периодической таблицы в основном состоянии имеют на внешней оболочке 2 s-электроны. Их внешняя оболочка заполнена, поэтому они должны быть инертными. Но для перехода из основного состояния с конфигурацией электронной оболочки s2 в состояние с конфигурацией s1p1 нужно очень мало энергии, поэтому эти атомы имеют валентность 2, однако они проявляют меньшую активности.

Атомы третьего столбика периодической таблице элементов имеют в основном состоянии электронную конфигурацию s2p1. Они могут проявлять разную валентность: 1, 3, 5. Последняя возможность возникает тогда, когда электронная оболочка атома дополняется до 8 электронов и становится замкнутой.

Атомы Четвертая колонка периодической таблицы элементов своем имеют валентность 4 (например, углекислый газ CO2), хотя возможна и валентность 2 (например, угарный газ CO). До этого столбика принадлежит углерод - элемент, который образует самые разнообразные химические соединения. Соединениям углерода посвящен особый раздел химии - органическая химия. Другие элементы этого столбика - кремний, германий при обычных условиях является твердотельными полупроводниками.

Элементы пятой колонки имеют валентность 3 или 5.

Элементами шестого столбца периодической таблицы в основном состоянии имеют конфигурацию s2p4 и общий спин 1. Поэтому они двухвалентные. Существует также возможность перехода атома в возбужденное состояние s2p3s" со спином 2, в котором валентность равна 4 или 6.

Элементам седьмой колонки периодической таблицы не хватает одного электрона на внешней оболочке для того, чтобы ее заполнить. Они в основном одновалентные. Однако могут вступать в химические соединения в возбужденных состояниях, проявляя валентности 3,5,7.

Для переходных элементов характерно заполнение внешней s-оболочки, прежде чем полностью заполняется d-оболочка. Поэтому они в основном имеют валентность 1 или 2, но в некоторых случаях один из d-электронов участвует в образовании химических связей, и валентность становится равной трем.

При образовании химических соединений атомные орбитали видоизменяются, деформируются и становятся молекулярных орбиталей. При этом происходит процесс гибридизации орбиталей - образование новых орбиталей, как специфической суммы базовых.

История понятия атом

Подробнее в статье атомистика
Понятие атом, как и само слово, имеет древнегреческое происхождение, хотя истинность гипотезы о существовании атомов нашла свое подтверждение только в 20 веке. Основной идеей, которая стояла за данным понятием протяжении всех столетий, было представление о мире как о наборе огромного количества неделимых элементов, которые являются очень простыми по своей структуре и существуют от начала времен.

Первые проповедники атомистического учения

Первым начал проповедовать атомистическое учения в 5 веке до нашей эры философ Левкипп. Затем эстафету подхватил его ученик Демокрит. Сохранились лишь отдельные фрагменты их работ, из которых становится ясно, что они исходили из небольшого количества достаточно абстрактных физических гипотез:

«Сладость и горечь, жара и холод смысл определения, на самом же [только] атомы и пустота».

По Демокритом, вся природа состоит из атомов, мельчайших частиц вещества, которые покоятся или движутся в совершенно пустом пространстве. Все атомы имеют простую форму, а атомы одного сорта тождественны; многообразие природы отражает многообразие форм атомов и многообразие способов, в которые атомы могут сцепляться между собой. И Демокрит, и Левкип считали, что атомы, начав двигаться, продолжают двигаться по законам природы.

Наиболее тяжелым для древних греков был вопрос о физической реальности основных понятий атомизма. В каком смысле можно было говорить о реальности пустоты, если она, не имея материи, не может иметь никаких физических свойств? Идеи Левкипа и Демокрита не могли служить удовлетворительной основой теории вещества в физическом плане, поскольку не объясняли, не из чего состоят атомы, ни почему атомы неделимы.

Через поколение после Демокрита, Платон предложил свое решение этой проблемы: «мельчайшие частицы принадлежат не царству материи, а царству геометрии; они представляют собой различные телесные геометрические фигуры, ограниченные плоскими треугольниками».

Понятие атома в индийской философии

Через тысячу лет отвлеченные рассуждения древних греков проникли в Индию и были восприняты некоторыми школами индийской философии. Но если западная философия считала, что атомистическая теория должна стать конкретной и объективной основой теории материального мира, индийская философия всегда воспринимала вещественный мир как иллюзию. Когда атомизм появился в Индии, он принял форму теории, согласно которой реальность в мире имеет процесс, а не субстанция, и что мы присутствуем в мире как звенья процесса, а не как сгустки вещества.

То есть и Платон, и индийские философы считали примерно так: если природа состоит из мелких, но конечных по размерам, долей, то почему их нельзя разделить, хотя бы в воображении, на еще более мелкие частицы, которые стали предметом дальнейшего рассмотрения?

Атомистическая теория в римской науке

Римский поэт Лукреций (96 - 55 годы до н.э.) был одним из немногих римлян, которые проявляли интерес к чистой науки. В своей поэме О природе вещей (De rerum natura) он подробно выстроил факты, свидетельствующие в пользу атомистической теории. Например, ветер, дующий с большой силой, хотя никто не может его видеть, наверное состоит из частиц, утечка чтобы их разглядеть. Мы можем чувствовать вещи на расстоянии по запаху, звука и теплу, которые распространяются, оставаясь невидимыми.

Лукреций связывает свойства вещей со свойствами их составляющих, т.е. атомов: атомы жидкости малы и имеют округлую форму, поэтому жидкость течет так легко и просачивается через пористую вещество, тогда как атомы твердых веществ имеют крючки, которыми они сцеплены между собой. Так же и различные вкусовые ощущения и звуки разной громкости состоят из атомов соответствующих форм - от простых и гармоничных к извилистым и нерегулярных.

Но учение Лукреция были осуждены церковью, поскольку он дал довольно материалистическую их интерпретацию: например, представление о том, что Бог, запустив один раз атомный механизм, более не вмешивается в его работу, или то, что душа умирает вместе с телом.

Первые теории о строении атома

Одна из первых теорий о строении атома, которая имеет уже современные очертания, была описана Галилеем (1564-1642). По его теории вещество состоит из частиц, которые не находятся в состоянии покоя, а под воздействием тепла движутся во все стороны; тепло - является ничем иным как движением частиц. Структура частиц является сложной, и если лишить любую часть ее материальной оболочки, то изнутри брызнет свет. Галилей был первым, кто, хотя и в фантастической форме, представил строение атома.

Научные основы

В 19 веке Джон Дальтон получил свидетельство существования атомов, но предполагал, что они неделимы. Эрнест Резерфорд показал экспериментально, что атом состоит из ядра, окруженного отрицательно заряженными частицами - электронами.

Атом (от греч. «неделимый») - некогда мельчайшая частица вещества микроскопических размеров, наименьшая часть химического элемента, которая носит его свойства. Составляющие атома - протоны, нейтроны, электроны - этих свойств уже не имеют и образуют их в совокупности. Ковалентные атомы образуют молекулы. Ученые изучают особенности атома, и хотя они уже довольно неплохо изучены, не упускают возможности найти что-то новое - в частности, в области создания новых материалов и новых атомов (продолжающих таблицу Менделеева). 99,9% массы атома приходится на ядро.

Ученые из Университета Рэдбуда обнаружили новый механизм магнитного хранения информации в мельчайшей единице вещества: одном атоме. Несмотря на то, что доказательство принципа было продемонстрировано при очень низких температурах, этот механизм обещает функционировать и при комнатной температуре. Таким образом, можно будет хранить в тысячи раз больше информации, чем сейчас на жестких дисках. Результаты работы были опубликованы в Nature Communications.

А́том (от др.-греч. ἄτομος - неделимый) - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро , несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N - определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы .

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием - наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.

Масса

Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10−24 г. Водород-1 - наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. Масса атома приблизительно равна произведению массового числа на атомную единицу массы Самый тяжёлый стабильный изотоп - свинец-208 с массой 207,9766521 а. е. м.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·1023). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.

Размер

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом - это атом гелия, имеющий радиус 32 пм, а самый большой - атом цезия (225 пм). Эти размеры в тысячи раз меньше длины волны видимого света (400-700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2 секстиллиона (2·1021) атомов кислорода, и в два раза больше атомов водорода. Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.

Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.