Функция у = √х, ее свойства и график — Гипермаркет знаний. График функции

    На взгляд некоторых учёных главное назначение графиков состоит в их значении для эвристической деятельности — иллюстрации к изложению теории и, прежде всего, указание примеров и контрпримеров для доказательства или опровержения связей между различными свойствами функций, т.е. использование вырабатываемой в соответствии с требованиями стандарта «двуязычного» мышления, математического билингвизма.

    Широкое применение нашла логарифмическая функция в астрономии : Например по ней изменяется величина блеска звезд, если сравнивать характеристики блеска отмеченные глазом и с помощью приборов, то можно составить следующий график: Здесь по вертикальной оси отложим блеск звезд в единицах Гиппарха (распределение звезд по субъективным характеристикам (на глаз) на 6 групп), а на горизонтальной - показания приборов. По графику видно, что объективные и субъективные характеристики не пропорциональны, а прибор регистрирует возрастание блеска не на одну и ту же величину, а в 2,5 раза. Эта зависимость выражается логарифмической функцией.

Рассмотри как же они строятся.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .

На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 — 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).

Например, для функции f(х) = х 2 — 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 — 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:

x x 1 x 2 x 3 ... x k
y f(x 1) f(x 2) f(x 3) ... f(x k)

Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:

x -2 -1 0 1 2
y -1 0 1 2 3

Соответствующие пять точек показаны на рис. 48.

На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции, как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.

График функции у = | f(x) |.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y= | f(x) | можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).

Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.

Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 —2х| , исходя из графика функции у = х 2 — 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y 1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки ( х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки ( х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, - , -0,5 , 0, 0,5 , , 1,5 , 2 . Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.

x -1,5 - -0,5 0 0,5 1,5 2
f(x) = x -1,5 - -0,5 0 0,5 1,5 2
g(x) = sinx 1 0 -1 0 1 0 -1 0
y = x + sinx 1-1,5 - -1-0,5 0 1+0,5 1+1,5 2

По полученным резултатам построим точки, которые соединим плавной кривой, которая будет эскизом графика функции y = x + sinx .

Графики функций можно строить не только руками по точкам, но и с помощью различных программ(excel, maple), а также программируя на языке Pascal. Изучив язык паскаль, вы одновременно подтяните свои знания по информатике, но и быстро сможете строить разные графики функцицй. примеры функций в Паскале помогут разобраться в синтаксисе языка и построить первые графики самому.

Основные свойства функций.

1) Область определения функции и область значений функции .

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y , которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции .

Нуль функции - такое значение аргумента, при котором значение функции равно нулю.

3) Промежутки знакопостоянства функции .

Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

4) Монотонность функции .

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции .

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

6) Ограниченная и неограниченная функции .

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

7) Периодическость функции .

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими

СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

СТЕПЕННАЯ ФУНКЦИЯ IV

§ 73. Функции у = х n при п = 1, 2, 3

Каждому значению величины х формула

у = х n ,

где n - натуральное число, ставит в соответствие вполне определенное значение величины у . Следовательно, эта формула определяет у как функцию аргумента х . Рассмотрим такие функции при п = 1, 2, 3.

Для исследования функций можно применить Excel

1. Функция у = х . Эта функция определена для всех значеннй х . Поэтому можно сказать, что областью определения функции у = х является совокупность всех чисел.

Данная функция принимает любые числовые значения. Множество всех значений, которые принимает та или иная функция, называется областью изменения этой функции. Поэтому можно сказать, что областью изменения функции у = х также является совокупность всех чисел.

График функции у = х (рис. 94) есть прямая, проходящая через начало координат и разделяющая первый и третий координатные углы пополам. Этот график хорошо иллюстрирует свойства функции у = х .

Так, большему значению аргумента х соответствует и большее значение функции у . Например, при х 2 > х 1 y 2 > y 1 (рис. 94). Такие функции принято называть монотонно возрастающими .

Функция у = х нечетная. Это означает, что при изменении знака аргумента на противоположный она не изменяясь по абсолютной величине, изменяет свой знак на противоположный. График функции у = х симметричен относительно начала координат.

2. Функция у = x 2 . Эта функция была подробно изучена нами в главе III. Областью ее определения является множество всех действительных чисел, а областью изменения- множество всех неотрицательных чисел. Графиком этой функции является направленная вверх парабола с вершиной в начале координат (рис. 95).

Как видно из рисунка, при отрицательных значениях аргумента х функция у = x 2 монотонно убывает . Это означает, что из двух отрицательных значений аргумента большему соответствует меньшее значение функции. При положительных значениях аргумента функция у = x 2 монотонно возрастает . Это означает, что из двух положительных значений аргумента большему соответствует большее значение функции. При х = 0 функция принимает наименьшее значение, равное нулю. Наибольшего значения функция не имеет.

Функция у = x 2 четна. Это означает, что изменение знака аргумента х на противоположный не изменяет значения функции у . График такой функций симметричен относительно оси у .

3. Функция у = x 3 . Областью определения этой функции является множество всех действительных чисел. Функция является нечетной, поскольку (-x ) 3 = -x 3 . Поэтому для построения ее графика достаточно составить таблицу значений только для положительных значений аргумента х :

Значения функции для отрицательных х отличаются от значений функции для соответствующих положительных х только знаками. Например, при х = 1 / 4 у = 1 / 64 ; поэтому при х = - 1 / 4 у будет равен - 1 / 64 ; при х = 2 у = 8; поэтому при х = - 2 у будет равен - 8 и т. д. Теперь, используя составленную таблицу и свойство нечетности функции у = x 3 , построим график этой функции (рис. 96). Кривая, изображенная на рисунке 96, называется кубической параболой .

Кубическая парабола наглядно демонстрирует, что функция у = x 3 всюду монотонно возрастает , принимая любые значения. Областью изменения этой функции является совокупность всех действительных чисел. Следует особо сказать о поведении этой кривой вблизи начала координат. Здесь кубическая парабола подходит к оси абсцисс, как бы одновременно и касаясь этой оси и пересекая ее.

Упражнения

536. Какими общими свойствами обладают функции у = х , у = x 2 и у = x 3 ?

537 Построить графики функций:

а) у = x 3 - 1 ; б) у = (х - 1) 3 ; в) у = (х + 2) 3 ; г) у = |x 3 |.

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f"\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

Пример 3

Исследуем и построим график функции

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Рассмотрим функцию y=√x. График этой функции показан на рисунке ниже.

График функции y=√x

Как видите, график напоминает повернутую параболу, точнее одну из её ветвей. Мы получаем ветвь параболы x=y^2. Из рисунка видно, что график лишь один раз касается оси Оу, в точке с координатами (0;0).
Теперь стоит отметить основные свойства этой функции.

Свойства функции y=√x

1. Область определения функции явяется луч }