Генератор неисчерпаемой электрической энергии у нас под ногами. Планетарный Передатчик Энергии - по всей Земле без проводов! — Boomstarter

"Мы не знаем когда точно возник земной магнетизм, однако это могло и произойти вскоре после формирования мантии и внешнего ядра. Для включения геодинамо требуется внешнее затравочное поле, причем необязательно мощное. Эту роль, к примеру, могло взять на себя магнитное поле Солнца, или поле токов, порожденных в ядре за счет термоэлектрического эффекта. В конечном счете, не слишком важно, источников магнетизма хватало. При наличии такого поля и кругового движения токов проводящей жидкости, запуск внутрипланетной динамомашины становится просто неизбежным"

Дэвид Стивенсон, профессор калифорнийского психологического института - крупнейший специалист по планетарному магнетизму

Земля – огромный генератор неисчерпаемой электрической энергии

Еще в 16 веке английский врач и физик Уильям Гильберт высказывал предположение о том, что земной шар является гигантским магнитом, а знаменитый французский ученый Андре Мари Ампер (1775-1836гг.), чьим именем названа физическая величина, определяющая силу электрического тока, доказывал, что наша Планета представляет из себя огромную динамо-машину, вырабатывающую электрический ток. При этом магнитное поле Земли есть производная от этого тока, который обтекает Землю с запада на восток и по этой причине магнитное поле Земли направлено с юга на север. Уже в начале 20-го века, после проведения значительного количества практических экспериментов, знаменитым ученым и экспериментатором Николой Тесла, предположения У. Гильберта и А. Ампера получили свое подтверждение. О некоторых экспериментах Н.Теслы и их практических результатах мы поговорим в дальнейшем, непосредственно в этой статье.

Интересные данные об огромных, по своей величине, электрических токах, протекающих в глубинах океанских вод, сообщил с своей работе "Обходите впадины стороной" (журнал "Изобретатель и рационализатор" №11. 1980г.), кандидат технических наук, автор научных трудов в областях машиностроения, акустики, физики металлов, технологии радиоаппаратуры, автор более 40 изобретений-Альфтан Эрминингельт Алексеевич. Возникает естественный вопрос: "Что из себя представляет эта природная динамомашина и есть ли возможность использования неисчерпаемой энергии этого генератора электрического тока в интересах человека?" Целью данной статьи и является поиск ответов и на этот, и на другие вопросы, связанные с этой тематикой.

Раздел 1 Что является первопричиной возникновения электрического тока внутри Земли? Каковы потенциалы электрического и магнитных полей над поверхностью Земли, обусловленные протеканием электрического тока внутри нашей Планеты?

Внутреннее строение Земли, ее недр и земной коры формировалось в течении миллиардов лет. Под действием собственного гравитационного поля происходил разогрев ее недр, а это привело к дифферентации внутреннего строения недр Земли и ее оболочки - земной коры по агрегатному состоянию, химическому составу и физическим свойствам, в результате чего недра Земли и ее околоземное пространство приобрели следующую структуру:

Ядро Земли, расположенное в центре внутренней земной сферы;
- Мантия;
- Земная кора;
- Гидросфера;
- Атмосфера;
- Магнитосфера

Земная кора, мантия, и внутренняя часть ядра Земли состоят из твердых веществ. Внешняя часть ядра Земли состоит, в основном, из расплавленной массы железа, с добавкой никеля, кремния и небольшого количества других элементов. Основной тип земной коры -материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.

Ядро Земли - центральная, наиболее глубинная геосфера Планеты. Средний радиус ядра около 3.5 тысяч километров. Само ядро состоит из внешней и внутренней части(субъядро). Температура в центре ядра достигает примерно 5000 градусов Цельсия, плотность около 12.5 тонн/м2, давление до 361 Гпа. В последние годы появились новые, дополнительные сведения о ядре Земли. Как было установлено учеными- Полем Ричардсом (земная обсерватория Лимонте-Доэрти) и Сяодун Суном (университет Иллинойса), железное расплавленное ядро Планеты, при при его вращении вокруг земной оси, обгоняет вращение остальной части земного шара на 0.25-0.5 градусов в год. Определен диаметр твердой, внутренней части ядра(субъядро). Он составляет 2.414 тысяч километров(журнал "Открытия и гипотезы", ноябрь. 2005 год. Киев).

В настоящее время высказывается следующая основная гипотеза, объясняющая возникновение электрического тока внутри расплавленной внешней оболочки ядра Земли. Суть этой гипотезы состоит в следующем: Вращение Земли вокруг своей оси приводит к возникновению турбулентности во внешней, расплавленной оболочке ядра, что, в свою очередь, приводит к возникновению электрического тока, протекающего внутри расплавленного железа. Думаю, что в качестве гипотезы, можно высказать и следующее предположение. Так как внешняя, расплавленная часть оболочки ядра Земли находится в постоянном движении как относительно своего субъядра, так и относительно наружной части-Мантии Земли, и этот процесс протекает в течении очень длительного периода времени, произошла наэлектролизованность расплавленной, внешней части ядра Земли. В результате процесса наэлектролизованности возникло направленное движение свободных электронов, в огромнейшем количестве находящихся в расплавленной массе железа, в результате чего в замкнутом контуре внешнего ядра образовался огромный по своей величине электрический ток, по всей видимости его величину можно оценить не менее чем в сотни миллионов ампер и выше. В свою очередь, вокруг силовых линий электрического тока образовались силовые линии магнитного поля, сдвинутые относительно силовых линий электрического тока на 90 градусов. Пройдя через огромную толщу Земли, напряженность электрического и магнитных полей в значительной мере уменьшилась. И если говорить конкретно о напряженности силовых линий магнитного поля Земли, то на ее магнитных полюсах напряженность магнитного поля Земли составляет по величине 0.63 гаусса.

Кроме вышеприведенных гипотез, надеюсь, уместно будет привести и результаты исследований французских ученных, о чем поведал в статье "Ядро Земли" автор Леонид Попов. Полный текст статьи размещен в Интернете, а я приведу только небольшую часть указанного текста.

"Группа исследователей из университетов Жозефера, Фурье и Лиона утверждают, что внутреннее ядро Земли постоянно кристаллизируется на западе и плавится на востоке. Вся масса внутреннего ядра медленно смещается от западной стороны к восточной со скоростью 1.5 см в год. Возраст внутреннего твердого тела ядра оценивается в 2-4 млрд лет, в то время как земли- 4.5 млрд лет.

Столь мощные процессы затвердевания и плавления очевидно, не могут не сказаться на конвективных потоках в ядре внешнем. А значит они затрагивают и планетарную динамо-машину и земное магнитное поле и поведение мантии и движение материков.

Не тут ли кроется разгадка несовпадения скорости вращения ядра и остальной планеты и путь к объяснению ускоряющего сдвига магнитных полюсов?" (Интернет, тема статьи "Ядро Земли постоянно переваривает само себя". Автор Леонид Попов. 9 августа 2010 года)

Согласно уравнениям Джеймса Максвелла (1831-1879гг.), вокруг силовых линий магнитного поля образуются силовые линии электрического тока, совпадающие по своему направлению с направлением движения тока внутри наружного расплавленного ядра Планеты. Следовательно, как внутри "тела" Земли, так и вокруг околоземной поверхности должно иметь место наличие силовых линий электрического поля, причем, чем дальше электрическое(как и магнитное поле) поле находится от ядра Земли, тем ниже напряженность его силовых линий. Так фактически должно быть и этому предположению имеется реальное подтверждение.

Откроем "Справочник по физике" автора А.С. Еноковича (Москва. Изд "Просвещение", 1990 год) и обратимся к данным, приведенным в таблице 335 "Физические параметры Земли". Читаем:
- Напряженность электрического поля
непосредственно у поверхности Земли - 130 вольт/ м;
- На высоте 0.5 км на поверхностью Земли - 50 вольт/ м;
- На высоте 3 км над поверхностью Земли - 30 вольт/ м;
- На высоте 12 км над поверхностью Земли - 2.5 вольт/ м;

Здесь же дана величина электрического заряда Земли- 57-10 в четвертой степени кулон.

Напомним, что единица количества электричества в 1 кулон равна количеству электричества, проходящего через поперечное сечение при силе тока 1 ампер за время 1 сек.

Практически во всех источниках, несущих информацию о магнитном и электрическом полях Земли отмечается, что они носят пульсирующий характер.

Раздел 2. Причины возникновения пульсаций магнитного и электрического силовых полей Планеты.

Известно, что напряженность магнитного поля Земли не постоянна и возрастает с широтой. Максимальная напряженность силовых линий магнитного поля Земли наблюдается на ее полюсах, минимальная- на экваторе Планеты. Не остается она постоянной и в течении суток на всех широтах Земли. Суточные пульсации магнитного поля вызваны целым рядом причин: Циклическими изменениями солнечной активности; орбитальным движением Земли вокруг Солнца; суточным вращением Земли вокруг собственной оси; воздействием на расплавленную массу внешнего ядра Земли сил тяготений (гравитационных сил) других планет солнечной системы. Вполне понятно, что пульсации напряженности силовых линий магнитного поля, вызывают, в свою очередь, и пульсации напряженности электрического поля Планеты. Наша Земля, при орбитальном вращении вокруг Солнца, по почти круговой орбите, то приближается на минимальные расстояния к другим планетам солнечной системы, совершающим орбитальное движение вокруг Солнца по своим орбитам, то удаляется от них на максимальные расстояния. Рассмотрим конкретно, как изменяются минимальные и максимальные расстояния между Землей и другими планетами Солнечной системы, при их движении по своим орбитам вокруг Солнца:

Минимальное расстояние между Землей и Меркурием – 82х10 в 9-й степени м;
-Максимальное расстояние между ними – 217х10 в 9-й степени м;
-Минимальное расстояние между Землей и Венерой – 38х10 в 9-й степени м;
-Максимальное расстояние между ними – 261х10 в 9-й степени м;
-Минимальное расстояние между Землей и Марсом – 56х10 в 9-й степени м;
-Максимальное расстояние между ними – 400х10 в 9-й степени м;
-Минимальное расстояние между Землей и Юпитером – 588х10 в 9-й степени м;
-Максимальное расстояние между ними – 967х10 в 9-й степени м;
-Минимальное расстояние между Землей и Сатурном – 1199х10 в 9-й степени м;
-Максимальное расстояние между ними – 1650х10 в 9-й степени м;
-Минимальное расстояние между Землей и Ураном – 2568х10 в 9-й степени м;
-Максимальное расстояние между ними – 3153х10 в 9-й степени м;
-Минимальное расстояние между Землей и Нептуном – 4309х10 в 9-й степени м;
-Максимальное расстояние между ними – 4682х10 в 9-й степени м;
-Минимальное расстояние между Землей и Луной – 3.56х10 в 8-й степени м;
-Максимальное расстояние между ними – 4.07х10 в 8-й степени м;
-Минимальное расстояние между Землей и Солнцем – 1.47х10 в 11-й степени м;
-Максимальное расстояние между ними – 1.5х10 в 11-й степени м;

Используя известную формулу Ньютона и подставляя в нее данные о максимальных и минимальных расстояниях между планетами Солнечной системы и Землей, данные о минимальном и максимальном расстояниях между Землей и Луной, Землей и Солнцем, а также справочные данные о массах планет солнечной системы, Луны и Солнца и данные о величине гравитационной постоянной, определим минимальные и максимальные величины сил тяготений(гравитационных сил), воздействующих на нашу Планету, а следовательно, на ее расплавленное ядро, при орбитальном движении Земли вокруг Солнца и при орбитальном движении Луны вокруг Земли:

Величина силы тяготения между Меркурием и Землей, соответствующая минимальному расстоянию между ними - 1.77х10 в 15-й степени кг;
-Соответствующая максимальному расстоянию между ними - 2.5х10 в 14-й степени кг;
-Величина силы тяготения между Венерой и Землей, соответствующая минимальному расстоянию между ними - 1.35х10 в 17-й степени кг;
-Соответствующая максимальному расстоянию между ними -2.86х10 в 15-й степени кг;
-Величина силы тяготения между Марсом и Землей, соответствующая минимальному расстоянию между ними – 8.5х10 в 15-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.66х10 в 14-й степени кг;
-Величина силы тяготения между Юпитером и Землей, соответствующая минимальному расстоянию между ними – 2.23х10 в 17-й степени кг;
-Соответствующая максимальному расстоянию между ними – 8.25х10 в 16-й степени кг; -Величина силы тяготения между Сатурном и Землей, соответствующая минимальному расстоянию между ними – 1.6х10 в 16-й степени кг;
-Соответствующая максимальному расстоянию между ними – 8.48х10 в 15-й степени кг;
-Величина силы тяготения между Ураном и Землей, соответствующая минимальному расстоянию между ними – 5.31х10 в 14-й степени кг;
-Соответствующая максимальному расстоянию между ними – 3.56х10 в 16-й степени кг;
-Величина силы тяготения между Нептуном и Землей, соответствующая минимальному расстоянию между ними – 2.27х10 в 14-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.92х10 в 14-й степени кг;
-Величина силы тяготения между Луной и Землей, соответствующая минимальному расстоянию между ними – 2.31х10 в 19-й степени кг;
-Соответствующая максимальному расстоянию между ними – 1.77х10 в 19-й степени кг;
-Величина силы тяготения между Солнцем и Землей, соответствующая минимальному расстоянию между ними – 3.69х10 в 21-й степени кг;
-Соответствующая максимальному расстоянию между ними – 3.44х10 в 21-й степени кг;

Видно какие огромные величины сил тяготений воздействуют на внешнее, расплавленное ядро Земли. Можно только представить, как эти возмущающие силы, воздействуя одновременно, с разных сторон на эту расплавленную массу железа, заставляют ее то сжиматься, то увеличивать свое сечение и, как следствие, вызывают пульсации напряженностей как электрического, так и магнитного полей Планеты. Эти пульсации носят периодический характер, спектр их частот лежит в диапазонах инфразвуковых и очень низких частот.

Также на процесс образования пульсаций напряженностей электрического и магнитных полей влияет, правда в меньшей степени, суточное вращение Земли вокруг собственной оси. Действительно, силы тяготений планет, Луны, Солнца, находящиеся в данный конкретный период суток со стороны фронтальной поверхности Земли, оказывают на расплавленную массу ядра Планеты несколько более возмущающее воздействие, чем в этот же период суточного времени на обратную(тыльную) сторону массы ядра. При этом, часть ядра, направленная в сторону Солнца(Луны, планеты) вытягивается в сторону объекта возмущающего воздействия, а тыльная(обратная) сторона расплавленной массы железа, в это же время сжимается в сторону центрального твердого субъядра Земли, уменьшая свое сечение.

Раздел 3 Можно ли использовать электрическое поле Земли в практических целях?

Прежде чем получить ответ на этот вопрос, попытаемся провести некий мысленный виртуальный эксперимент, суть которого заключается в следующем. Разместим на высоте 0.5 км. от поверхности Земли(разумеется мысленно) металлический электрод, роль которого будет выполнять плоская металлическая пластина, площадью 1х1 м2. Сориентируем эту пластину относительно силовых линий напряженности электрического поля Земли таким образом, чтобы они пронизывали ее поверхность, то есть поверхность этой пластины должна быть установлена перпендикулярно силовым линиям электрического поля, направленным с запада на восток. Второй, точно такой же электрод, разместим таким же образом непосредственно у поверхности Земли. Произведем замер разности электрических потенциалов между этими электродами. Согласно данным, приведенным выше из "Справочника по физике", этот измеренный электрический потенциал должен быть 130в-50в=80 вольт.

Продолжим проведение мысленного эксперимента, несколько изменив начальные условия. Металлический электрод, который находился непосредственно у поверхности Земли, установим на ее поверхность и тщательно заземлим. Второй металлический электрод опустим а шахту на глубину 0.5км и, как в предыдущем случае, сориентируем его относительно силовых линий электрического поля Земли. Вновь произведем замеры величины электрического потенциала между этими электродами. Мы должны увидеть значительную разницу в величинах измеренных потенциалов электрического поля Земли. И чем глубже, внутрь Земли мы будем опускать второй электрод, тем выше будут величины измеренных разностей потенциалов электрического поля Планеты. И если мы бы смогли измерить разность электрических потенциалов между внешним жидким ядром Земли и ее поверхностью, то, по всей видимости, эти разности потенциалов как по напряжению, так и по мощности должно было бы хватить, чтобы обеспечить потребности в электроэнергии всего населения нашей Планеты.

Но все о чем мы рассуждали, к сожалению пока что рассматривается в области проведения виртуальных, мысленных экспериментов. А теперь обратимся к результатам практических экспериментов, которые были проведены в начале 20 века Николой Тесла и опубликованы в его работах.

В своей лаборатории в Колорадо - Спрингзе (США), построенной в районе Уорденклифа, Н.Тесла организовывал проведение экспериментов, позволяющих передавать информацию через толщу Земли на ее противоположную сторону. В качестве основы для успешного проведения задуманного эксперимента Н.Тесла предполагал использовать электрический потенциал Планеты, так как несколько раннее он убедился в том, что Земля электрически заряжена.

Для проведения намеченных экспериментов по его предложениям были построены башни-антенны, высотой до 60-ти метров, с медной полусферой на их верхушках. Эти медные полусферы играли роль того самого металлического электрода, о котором мы говорили выше. Основания построенных башен уходили под землю на глубину 40 метров, где заглубленная поверхность земли играла роль второго электрода. Результат экспериментов Н.Тесла описал в опубликованной им статье "Беспроводная передача электрической энергии" (5 марта 1904 года). Он писал: "Возможно не только отправлять без проводов телеграфные сообщения, но и доносить через весь земной шар слабые модуляции человеческого голоса и, более того, передавать энергию в неограниченных количествах на любые расстояния и без потерь"

И далее, в этой же статье: "В середине июня, когда шла подготовка к другой работе, я настроил один из моих понижающих трансформаторов с целью определения новаторским образом, экспериментально, электрический потенциал земного шара и изучения его периодических и случайных колебаний. Это сформировало часть плана, тщательно сформированного заранее. Высокочувствительный, автоматически приводящийся в действие прибор, контролирующий записывающее устройство, был включен во вторичную цепь, тогда как первичная была соединена с поверхностью Земли…Оказалось, что Земля, в буквальном смысле этого слова, живет электрическими колебаниями".

Убедительное доказательство того, что Земля действительно является огромным природным генератором неисчерпаемой электрической энергии и эта энергия носит пульсирующий гармоничный характер. В некоторых немногочисленных статьях, посвященных рассматриваемой теме, высказываются предположения о том, что землетрясения, взрывы в шахтах и на нефтедобывающих морских платформах, все это результаты проявления земного электричества.

На нашей планете значительное количество пустотелых природных образований, уходящих в глубь Земли, есть и значительное количество глубоких шахт, где можно провести практические исследования по определению возможностей использования электрической энергии, вырабатываемой природным генератором нашей Планеты. Остается только надеяться, что такие исследования когда-то будут проведены.

Раздел 4. Что происходит с электрическим полем Земли при разряде линейной молнии на ее поверхность?

Результаты опытов, проведенных Н.Тесла убедительно доказывают, что наша Планета есть природный генератор неисчерпаемой электрической энергии. Причем максимальный потенциал этой энергии заключен внутри расплавленной металлической оболочки внешнего ядра Планеты и убывает по мере приближения к ее поверхности и за пределами поверхности Земли. Результаты экспериментов, проведенных Н.Тесла также убедительно доказывают, что электрическое и магнитное поля Земли носят периодический пульсирующий характер, причем спектр частот пульсаций лежит в диапазоне инфразвуковых и очень низких частот. А это означает следующее - воздействуя на пульсирующее электрическое поле Земли с помощью внешнего источника гармоничных колебаний, близких или равных по частоте собственным пульсациям электрического поля Земли, можно добиться явления их резонанса. Н.Тесла писал: "При сокращении электрических волн до незначительного количества и достижения необходимых условий резонанса, схема(о которой говорилось выше) будет работать как огромный маятник, сохраняя неопределенный период времени энергию первоначальных возбуждающих импульсов, и последствия воздействия на Землю и ее проводящую атмосферу единых гармоничных колебаний излучения, которые, как показывают испытания в реальных условиях, могут развиться до такой степени, что превзойдут достигнутые природными проявлениями статистического электричества " (Статья "Беспроводная передача электрической энергии" 6 марта 1904 г).

А что из себя представляет резонанс колебаний? "Резонанс – это резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармоничного воздействия к частоте одного из собственных колебаний системы " (Советский энциклопедический словарь, изд. "Советская энциклопедия". Москва. 1983г.)

Никола Тесла, в своих экспериментах, в качестве источника внешнего воздействия для достижений условий резонанса внутри Земли, использовал разряды как природных, так и искусственных линейных молний, которые он и его ассистенты, экспериментально создавали в своей лаборатории.
Что же из себя представляет линейная молния и каким образом она может быть использована в качестве внешнего источника гармоничных колебаний, способных создавать резонанс колебаний внутри Земли?

Откроем "Справочник по физике", таблица 240. Физические параметры молнии:
- длительность(средняя) вспышки разряда молнии, С – 0.2 сек.
(Примечание. Молния воспринимается глазом как одна вспышка, в действительности представляет собой прерывистый разряд, состоящий из отдельных разрядов-импульсов, число которых 2-3, но может доходить и до 50-ти).
- диаметр(средний) канала молнии, см – 16.
- сила тока молнии(типичное значение), А – 2х10 в 4-й степени.
- средняя длина молнии(между облаком и Землей), км – 2 – 3.
- разность потенциалов при возникновении молнии, В – до 4х10 в 9-й степени.
- число грозовых разрядов над Землей в 1 секунду – около 100.
Таким образом, молния представляет собой электрический импульс, огромной мощности и малой длительности действия. Специалисты, работающие в области импульсной техники могут подтвердить следующий факт- чем меньше длительность импульса(чем короче импульс), тем богаче спектр частот гармоничных электрических колебаний, формирующих этот импульс. Следовательно молния, представляющая собой кратковременный импульс электрической энергии, включает в себя ряд гармоничных электрических колебаний, лежащих в широком диапазоне частот, в том числе и в диапазоне инфронизких и очень низких частот. При этом максимальная мощность импульса распределяется как раз в области именно этих частот. А этот факт означает, что гармоничные колебания, возникающие при разряде линейной молнии на поверхность Земли, могут обеспечить возникновение резонанса при взаимодействии с собственными периодическими колебаниями(пульсациями) электрического поля Земли. В статье "Управляемая молния" от 8 марта 1904 года Н.Тесла писал: "Открытие земных стоячих волн показывает, что несмотря на ее огромные размеры(имеется в виду размеры Земли), целую планету можно подвергнуть в резонансные колебания как маленький камертон, что электрические колебания, приведенные в соответствии с ее физическими характеристиками и размерами, проходят через нее беспрепятственно". Известно, что в своих экспериментах, для достижения явления резонанса, Н.Тесла и его помощники создавали искусственные линейные молнии(искровые разряды) длиной чуть более 3-х метров с очень малой длительностью действия) и электрическим потенциалом - более пятидесяти миллионов вольт.

И тут возникает очень интересный вопрос: "А не является ли Тунгусский метеорит следствием резонансного воздействия природной линейной молнии на электрическое поле Земли?" Здесь не рассматривается вопрос влияния искусственных линейных молний, создаваемых в лаборатории Н.Тесла на появление Тунгусского метеорита, так как во время, связанное с событиями Тунгусского метеорита, лаборатория Н.Теслы уже не работала.

Вот как описывают события связанные с, так называемым, Тунгусским метеоритом свидетели этого явления. 17(30) июня 1908 года около 7 часов утра, над территорией бассейна реки Енисей пронесся громадных размеров огненный шар. Полет его завершился огромной силы взрывом, который произошел на высоте от 7 до 10 км от поверхности Земли. Мощность взрыва, как позже определили специалисты, примерно соответствовала мощности взрыва водородной бомбы от 10 до 40 мегатонн тротилового эквивалента.

Обратим особое внимание на то, что это событие произошло в летний период времени, то есть в период образований частых летних гроз, сопровождаемых разрядами молний. А нам известно, что именно разряды линейных молний на поверхность Земли могли вызвать резонансные явления внутри земного шара, что, в свою очередь, могло способствовать образованию шаровой молнии огромной электрической мощности. В качестве подтверждения высказанной, и не только мною, версии обратимся к "Энциклопедическому словарю" : "Шаровая молния – светящийся сфероид диаметром от 10см. и более, образуется обычно вслед за ударом линейной молнии и состоящий, по всей видимости, из неравновесной плазмы". Но это еще не все. Обратимся к статье Н.Теслы "Разговор с планетой " от 9 февраля 1901 года. Приведем отрывок из этой статьи: "Я уже продемонстрировал с помощью решающих испытаний практическую осуществляемость передачи сигнала с помощью моей системы от одной до другой точки земного шара, неважно насколько удаленных друг от друга, и вскорости я обращу неверующих в свою веру. У меня есть все причины поздравить себя с тем, что в ходе этих экспериментов, многие из которых были исключительно тонкими и рискованными, ни я сам, ни мои ассистенты не получили никаких повреждений. Во время работы с этими мощными электрическими колебаниями иногда происходили самые необычные явления. Из-за некоторой интерференции колебаний на огромные расстояния могли выскакивать настоящие огненные шары, и если бы кто-то находился на их пути или вблизи, он был бы моментально уничтожен".

Как видим, пока еще рано исключать возможность участия шаровой молнии в вышеописанных событиях, связанных с Тунгусским метеоритом. Частые летние грозы, приходящиеся на это время года, удары линейных молний могли быть причиной возникновения шаровой молнии, причем она могла возникнуть далеко за приделами бассейна реки Енисей и затем, "путешествуя" с огромной скоростью вдоль силовых линий электрического поля Земли, оказаться в том районе, где и произошли указанные выше события.

Заключение
Природные энергетические ресурсы Планеты неумолимо сокращаются. Идут активные поиски альтернативных источников энергии, позволяющих прийти на замену исчезающим. Думается, что настало время заняться глубокими исследованиями, как теоретически так и практически, в определении возможности использования электрического потенциала природного генератора электрической энергии в интересах Человека. И если подтвердиться, что такая возможность существует, и, при этом земному генератору, в результате использования его энергии, не будет нанесен вред, то вполне возможно, что электрическое поле Планет послужит людям в качестве одного из альтернативных источников энергии.

Клещевич В.А. Сентябрь-ноябрь 2011 года (г. Харьков)

Как бы странно это не звучало, но вы можете участвовать в инновации мирового масштаба и делать новый мир доступной, свободной и чистой энергии уже сегодня!

Представьте свою жизнь без электричества, компьютеров, машин, мобильной связи... а ведь во времена своего изобретения все это казалось безумным, невозможным или просто не нужным! Но независимо от того, верим мы во что-то или нет, прогресс идет вперед и мы становимся его частью.

Хотите стать частью нового витка технологического развития, когда энергия доступна всем в любой точке Земли? Тогда поддержите проект Планетарного Передатчика Энергии!

Кому это нужно? Не поверите, но на самом деле это может решить все энергетические проблемы человечества. Сегодня проблема всех экологичных источников энергии - это доставка этой энергии. Потери и стоимость передачи энергии по линиям передач/трубопроводам просто колоссальны и исчисляется сотнями миллиардов долларов...

А теперь представьте, что мы можем послать энергию в любую точку планеты почти мгновенно и без потерь! Невероятно, но это возможно! Выберите сумму вознаграждения и вместе мы сможем построить установку и сделать шаг в решении энергетических проблем поистине планетарного масштаба!


Это возможно - мгновенно передавать электроэнергию через толщу земли на любые расстояния!

Что это значит? Это бесконечный источник природной энергии для всего человечества. Вернее источник энергии уже есть - это Солнце. Ведь если замостить солнечными батареями 1000 кв. километров в пустыне, то этой энергии хватит на потребление для всего мира! Но пока это нельзя использовать, потому что невозможно передать эту энергию в любую точку мира. Наша разработка позволяет это сделать!


Как бы странно это не звучало, но вы можете участвовать в инновации мирового масштаба и делать новый мир доступной, свободной и чистой энергии уже сегодня!

Представьте свою жизнь без электричества, компьютеров, машин, мобильной связи... а ведь во времена своего изобретения все это казалось безумным, невозможным или просто не нужным! Но независимо от того, верим мы во что-то или нет, прогресс идет вперед и мы становимся его частью.

Хотите стать частью нового витка технологического развития, когда энергия доступна всем в любой точке Земли? Тогда поддержите проект Планетарного Передатчика Энергии!

Поддержите проект - это очень просто, достаточно одного СМС сообщения. Просто нажмите "Выбрать" на понравившемся Вам вознаграждении и следуйте инструкции (также можно использовать банковскую карту и другие платежные системы).


Теперь это уже лишь вопрос времени - не сегодня, так завтра это открытие станет частью новой реальности. Но мы считаем, что именно в России, с учетом ее технологического потенциала, должны рождаться новые технологии, и Планетарный Передатчик Энергии, основанный на работах великого Никола Теслы - одна их них.

Итак, добро пожаловать в настоящую инновацию, мир технологий будущего! Мы предлагаем вам прикоснуться к новой эпохе и стать ее частью!

Трудно сказать, каким станет мир, после развития этой технологии... но он полностью изменится!

А теперь, давайте обо всем по порядку...

Позвольте для начала пару слов о себе, т.к.наверное у каждого возникает вопрос, кто же это породил такую безумную идею). Впрочем, как говорил Эйнштейн "Если в идее нет хотя бы доли безумия, то она обречена".


Мы закончили Московский Физико-Технический Институт (МФТИ), что дало не только отличное фундаментальное образование, но и творчество мысли и тягу к неизведанному. Вот уже много лет мы самостоятельно занимаемся изучением забытых или не понятых работ великих физиков - оказывается, что современное развитие технологий это лишь небольшая частица того, что смогли понять и воспроизвести их последователи. И сколько же еще всего удивительного и непознанного в нашем с вами мире!

Испытывая истинное вдохновение при изучении неизведанного мы, тем не менее, ничего не принимаем "на веру", холодно и расчетливо выверяя каждый шаг, опираясь на знания, опыт и экспертизу.

Именно такой подход позволяет нам раздвигать границы действительности, находя абсолютно новые физические интерпретации и явления не противоречащие современной фундаментальной науке.

На сегодняшний день мы провели огромную работу по созданию Планетарного Передатчика Энергии, на основании которой с уверенностью считаем, что нужно переходить к "большому эксперименту".

Для тех, кто обладает базовыми знаниями в предметной области, предлагаем или , посвященную изучению работ Теслы по передаче энергии через землю, со ссылками на оригинальные патенты, их трактовку и разъяснения, а также выдержками из дневников Теслы.


Суть проекта состоит в строительстве ретранслятора, позволяющего передавать огромные энергии через толщу земли на любые расстояния - мгновенно, безопасно, без потерь*!


Кому это нужно? Не поверите, но на самом деле это может решить все энергетические проблемы человечества. Сегодня проблема всех экологичных источников энергии - это доставка этой энергии. Потери и стоимость передачи энергии по линиям передач/трубопроводам просто колоссальны и исчисляется сотнями миллиардов долларов...

А теперь представьте, что мы можем послать энергию в любую точку планеты почти мгновенно и без потерь! Невероятно, но это возможно! Выберите сумму вознаграждения и вместе мы сможем построить установку и сделать шаг в решении энергетических проблем поистине планетарного масштаба!

Работы по передаче энергии через землю вел Никола Тесла - великий физик прошлого столетия. Большая часть того, что мы знаем об электричестве сегодня, мы знаем именно благодаря ему. Однако многое, чем занимался Тесла, так и осталось непонятым, либо несправедливо забытым. И один из таких проектов - проект передачи энергии. Печально, но неверная трактовка экспериментов Теслы закрыла эту тему для научного сообщества.

Анализируя дневники, лекции, статьи и патенты Теслы, мы пришли к понимаю модели , которая не имеет ничего общего с сегодняшними трактовками "Башни Теслы", но строго вписывается в рамки классической физики (ур-я Максвелла).

К счастью, сегодня мы обладаем не только теорией, но и великолепными программами научного моделирования. Поэтому наша теория было аккуратно переложена в программу Ansoft HFSS, составлена так называемая численная модель, и запущен расчет...

Результат не заставил себя долго ждать - мы получили абсолютное соответствие нашей теории распределения токов и напряжений в земле. Вот как это выглядит на модели (масштаб земли в численной модели 1 к 100, все физические характеристики соответствуют справочным значениям с соответствующей корректировкой):

На текущем этапе нам необходимо доказать работоспособность технологии и привлечь более широкие научные и инвестиционные круги к проекту. А это возможно только при эффектной, поражающей воображение демонстрации.

Для этого мы строим ретранслятор, способный передать небольшую энергию (на большие расстояния!) и, буквально, заставить светиться лампочки "воткнутые в землю" (через приемник). Для это потребуется изготовление нескольких больших катушек из толстого медного провода со специальной геометрией и расположением витков, приобретение специальных усилителей и генераторов, а также высокоточного измерительного оборудования.

Для промышленного применения требуется передача мегаватт.

Запрошенной же суммы хватит на передатчик, перекидывающий киловатты/десятки киловатт на любые расстояния!

Учитывая уже сделанные вложение, и при вашей поддержке, нам удастся это сделать уже в 2014 году!

Поддержите проект! Участвуйте в инновациях! Станьте частью новой технологической эпохи!!

Текущая страница: 2 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

1.3. Автономная подземная радиосвязь

Поверхность Земли определяющим образом влияет на распространение радиоволн, причем сказываются как физические свойства поверхности (различия между морем и сушей), так и ее геометрическая форма (кривизна участков поверхности и отдельные неровности рельефа – горы, ущелья). Влияние это различно для волн разной длины, для условий относительно передачи радиосигнала над грунтом и под ним, и для разных расстояний между передатчиком и приемником. Поэтому способы распространения радиоволн над землей и тем более под ней существенно зависят от множества факторов, в том числе – от длины волны и даже от освещенности земной атмосферы солнцем.

Меня издавна интересовал вопрос: а возможна ли подземная радиосвязь с помощью непрофессиональных, портативных радиостанций?

В 2014 году в своем фермерском хозяйстве в Верховажском районе Вологодской области мною проведен ряд экспериментов, о которых поведаю далее. Был поставлен вопрос: возможна ли радиосвязь под землей, и какие факторы влияют на ее качество.

1.3.1. Особенности эксперимента

Для подготовки условий эксперимента углублены подземные катакомбы (глубина 1,6 метра под землей) в районе д. Боровичиха в месте естественного кратера, который в здешних краях носит название «Коробовая яма». Длина прямолинейного подземелья (подземного тоннеля) после подготовительных работ достигла 22 м.


Обязательные условия

Основным и обязательным условием подземной радиосвязи является то, что радиосвязь должна осуществляться между корреспондентами, находящимися в прямой видимости (на прямолинейном участке дистанции). Тогда она возможна практически без ограничений – в соответствии с мощностью радиостанции.

Распространение радиоволн под землей подчиняется определенным общим законам:

Прямолинейное распространение в однородной среде, свойства которой во всех точках одинаковы. Встречая на своем пути непрозрачное тело, радиоволны огибают его; это явление, называемое дифракцией проявляется в зависимости от соотношения геометрических размеров препятствия и длины волны, и в нашем эксперименте под землей оказывает на качестве и дальность связи определяющее значение.

С другой стороны, если радиоволна встречает препятствие, то она распространяются по криволинейным траекториям, сила сигнала при этом ослабляется (вяление рефракции).

Чем резче изменяются свойства среды в виде криволинейного участка между двумя корреспондентами под землей, тем больше кривизна траектории волны и тем слабее сигнал.

Для определения эффективности и самой возможности радиосвязи между двумя корреспондентами в описанных условиях был испытан трансивер Kenwood TH-F7 c выходной мощностью 5 Вт в диапазоне 2 м – на частотах 144,550 МГц и 444,300 МГц (70 см). Внешний вид трансивера представлен на рис. 1.6.


Рис. 1.6. Трансивер Kenwood TH-F7. Внешний вид


Трансивер Kenwood TH-F7 и эксперименты с ним широко описаны в книге: Кашкаров А.П.

Трансивер Kenwood TH-F7: дома, в офисе, на отдыхе. Пошаговые рекомендации. – М.: ИП РадиоСофт, 2011.– 222 с.: ил.– ISBN 978-5-93037-237-3,

а также тесты – на сайте:

http://bt-test.ru/reviews/kak_vybrat_portativnuyu_raciyu_kenwood_th-f7


Частоты

При проведении эксперимента в сельских условиях сигнал с портативного трансивера был получен другим корреспондентом, находящимся в 22 м от меня – принят на идентичную радиостанцию, настроенную на те же частоты.

При экспериментировании замечена интересная особенность: на частоте UNF (444.3 МГц – длина волны 70 см) слышимость лучше, распознавание сигнала отчетливее, чем при работе (при прочих равных условиях) в частотном диапазоне VNF (144.55 МГц – длина волны 2 метра).

Таким образом, по проведенному эксперименту, а также, опираясь на комплексные данные других исследователей, можно сделать простой вывод-подтверждение о том, что диапазоны радиоволн – на которых длина волны меньше, наиболее предпочтительны для радиосвязей в замкнутых помещениях, с перегородками (радиоволны огибают препятствия); радиостанции на данных диапазонах хорошо работают в зданиях.

Чем больше длина волны, тем критичнее к препятствиям (естественным и искусственным) качество радиосвязи.

Как можно заметить на практике, портативными трансиверами (рациями) часто пользуются вспомогательные и аварийные службы в помещениях (охранники, лифтеры, администраторы и др.).

Итак, данная гипотеза нашла подтверждения и в моем «подземном» эксперименте 2014 года, проведенном в Верховажском районе Вологодской области, в 400 м от границ н.п. Боровичиха.

Если пойти в той же логике рассуждений дальше, разумно предположить, что длина волны менее 10 см (к примеру, частоты диапазона 500–800 МГц) на практике окажутся еще более приспособлены (перспективны) – для объектов с множественными естественными препятствиями (перегородками внутри здания или изгибами рельефа местности).

При этом действует и другой общепризнанный принцип распространения радиоволн: чем короче длина волны, тем короче расстояние, на котором можно осуществлять устойчивую (уверенную) радиосвязь при прочих равных – в части мощности передатчика – условиях.

Так, радиосвязь в обычных (наземных) с помощью комплекта все тех же идентичных портативных радиостанций Kenwood TH-F7 (между собой) с максимальной мощностью передатчика 5 Вт на частоте 590 МГц можно осуществить на расстояние менее 0,8 км.

А, к примеру, на частоте 146,550 МГц максимальная дальность связи (при прочих равных условиях) уже будет (зафиксирована мною) 4,8 км.

Поэтому радиолюбителям удается осуществлять радиосвязи на КВ (коротких волнах) на расстояния тысяч километров между городами и странами, к примеру, на частотах 1,8…3,6 МГц. К примеру, в диапазоне Си-Би (Sitizen Band – гражданский диапазон с частотным округлением 26–28 МГц) максимальная дальность связи не превысит 50 км. Конечно, все эти сведения нужно воспринимать через призму ряда условностей, как агентов влияния на ситуацию: важны и конкретные радиостанции, с помощью которых осуществляется радиосвязь, и настройка антенны, и условия местности, и даже погодные условия.


Глубина погружения

Еще одну особенность хотел бы изложить здесь же.

Связь под землей возможна и при более глубоком погружении под землю: радиосвязь под землей почти в равном качестве будет осуществляться как при помещении обоих корреспондентов на глубину 2 метра (в прямой видимости друг от друга), так и при помещении на глубину 10 метров. Однако, если канал (тоннель) будет иметь хотя бы незначительные изменения в своей траектории (условие прямой видимости перестанет соблюдаться) связь под землей прекратится на любых волнах. Тем не менее, это знание все же можно использовать на практике и работать – при необходимости – в пещерах. Примеры таких (прямолинейных) пещер имеются (приведу те, в которые спускался сам): это старые, времен финской войны 1939–1940 гг.

ДОТы на Карельском перешейке, Саблинские пещеры недалеко от Санкт-Петербурга и огромные – по своей дине (более 3 км) пещеры (на глубине до 20 метров) в Новом Афоне, что в Абхазии. Разумеется, это не полный список пещер.

На рис. 1.7 представлены практические условия эксперимента в подземном бункере.



Радиосвязь под землей невозможна, если будет естественное препятствие. По той же логике – и это доказано проведенным экспериментом радиосвязь через толщу земли – даже если корреспонденты с участвующими в эксперименте радиостанциями будут находиться всего в одном метре друг от друга, разделенные земляным валом (поверхностью земли) уже невозможна.

Но если сквозь толщу земли пропустить даже металлическую трубу (по определению законов физики экранирующую радиоволны) и расположить антенны портативных радиостанций вдоль ее траектории (ориентировать трансиверы так, чтобы излучающая и приемная антенна находились в одной траектории – в прямой видимости через трубу) можно осуществить радиопереговоры между корреспондентами – один на поверхности земли, другой – под ее толщей.

Этот эксперимент может иметь практическое значение в будущем.

Отражение и преломление радиоволны волны при переходе – из под земли на ее поверхность предполагает, что угол падения равен углу отражения. Так при переходе из более плотной среды в менее плотную, угол падения превышает некоторые критические значения, то луч во вторую среду не проникает и полностью отражается от границы раздела сред (эффект полного внутреннего отражение). Именно поэтому чтобы осуществить радиосвязь через препятствие в виде земной коры (к примеру, между подземельем и поверхностью) потребуется вывод антенн (см. рис. 1.8).


Рис. 1.8. Иллюстрация возможности радиосвязи «сквозь толщу земли»


1.3.2. Связь «через землю» – передача звуковой частоты

Если же говорить о распространении радиоволн в земле (грунте), то увы, радиоволны в землю не проникают (если не используется мегаваттный передатчик). Связь «через землю» может осуществляется с помощью магнитной индукции между многовитковыми рамками (своеобразными антеннами), которые можно считать разнесенными обмотками трансформатора – информация переносится не электромагнитным излучением, а магнитной индукцией. То есть можно передавать звуковой сигнал (сигнал ЗЧ) через землю на небольшие расстояние до 1 км (в зависимости от мощности усилителя и комплекса других условий местности), но это не будет передачей радиоволн.

Несущая частота в такой связи выбирается около 70…90 кГц. Выбор слишком низкой несущей частоты приведет к увеличению массы и габаритов рамок, а при высокой несущей частоте увеличиваются потери на излучение.

Прием ведется на вертикально установленную рамку. Переменное магнитное поле убывает по закону «обратных кубов»: каждый раз, когда удваивается расстояние между рамками, сила сигнала уменьшается на 18 дБ.

В простых экспериментальных устройствах для передачи сигнала ЗЧ через землю применяется амплитудная или однополосная модуляция (с подавленной несущей – SSB). Определяющее значение для максимальной дальности связи имеет форма рамок.

К примеру, круглая рамка обеспечивает выигрыш силы сигнала в два раза по сравнению с квадратной.

Для увеличения дальности связи, рамки должны иметь резонанс на частоте несущей. Частота несущей должна быть выше максимальной частоты речевого сигнала, который ее модулирует.

Альтернативой рамок являются токовые электроды, погруженные в почву.

В этом случае фиксируется выигрыш в силе сигнала – по сравнению с рамкой достигает в несколько десятков дБ.

Земля для радиоволн представляет собой проводник электрического тока, в котором токи, возбуждаемые естественными электрическими зарядами, искусственно – электротехническими устройствами и другими явлениями, текут в определенных направлениях. Можно провести и другой эксперимент.

Ввести в землю 2 электрода (отрезки арматуры) каждый длиной 120 см и диаметром 80 мм на расстоянии, к примеру, 10–50 м (друг от друга; чем дальше – тем лучше), и подключить их экранированным проводом к входу усилителя с высоким входным сопротивлением (более 1 МОм).

Для сопряжения импедансов и изоляции схемы от внешних сигналов штыри подключают к усилителю не напрямую, а через разделительный (повышающий) трансформатор с коэффициентом трансформации 1:100. «Низкоомную» обмотку подключают к штырям, а «высокоомную» – к усилителю, в качестве которого можно применить любой с выходной мощностью до 20 Вт.

В результате на выходе усилителя можно зафиксировать сигналы звуковой частоты (ЗЧ) – преобразованные низкочастотные токи Земли на данном участке. Если смешать эти сигналы с фоновым шумом, то можно обнаружить, на первый взгляд, странную, еще не вполне раскрытую, последовательность звуков, расшифровка которых, возможно, даст интереснейшие открытия.

Конечно, с учетом более легких способов радио и проводной связи, сегодня широко доступных, связь через землю может рассматриваться только как область экспериментальных исследований. Ее «минусом» является и то, что помехи от грозовых разрядов или расположенных недалеко силовых линий переменного тока сильно ухудшают качество такой связи.

И тем не менее, связь в однородной среде возможна. В том числе радиосвязь. Подтверждением тому (что радиосвязь в тоннелях возможна) служит организация радиосвязи в метро.

1.3.3. Эксперимент в городском метро

Для подтверждения сего, снова пришлось захватить с собой под землю портативные рации. На этот раз в деле радиообмена были использованы безлицензионные (не требующие специального разрешения Россвязьнадзора) компактные радиостанции диапазона PMR (446 МГц) Motorola TLKR T6 (см. рис. 1.9).


Рис. 1.9. Внешний вид раций Motorola TLKR T6


Эти рации работают на фиксированных каналах на частоте 446 МГц. Если быть точным, то частотные каналы таковы.

Рабочая частота у всех раций Motorola TLKR T6 в диапазоне 446.00625-446.09375 МГц распределена по восьми фиксированным каналам так: 446.00625 МГц (1), 446.01875 (2), 446.03125 (3), 446.04375 (4), 446.05625 (5), 446.06875 (6), 446.08125 (7), 446.09375 (8).

Таким образом, дискретность составляет 01250 МГц или говоря иным языком – частотный шаг канала 12,5 Гц.

Эти сведения можно учитывать для прослушивания данных частот или организации радиосвязи на них, в том числе с помощью других радиостанций, к примеру, широкодиапазонной станции Kenwood TH-F7, описанной выше.

В этом случае, чтобы обмениваться сообщением в радиоэфире, в том числе под землей, нужно все рации «сети» настроить на одну частоту (частотный канал) и удостовериться, что все они «запрограммированы» на одни и те же субкоды.

Гипотеза о том, что радиосвязь в метро возможна, нашла свое подтверждение. На подземной платформе станции метро «Лесная» (г. Санкт-Петербург) на расстоянии прямой видимости 75 метров (дальность ограничена платформой станции), в августе 2014 года осуществлен радиообмен между двумя корреспондентами. Если бы платформа была длиннее, и канал (тоннель) имел высокую прямолинейность, есть основания полагать, что дальность связи под землей (в метро) ограничивалось бы – как и над землей – другими факторами: мощностью радиостанций и частотным диапазоном (длиной волны).

Известно, на большинстве станций (и на перегонах между станциями) в Санкт-Петербургском метрополитене уже есть устойчивая GSM-связь (для сотовых телефонов – 900 МГц) и cеть Wi-Fi (2,4 ГГц – для компьютерных систем).

Здесь она имеет, правда, свои особенности в части организации.

По всей длине тоннеля проложен излучающий кабель – в виде антенны, и пассажир с сотовым телефоном, КПК, планшетом или ноутбуком имеет возможность оставаться на связи, даже спустившись под землю.

Но это (профессиональная организация радиосвязи, в том числе сотовой – под землей – в метро) совсем другая история.

Стоя на платформе в подземном вестибюле метро можно заметить, что вдоль стены тоннеля в его глубь уходят два натянутых провода.

Нет, в метро не ходят троллейбусы, а провода эти имеют вполне объяснимое значение – это антенны для служебной связи между движущимися поездами и станционными постами дежурных служб управления движением. Здесь используется важнейшая область связи – проводная высокочастотная связь (ВЧ связь). Она осуществляется путем подключения группы маломощных длинноволновых передатчиков, настроенных на разные волны с промежутками между ними в 3…4 кГц, к обычным проводам.

Токи высокой частоты, созданные такими передатчиками, распространяются вдоль проводов, оказывая воздействие на радиоприемники в кабине машиниста, не связанные с этими проводами, и обеспечивая в то же время хороший, свободный от многих помех прием на специальных приемниках, присоединенных к этим проводам.

Таким образом, решается проблема обеспечения оперативной связи в «кривых» тоннелях под землей.

1.3.4. Перспективы подземной связи

Подземная связь востребована спелеологами и спасательными службами, поэтому разработка аппаратуры и антенн для подземной связи актуальна. Немаловажным достоинством такой связи является ее доступность – не требуются никакие разрешения государственных органов, а приемники и передатчики могут быть выполнены на не дорогой современной элементной базе с использованием высокоэффективных методов модуляции и обработки принимаемого сигнала.

Основные недостатки «классической» (надземной) радиосвязи, обнаружены еще А.С. Поповым – атмосферные помехи и замирания сигнала, хотя и получили теоретическое объяснение, но со временем не уменьшились, все также оказывают влияние на качестве связи в радиоэфире.

С ростом числа радиостанций появились еще и взаимные помехи станций друг другу.

Именно поэтому данный раздел книги начат с обзора изобретений Попова.

Объединение с проводной связью потребовало от радиосвязи такой же высокой надежности при составлении комбинированных каналов связи, какой обладала связь по проволоке.

Для повышения надежности радиосвязи применяются меры повышения помехозащиты: выбор длин волн с учетом времени дня и года, составление «радиопрогнозов», прием на несколько разнесенных (относительно друг друга) антенн, специальные методы передачи сигналов и другие.

Очень короткие (сантиметровые) волны позволяют использовать остронаправленные антенны при сравнительно небольших размерах. Общепринятая теория дальнего распространения сверхкоротких волн давно разработана, определилась техника дальней радиосвязи, и успешно работают дальние радиолинии на сантиметровых волнах.

Таким образом, пользуясь диапазоном ультракоротких волн можно ограничить дальность радиосвязи горизонтом, иным препятствием, или же осуществлять дальнюю связь, обеспечивая устойчивую силу приема в нужном районе и сохраняя острую направленность такой передачи – при условии прямолинейности участка (в части ультракоротких волн справедливо как для подземной, так и надземной радиосвязи).

Большим преимуществом определенных диапазонов радиоволн (UNF, VNF, и особенно диапазона 800 МГц и выше) является то обстоятельство, что в них можно разместить очень много радиостанций с большими промежутками между ними по длине волны.

В диапазоне коротких волн, учитывая их перспективную дальность действия и относительно малую направленность, можно разместить не более 2–3 тыс. радиостанций во всем мире, если задаться целью полного исключения помех друг другу. Этого можно добиться только при соблюдении жесткого условия, что радиостанции будут отличаться по частоте на 6– 10 кГц. При таком разносе между станциями можно вести только телеграфную или телефонную радиопередачу.

Если же использовать область ультракоротких волн, то те же 2 тыс. радиостанций можно расставить одна от другой по частоте на 10 МГц и при этом все они могут работать в одном и том же районе.

Подобные возможности разделения станций по частоте сегодня реально обеспечивают передачу безграничной информации.

1.4. Солнечные батареи и модули как источники автономного питания

Нетрадиционные источники энергии – ветер и солнце являются постоянно возобновляемыми, практически вечными видами энергии; тем они особенно перспективны для отдельных строений, возведенных на природе.

Раздел предназначен читателям, имеющим стремление к самостоятельному техническому творчеству, строителям своего счастья в прямом и переносном смысле этого понятия, интересующихся новыми идеями современной электроники, нетрадиционными источниками питания, солнечными батареями в эпоху всеобщей экономии и оптимизации издержек.

В реальном мире отождествленная с сущностью форма сияет в качестве света, так же как в идеальном мире сияет сама мысль

Гегель

С каждым днем люди на планете все больше зависят от разного рода носителей энергии. Один из них, безусловно, солнце. Но что есть такое его лучи?

Весь электромагнитный спектр солнечного излучения представляет собой излучение физических тел. И основные источники света – атомы – никогда не испускают его непрерывно. Так, атомы генерируют свет только в виде отдельных квантов электромагнитного поля – фотонов, поэтому световое излучение носит прерывистый, дискретный характер. Однако даже в простом физическом опыте по разложению белого света с помощью призмы обнаруживается «световой» порядок, наглядно демонстрирующий не только энергетический, но и явно семиотический (знаковый) характер светового спектра.

Примерно такой же по многогранности спектр, представляют собой и солнечные лучи, воздействующие на кремний (заложенный в основе) фотоэлементов, соединенных (с помощью электрической цепи) в батареи.

Современный экологически чистый дом уже невозможно представить без электричества, и аккумулирующих его устройств – солнечных батарей, а, следовательно, чтобы идти в ногу со временем, людям придется применять на практике новые методы энергоснабжения, хотя бы для того, чтобы жизнь в быту и на природе стала более безопасной и комфортной.

Внимание! Это ознакомительный фрагмент книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента ООО "ЛитРес".

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.