Математические и кибернетические методы исследования. Математическое исследование. Сетевое планирование в условиях неопределенностии

В полной мере новое исчисление как систему создал Ньютон , который, однако, долгое время не публиковал свои открытия .

Официальной датой рождения дифференциального исчисления можно считать май , когда Лейбниц опубликовал первую статью «Новый метод максимумов и минимумов…» . Эта статья в сжатой и малодоступной форме излагала принципы нового метода, названного дифференциальным исчислением.

Лейбниц и его ученики

Эти определения поясняются геометрически, при этом на рис. бесконечно малые приращения изображены конечными. Рассмотрение опирается на два требования (аксиомы). Первое:

Требуется, чтобы две величины, отличающиеся друг от друга лишь на бесконечно малую величину, можно было брать [при упрощении выражений?] безразлично одну вместо другой.

Продолжение каждой такой линии называется касательной к кривой. Исследуя касательную, проходящую через точку , Лопиталь придаёт большое значение величине

,

достигающее экстремальных значений в точках перегиба кривой, отношению же к не придаётся никакого особого значения.

Примечательно нахождение точек экстремума . Если при непрерывном увеличении диаметра ордината сначала возрастает, а затем убывает, то дифференциал сначала положителен по сравнению с , а потом отрицателен.

Но всякая непрерывно возрастающая или убывающая величина не может превратиться из положительной в отрицательную, не проходя через бесконечность или нуль… Отсюда следует, что дифференциал наибольшей и наименьшей величины должен равняться нулю или бесконечности.

Вероятно, эта формулировка не безупречна, если вспомнить о первом требовании: пусть, скажем, , тогда в силу первого требования

;

в нуле правая часть равна нулю, а левая нет. Видимо следовало сказать, что можно преобразовать в соответствии с первым требованием так, чтобы в точке максимума . . В примерах все само собой понятно, и лишь в теории точек перегиба Лопиталь пишет, что равен нулю в точке максимума, будучи разделён на .

Далее, при помощи одних дифференциалов формулируются условия экстремума и рассмотрено большое число сложных задач, относящихся в основном к дифференциальной геометрии на плоскости. В конце книги, в гл. 10, изложено то, что теперь называют правилом Лопиталя , хотя и в не совсем обычной форме. Пусть величина ординаты кривой выражена дробью, числитель и знаменатель которой обращаются в нуль при . Тогда точка кривой с имеет ординату , равную отношению дифференциала числителя к дифференциалу знаменателя, взятому при .

По замыслу Лопиталя написанное им составляло первую часть Анализа, вторая же должна была содержать интегральное исчисление, то есть способ отыскания связи переменных по известной связи их дифференциалов. Первое его изложение дано Иоганном Бернулли в его Математических лекциях о методе интеграла . Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.

Указывая на практическую полезность и простоту нового метода Лейбниц писал:

То, что человек, сведущий в этом исчислении, может получить прямо в трёх строках, другие учёнейшие мужи принуждены были искать, следуя сложными обходными путями.

Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера . Изложение анализа открывает двухтомное «Введение», где собраны изыскания о различных представлениях элементарных функций. Термин «функция» впервые появляется лишь в у Лейбница , однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта (нем. Rechnungsausdrϋck ) или аналитическое выражение .

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этой переменного количества и чисел или постоянных количеств.

Подчёркивая, что «основное различие функций лежит в способе составления их из переменного и постоянных», Эйлер перечисляет действия, «посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислением». Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа . В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы - показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций - взятия логарифма и экспоненты .

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

Полагая и , он получает

,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне). В XIX веке с подачи Казорати это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа .

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что «бесконечно малое количество есть точно нуль», более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона - формула Тейлора . Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение , которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Та функция, дифференциал которой , называется его интегралом и обозначается знаком , поставленным спереди.

В целом же эта часть трактата Эйлера посвящена более общей с современной точки зрения задаче об интегрировании дифференциальных уравнений. При этом Эйлер находит ряд интегралов и дифференциальных уравнений, которые приводят к новым функциям, напр., -функции, эллиптические функции и т. д. Строгое доказательство их неэлементарности было дано в 1830-х годах Якоби для эллиптических функций и Лиувиллем (см. элементарные функции).

Лагранж

Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась Теория аналитических функций Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа в несколько эклектической манере.

Желая избавиться от бесконечно малого вовсе, Лагранж обратил связь между производными и рядом Тейлора. Под аналитической функцией Лагранж понимал произвольную функцию, исследуемую методами анализа. Саму функцию он обозначил как , дав графический способ записи зависимости - ранее же Эйлер обходился одними переменными. Для применения методов анализа по мнению Лагранжа необходимо, чтобы функция разлагалась в ряд

,

коэффициенты которого будут новыми функциями . Остаётся назвать производной (дифференциальным коэффициентом) и обозначить его как . Таким образом, понятие производной вводится на второй странице трактата и без помощи бесконечно малых. Остаётся заметить, что

,

поэтому коэффициент является удвоенной производной производной , то есть

и т. д.

Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса .

Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.

Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа. Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.

Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точках они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию

доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению . Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение

.

Дальнейшее развитие

В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел . В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции , заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры , а Кантор - теорию множеств , и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.

Разделы математического анализа

  • Метрическое пространство , Топологическое пространство

См. также

Библиография

Энциклопедические статьи

  • // Энциклопедический лексикон : Спб.: тип. А. Плюшара, 1835-1841. Том 1-17.
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Учебная литература

Стандартные учебники

На протяжении многих лет в России популярны следующие учебники:

  • Курант, Р. Курс дифференциального и интегрального исчисления (в двух томах). Главная методическая находка курса: сначала попросту излагаются основные идеи, а затем им даются строгие доказательства. Написан Курантом в его бытность профессором Геттингенского университета в 1920-х под влиянием идей Клейна , затем в 1930-х перенесён на американскую почву. Русский перевод 1934 г. и его переиздания дает текст по немецкому изданию, перевод 1960-х годов (т. н. 4-ое издание) представляет собой компиляцию из немецкой и американской версии учебника и в связи с этим весьма многословен.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления (в трёх томах) и задачник.
  • Демидович Б. П. Сборник задач и упражнений по математическому анализу.
  • Ляшко И. И. и др. Справочное пособие по высшей математике, т. 1-5.

Некоторые ВУЗы имеют собственные руководства по анализу:

  • МГУ , МехМат:
  • Архипов Г. И., Садовничий В. А., Чубариков В. Н. Лекции по мат. анализу.
  • Зорич В. А. Математический анализ. Часть I. М.: Наука, 1981. 544 с.
  • Зорич В. А. Математический анализ. Часть II. М.: Наука, 1984. 640 с.
  • Камынин Л. И. Курс математического анализа (в двух томах). М.: Издательство Московского Университета, 2001.
  • В. А. Ильин , В. А. Садовничий , Бл. Х. Сендов . Математический анализ / Под ред. А. Н. Тихонова . - 3-е изд. , перераб. и доп. - М .: Проспект, 2006. - ISBN 5-482-00445-7
  • МГУ , физфак:
  • Ильин В. А. , Позняк Э. Г. Основы математического анализа (в двух частях). - М .: Физматлит, 2005. - 648 с. - ISBN 5-9221-0536-1
  • Бутузов В. Ф. и др. Мат. анализ в вопросах и задачах
  • Математика в техническом университете Сборник учебных пособий в 21 томе.
  • СПбГУ , физфак:
  • Смирнов В. И. Курс высшей математики, в 5 томах. М.: Наука, 1981 (6-е издание), БХВ-Петербург, 2008 (24-е издание).
  • НГУ , мехмат:
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 1. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Новосибирск: Изд-во Ин-та математики, 1999. 454 с ISBN 5-86134-066-8 .
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 2. Интегральное исчисление функций одной переменной. Дифференциальное исчисление функций многих переменных. Новосибирск: Изд-во Ин-та математики, 1999. 512 с ISBN 5-86134-067-6 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 1. Основы гладкого анализа в многомерных пространствах. Теория рядов. Новосибирск: Изд-во Ин-та математики, 2000. 440 с ISBN 5-86134-086-2 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 2. Интегральное исчисление функций многих переменных. Интегральное исчисление на многообразиях. Внешние дифференциальные формы. Новосибирск: Изд-во Ин-та математики, 2001. 444 с ISBN 5-86134-089-7 .
  • Шведов И. А. Компактный курс математического анализа, : Часть 1. Функции одной переменной , Часть 2. Дифференциальное исчисление функций многих переменных .
  • МФТИ , Москва
  • Кудрявцев Л. Д. Курс математического анализа (в трех томах).
  • БГУ , физфак:
  • Богданов Ю. С. Лекции по математическому анализу (в двух частях). - Минск: БГУ, 1974. - 357 с.

Учебники повышенной сложности

Учебники:

  • Рудин У. Основы математического анализа. М., 1976 - небольшая книга, написана очень чётко и сжато.

Задачники повышенной сложности:

  • Г.Полиа, Г.Сеге, Задачи и теоремы из анализа. Часть 1 , Часть 2 , 1978. (Большая часть материала относится к ТФКП)
  • Pascal, E. (Napoli). Esercizii, 1895; 2 ed., 1909 // Internet Archiv

Учебники для гуманитарных специальностей

  • А. М. Ахтямов Математика для социологов и экономистов. - М. : Физматлит, 2004.
  • Н. Ш. Кремер и др. Высшая математика для экономистов. Учебник. 3-е изд. - М. : Юнити, 2010

Задачники

  • Г. Н. Берман. Сборник задач по курсу математического анализа: Учебное пособие для вузов. - 20-е изд. М.:Наука. Главная редакция физико-математической литературы, 1985. - 384 с.
  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.
  • Г. И. Запорожец Руководство к решению задач по математическому анализу. - М.: Высшая школа, 1966.
  • И. А. Каплан. Практические занятия по высшей математике, в 5 частях.. - Харьков, Изд. Харьковского гос. ун-та, 1967, 1971, 1972.
  • А. К. Боярчук, Г. П. Головач. Диференциальные уравнения в примерах и задачах. Москва. Едиториал УРСС, 2001.
  • А. В. Пантелеев, А. С. Якимова, А. В. Босов. Обыкновенные дифференциальные уравнения в примерах и задачах. «МАИ», 2000
  • А. М. Самойленко, С. А. Кривошея, Н. А. Перестюк. Дифференциальные уравнения: примеры и задачи. ВШ, 1989.
  • К. Н. Лунгу, В. П. Норин, Д. Т. Письменный, Ю.А Шевченко. Сборник задач по высшей математике. 1 курс. - 7-е изд. - М.: Айрис-пресс, 2008.
  • И. А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). - М., Физматлит, 1970.
  • В. Д. Черненко. Высшая математика в примерах и задачах: Учебное пособие для вузов. В 3 т. - СПб.: Политехника, 2003.

Справочники

Классические произведения

Сочинения по истории анализа

  • Кестнер, Авраам Готтгельф . Geschichte der Mathematik. 4 тома, Геттинген, 1796-1800
  • Кантор, Мориц . Vorlesungen über geschichte der mathematik Leipzig: B. G. Teubner, - . Bd. 1 , Bd. 2 , Bd. 3 , Bd. 4
  • История математики под редакцией А. П. Юшкевича (в трёх томах):
  • Том 1 С древнейших времен до начала Нового времени. (1970)
  • Том 2 Математика XVII столетия. (1970)
  • Том 3 Математика XVIII столетия. (1972)
  • Маркушевич А. И. Очерки по истории теории аналитических функций. 1951
  • Вилейтнер Г. История математики от Декарта до середины XIX столетия. 1960

Примечания

  1. Ср., напр.,курс Cornell Un
  2. Ньютон И. Математические работы . M, 1937.
  3. Leibniz //Acta Eroditorum, 1684. L.M.S., т. V, c. 220-226. Рус. пер.: Успехи Мат. Наук, т. 3, в. 1 (23), с. 166-173.
  4. Лопиталь. Анализ бесконечно малых . М.-Л.:ГТТИ, 1935. (Далее: Лопиталь) // Мат. анализ на EqWorld
  5. Лопиталь, гл. 1, опр. 2.
  6. Лопиталь, гл. 4, опр. 1.
  7. Лопиталь, гл. 1, требование 1.
  8. Лопиталь, гл. 1, требование 2.
  9. Лопиталь, гл. 2, опр.
  10. Лопиталь, § 46.
  11. Лопиталь беспокоится о другом: для него длина отрезка и нужно пояснить, что значит её отрицательность. Замечание, сделанное в § 8-10, можно даже понять так, что при убывании с ростом следует писать , однако далее это не используется.

И геометрией . Основной отличительный признак анализа в сравнении с другими направлениями - наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии .

История

Отдельные ответвления от «анализа бесконечно малых», такие как теория обыкновенных дифференциальных уравнений (Эйлер , Иоганн Бернулли , Д’Аламбер), вариационное исчисление (Эйлер, Лагранж), теория аналитических функций (Лагранж, Коши , впоследствии - Риман), начали обособляться ещё в XVIII - первой половине XIX века. Однако началом формирования анализа как самостоятельного современного раздела считаются труды середины XIX века по формализации ключевых понятий классического анализа - вещественного числа , функции , предела , интеграла , прежде всего, в трудах Коши и Больцано , и приобретшие законченную форму к 1870-м - 1880-м годам в работах Вейерштрасса , Дедекинда и Кантора . В этой связи сформировались теория функций вещественной переменной и, в развитии методов работы с аналитическими функциями, - теория функций комплексной переменной . Созданная Кантором в конце XIX века наивная теория множеств дала толчок к появлению понятий метрического и топологического пространств, что в значительной мере изменило весь инструментарий анализа, повысив уровень абстракции изучаемых объектов и переместив фокус с вещественных чисел к нечисловым понятиям.

В начале XX века в основном силами французской математической школы (Жордан , Борель , Лебег , Бэр) была создана теория меры , благодаря которой обобщено понятие интеграла, а также построена теория функций действительной переменной . Также в начале XX века начал формироваться функциональный анализ как самостоятельный подраздел современного анализа, изучающий топологические векторные пространства и их отображения . Термин «функциональный анализ» ввёл Адамар , обозначая ветвь вариационного исчисления, разрабатываемую на рубеже XIX и XX веков группой итальянских и французских математиков (в их числе - Вольтерра , Арцела). В 1900 году Фредгольм публикует статью об интегральных уравнения, как давшую толчок для развития теории интегральных уравнений , развития общей теории интегрирования (Лебег), так и формирования функционального анализа . В 1906 году в работе Гильберта очерчена спектральная теория , в том же году опубликована работа Фреше , в которой впервые в анализ введены абстрактные метрические пространства . В 1910-е - 1920-е годы уточнены понятия отделимости и впервые применены общетопологические методы к анализу (Хаусдорф), освоены функциональные пространства и начато формирование общей теории нормированных пространств (Гильберт, Рис , Банах , Хан). В период 1929-1932 годов сформирована аксиоматическая теория гильбертовых пространств (Джон фон Нейман , Маршалл Стоун , Рис). В 1936 году Соболевым сформулировано понятие обобщённой функции (позднее в 1940-х годах независимо от него к подобному понятию пришёл Лоран Шварц), получившее широкое распространение во многих разделах анализа и нашедшее широкое применение в приложениях (например, обобщённой является δ {\displaystyle \delta } -функция Дирака). В 1930-е - 1950-е годы в функциональном анализе получены значительные результаты за счёт применения общеалгебраических инструментов (векторные решётки , операторные алгебры , банаховы алгебры).

К середине XX века получили самостоятельное развитие такие направления как теория динамических систем и эргодическая теория (Джордж Биркгоф , Колмогоров , фон Нейман), существенно обобщены результаты гармонического анализа за счёт применения общеалгебраических средств - топологических групп и представлений (Вейль , Петер , Понтрягин). Начиная с 1940-х - 1950-х годов методы функционального анализа нашли применение в прикладных сферах, в частности, в работах Канторовича 1930-х - 1940-х годов инструменты функционального анализа использованы в вычислительной математике и экономике (линейное программирование). В 1950-е годы в трудах Понтрягина и учеников в развитие методов вариационного исчисления создана теория оптимального управления .

Начиная со второй половины XX века с развитием дифференциальной топологии к анализу примкнуло новое направление - анализ на многообразиях , получившее название «глобальный анализ» , фактически начавшее формироваться ранее, в 1920-е годы в рамках теории Морса как обобщение вариационного исчисления (называемое Морсом «вариационное исчисление в целом», англ. variation calculus in large ). К этому направлению относят созданные в развитие теории бифуркаций динамических систем (Андронов) такие направления, как теорию особенностей (Уитни , ) и теорию катастроф (Том , и Мазер , ), получившие в 1970-е годы развитие в работах Зимана и Арнольда .

Классический математический анализ

Классический математический анализ - раздел, фактически полностью соответствующий историческому «анализу бесконечно малых », состоит из двух основных компонентов: дифференциального и интегрального исчислений. Основные понятия - предел функции , дифференциал , производная , интеграл , главные результаты - формула Ньютона - Лейбница , связывающая определённый интеграл и первообразную и ряд Тейлора - разложение в ряд бесконечно дифференцируемой функции в окрестности точки.

Под термином «математический анализ» обычно понимают именно этот классический раздел, при этом он используется в основном в учебных программах и материалах. При этом изучение основ анализа входит в большинство среднеобразовательных программ, а более или менее полное изучение предмета включено в программы первых лет высшего образования для широкого круга специальностей, в том числе многих гуманитарных. В англо-американской образовательной традиции для обозначения классического математического анализа используется термин «исчисление» (англ. calculus ).

Теория функций вещественной переменной (иногда именуется кратко - теория функций ) возникла вследствие формализации понятий вещественного числа и функции : если в классических разделах анализа рассматривались только функции, возникающие в конкретных задачах, естественным образом, то в теории функций сами функции становятся предметом изучения, исследуется их поведение, соотношения их свойств. Один из результатов, иллюстрирующих специфику теории функций вещественной переменной - факт, что непрерывная функция может не иметь производной ни в одной точке (притом согласно более ранним представлениям классического математического анализа дифференцируемость всех непрерывных функций не подвергалась сомнению).

Основные направления теории функций вещественной переменной :

Теория функций комплексной переменной

Предмет изучения теории функций комплексной переменной - числовые функции, определённые на комплексной плоскости C 1 {\displaystyle \mathbb {C} ^{1}} или комплексном евклидовом пространстве C n {\displaystyle \mathbb {C} ^{n}} , при этом наиболее тщательно изучены аналитические функции , играющие важную связующую роль практически для всех ветвей математического анализа. В частности, понятие аналитической функции обобщено для произвольных банаховых пространств , тем самым многие результаты теории функций комплексной переменной нашли обобщение в функциональном анализе.

Функциональный анализ

Функциональный анализ как раздел характеризуется наличием в качестве предмета изучения топологических векторных пространств и их отображений с наложенными на них различными алгебраическими и топологическими условиями . Центральную роль в функциональном анализе играют функциональные пространства, классический пример - пространства всех измеримых функций , чья p {\displaystyle p} -я степень интегрируема; при этом уже L 2 {\displaystyle L^{2}} - бесконечномерное пространство (гильбертово пространство), и пространства бесконечных размерностей присущи функциональному анализу настолько, что иногда весь раздел определяется как часть математики, изучающая бесконечномерные пространства и их отображения . Важнейшей формой пространств в классических разделах функционального анализа являются банаховы пространства - нормированные векторные пространства, полные по метрике, порождённой нормой: значительная доля интересных на практике пространств являются таковыми, среди них - все гильбертовы пространства, пространства L p {\displaystyle L^{p}} , пространства Харди , пространства Соболева . Важную роль играют в функциональном анализе играют алгебраические структуры, являющиеся банаховыми пространствами - банаховы решётки и банаховы алгебры (в том числе - C ∗ {\displaystyle C^{*}} -алгебры , алгебры фон Неймана).

В абстрактном гармоническом анализе классические методы обобщены для абстрактных структур с использованием таких понятий, как мера Хаара и представления групп . Важнейший результат коммутативного гармонического анализа - теорема Понтрягина о двойственности , благодаря которой относительно простыми общеалгебраическими средствами описываются практически все классические результаты гармонического анализа. Дальнейшее развитие теории - некоммутативный гармонический анализ, имеющий важные приложения в квантовой механике .

Дифференциальные и интегральные уравнения

В теории интегральных уравнений , кроме классических методов решения, выделяются такие направления, как теория Фредгольма , оказавшая заметное влияние на формирование функционального анализа как самостоятельного раздела, в частности, способствовавшая формированию понятия гильбертова пространства .

Теория динамических систем и эргодическая теория

Из основных направлений изучения дифференциальных уравнений в качестве самостоятельных разделов выделились теория динамических систем , изучающая эволюцию во времени механических систем, и эргодическая теория , нацеленная на обоснование статистической физики . Несмотря на прикладной характер задач, к этим разделам относится широкий пласт понятий и методов общематемического значения, в частности, таковы понятия устойчивости и эргодичности .

Глобальный анализ

Глобальный анализ - раздел анализа, изучающий функции и дифференциальные уравнения на многообразиях и векторных расслоениях ; иногда это направление обозначается как «анализ на многообразиях».

Одно из первых направлений глобального анализа - теория Морса и её применение к задачам о геодезических на римановых многообразиях ; направление получило название «вариационное исчисление в целом». Основные результаты - лемма Морса , описывающая поведение гладких функций на гладких многообразиях в невырожденных особых точках, и такой гомотопический инвариант, как категория Люстерника - Шнирельмана . Многие из конструкций и утверждений обобщены на случай бесконечномерных многообразий (гильбертовых многообразий * , банаховых многообразий ). Результаты, полученные в рамках глобального анализа особых точек нашли широкое и для решения чисто топологических задач, такова, например, теорема периодичности Ботта , во многом послужившая основанием для самостоятельного раздела математики - K {\displaystyle K} -теории , а также теорема об h {\displaystyle h} -кобордизме , следствием которой является выполнение гипотезы Пуанкаре для размерности, превосходящей 4.

Ещё один крупный блок направлений глобального анализа, получивший широкое применение в физике и экономике - теория особенностей , теория бифуркаций и теория катастроф ; основное направление исследований данного блока - классификация поведений дифференциальных уравнений или функций в окрестностях критических точек и выявление характерных особенностей соответствующих классов.

Нестандартный анализ

Нестандартный анализ - формализация ключевых понятий анализа средствами математической логики , основная идея - формальная актуализация бесконечно больших и бесконечно малых величин, и логическая формализация манипуляций с ними. При этом средства нестандартного анализа оказываются весьма удобными: ими получены результаты, ранее не найденные классическими средствами из-за недостатка наглядности

Содержание статьи

МАТЕМАТИЧЕСКИЙ АНАЛИЗ, раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).

Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ , прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные.

На рис. 1 показан фрагмент кривой y = 2x x 2 , заключенный между x = –1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р – произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р , причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р . Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р – вершина такого излома, то можно построить аппроксимирующую прямую PT 1 – справа от точки Р и другую аппроксимирующую прямую РТ 2 – слева от точки Р . Но не существует единственной прямой, проходящей через точку Р , которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y – координаты произвольной точки на ОТ , то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y /x = 2, или y = 2x . Это уравнение касательной ОТ к кривой y = 2x x 2 в точке О .

Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О , выбрана именно прямая ОТ . Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О , пересекает кривую дважды. В этом можно убедиться следующим образом.

Поскольку выражение y = 2x x 2 можно получить вычитанием х 2 из y = 2x (уравнения прямой ОТ ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О , расположен ниже ОТ , и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx – уравнение какой-нибудь другой прямой, проходящей через точку О , то обязательно найдутся две точки пересечения. Действительно, mx = 2x x 2 не только при x = 0, но и при x = 2 – m . И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

То, что ОТ – единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x 3 хорошо аппроксимируется прямой РТ , имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р . Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

Предположим, что через точку О и произвольную точку Q = (h ,k ) на графике кривой y = 2x x 2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k , получаем, что k = 2h h 2 , следовательно, угловой коэффициент секущей равен

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m «стремится к пределу», равному 2, когда h стремится к нулю, или что предел m равен 2 при h , стремящемся к нулю. Символически это записывается так:

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О , с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае.

Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x x 2 в произвольной точке P = (x ,y ), не ограничиваясь простейшим случаем, когда P = (0,0).

Пусть Q = (x + h , y + k ) – вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k /h секущей PQ . Точка Q находится на расстоянии

над осью х .

Раскрывая скобки, находим:

Вычитая из этого уравнения y = 2x x 2 , находим расстояние по вертикали от точки Р до точки Q :

Следовательно, угловой коэффициент m секущей PQ равен

Теперь, когда h стремится к нулю, m стремится к 2 – 2x ; последнюю величину мы и примем за угловой коэффициент касательной PT . (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P .) Заметим, что при x = 0 полученный результат совпадает с предыдущим.

Выражение 2 – 2x называется производной от 2x x 2 . В старину производную также называли «дифференциальным отношением» и «дифференциальным коэффициентом». Если выражением 2x x 2 обозначить f (x ), т.е.

то производную можно обозначить

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f (x ) в какой-нибудь точке, необходимо подставить в f ў (x ) соответствующее этой точке значение х . Таким образом, угловой коэффициент f ў (0) = 2 при х = 0, f ў (0) = 0 при х = 1 и f ў (2) = –2 при х = 2.

Производную также обозначают у ў , dy /dx , D х y и .

Тот факт, что кривая y = 2x x 2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об «угловом коэффициенте кривой» в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен –2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x x 2 имеет в этой точке стационарное значение.

Максимумы и минимумы.

Мы только что показали, что кривая f (x ) = 2x x 2 стационарна в точке (1,1). Так как f ў (x ) = 2 – 2x = 2(1 – x ), ясно, что при x , меньших 1, f ў (x ) положительна, и, следовательно, y возрастает; при x , больших 1, f ў (x ) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М , значение у растет до точки М , стационарно в точке М и убывает после точки М . Такая точка называется «максимумом», поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, «минимум» определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x ) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба.

В качестве примера найдем стационарную точку кривой

Производная этой функции равна

и обращается в нуль при x = 0, х = 1 и х = –1; т.е. в точках (0,0), (1, –2/15) и (–1, 2/15). Если х чуть меньше –1, то f ў (x ) отрицательна; если х чуть больше –1, то f ў (x ) положительна. Следовательно, точка (–1, 2/15) – максимум. Аналогично, можно показать, что точка (1, –2/15) – минимум. Но производная f ў (x ) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) – точка перегиба.

Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f (x ) = 0 (т.е. при х = 0 или ) позволяют представить ее график примерно так, как показано на рис. 7.

В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р . (См . рис. 8, на котором касательная имеет положительный угловой коэффициент.)

1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а ). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.

2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б ). В этом случае говорят, что кривая выпукла вверх или просто выпукла.

3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже – по другую. В этом случае Р – точка перегиба.

Сравнивая значения f ў (x ) по обе стороны от Р с ее значением в точке Р , можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.

Приложения.

Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s , на которой они будут находиться через t секунд по сравнению с начальной точкой составит

Действуя так же, как в рассмотренных нами примерах, находим

эта величина обращается в нуль при с. Производная f ў (x ) положительна до значения с и отрицательна по истечении этого времени. Следовательно, s возрастает до , затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t ), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f ў (t ) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t .

Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см 2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х – сторона основания коробки и h – ее высота, то объем коробки равен V = x 2 h , а площадь поверхности равна 75 = x 2 + 4xh . Преобразуя уравнение, получаем:

Производная от V оказывается равной

и обращается в нуль при х = 5. Тогда

и V = 125/2. График функции V = (75x x 3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).

Производные.

Важная задача дифференциального исчисления – создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:

где n – любое целое число или дробь. Например,

(На этом примере видно, как полезны дробные показатели степени.)

Приведем некоторые важнейшие формулы:

Существуют также следующие правила: 1) если каждая из двух функций g (x ) и f (x ) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

2) производная произведения двух функций вычисляется по формуле:

3) производная отношения двух функций имеет вид

4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.

Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x 2 , нам необходимо сначала найти u = x 2 , а затем уже вычислить синус числа u . Производную таких сложных функций мы находим с помощью так называемого «цепного правила»:

В нашем примере f (u ) = sin u , f ў (u ) = cos u , следовательно,

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.

Линейные аппроксимации.

То обстоятельство, что, зная производную, мы можем во многих случаях заменить график функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче работать.

Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например, довольно трудно вычислить значение при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и что . Вблизи x = 1 мы можем заменить график кривой касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x 1/3)ў = (1/3)x –2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

На этой прямой при х = 1,033

Полученное значение y должно быть очень близко к истинному значению y ; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений.

Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P – точка, соответствующая на графике функции f переменной х , и пусть функция f (x ) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h , то ордината касательной изменится на величину h Ч f ў (x ). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy , то получим dy = f ў (x )dx , или dy /dx = f ў (x ) (см . рис. 11). Поэтому вместо Dy или f ў (x ) для обозначения производной часто используется символ dy /dx . Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

где подразумевается, что у зависит от u , а u в свою очередь зависит от х .

Величина dy называется дифференциалом у ; в действительности она зависит от двух переменных, а именно: от х и приращения dx . Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y . Но предполагать, что приращение dx мало, нет необходимости.

Производную функции y = f (x ) мы обозначили f ў (x ) или dy /dx . Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x ) и обозначается f ўў (x ) или d 2 y /dx 2 . Например, если f (x ) = x 3 – 3x 2 , то f ў (x ) = 3x 2 – 6x и f ўў (x ) = 6x – 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4) (x ), а производную n -го порядка как f (n ) (x ).

Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна.

Если функция имеет вторую производную, то изменение величины y , соответствующее приращению dx переменной х , можно приближенно вычислить по формуле

Это приближение, как правило, лучше, чем то, которое дает дифференциал f ў (x )dx . Оно соответствует замене части кривой уже не прямой, а параболой.

Если у функции f (x ) существуют производные более высоких порядков, то

Остаточный член имеет вид

где x – некоторое число между x и x + dx . Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f (x ) имеет производные всех порядков, то обычно R n ® 0 при n ® Ґ .

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Площади.

При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.

Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена.

Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x 2 .

Основная теорема.

Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна.

Начнем с площади под графиком линейной функции y = 1 + x , поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии.

Пусть A (x ) – часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A (x ) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,

Скорость изменения площади A (x ) определяется ее производной

Мы видим, что A ў (x ) совпадает с ординатой у точки Р . Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x ) под параболой у = х 2 в интервале от 0 до х равна A (x ) = (1 / 3)(x )(x 2) = x 3 /3. Скорость изменения этой площади определяется выражением

которое в точности совпадает с ординатой у движущейся точки Р .

Если предположить, что это правило выполняется в общем случае так, что

есть скорость изменения площади под графиком функции y = f (x ), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A ў (x ) = f (x ) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х , равна значению функции f (x ) в точке х .

Например, чтобы найти площадь под графиком функции y = x 3 от 0 до х (рис. 16), положим

Возможный ответ гласит:

так как производная от х 4 /4 действительно равна х 3 . Кроме того, A (x ) равна нулю при х = 0, как и должно быть, если A (x ) действительно является площадью.

В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A (x ), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В (x ). Если A (x ) и В (x ) «стартуют» одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение.

Как можно обосновать соотношение A ў (x ) = f (x ) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m – наименьшее значение функции f (x ) в интервале от х до (x + h ), а M – наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h ) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h . Меньший прямоугольник имеет высоту m и площадь mh , больший, соответственно, М и Mh . На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h , значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh . Угловой коэффициент секущей на этом графике находится между m и M . Что происходит, когда h стремится к нулю? Если график функции y = f (x ) непрерывен (т.е. не содержит разрывов), то и М , и m стремятся к f (x ). Следовательно, угловой коэффициент A ў (x ) графика площади как функции от х равен f (x ). Именно к такому заключению и требовалось придти.

Лейбниц предложил для площади под кривой y = f (x ) от 0 до а обозначение

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A (x ), которая обращается в нуль при х = 0 и имеет производную A ў (x ), равную f (x ). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

в чем нетрудно убедиться, продифференцировав A (x ).

Чтобы вычислить площадь А 1 под кривой y = 1 + x + x 2 /2, заключенную между ординатами 0 и 1, мы просто записываем

и, подставляя х = 1, получаем A 1 = 1 + 1 / 2 + 1 / 6 = 5 / 3 . Площадь A (x ) от 0 до 2 равна A 2 = 2 + 4 / 2 + 8 / 6 = 16 / 3 . Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A 2 – A 1 = 11 / 3 . Обычно она записывается в виде определенного интеграла

Объемы.

Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных им методов, удалось решить с великим трудом.

Повернем часть плоскости, заключенной внутри четверти круга радиуса r , на угол 360° вокруг оси х . В результате мы получим полушарие (рис. 20), объем которого обозначим V (x ). Требуется определить, с какой скоростью возрастает V (x ) с увеличением x . Переходя от х к х + h , нетрудно убедиться в том, что приращение объема меньше, чем объем p (r 2 – x 2)h кругового цилиндра радиуса и высотой h , и больше, чем объем p [r 2 – (x + h ) 2 ]h цилиндра радиуса и высотой h . Следовательно, на графике функции V (x ) угловой коэффициент секущей заключен между p (r 2 – x 2) и p [r 2 – (x + h ) 2 ]. Когда h стремится к нулю, угловой коэффициент стремится к

При x = r мы получаем

для объема полушария, и, следовательно, 4p r 3 /3 для объема всего шара.

Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a (x ) – длина дуги PR на рис. 21, то наша задача состоит в вычислении a ў(x ). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а (x ) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P . Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а (x ) меняется на

Следовательно, скорость изменения функции a (x ) составляет

Чтобы найти саму функцию a (x ), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудно. Поэтому разработка методов интегрального исчисления составляет большую часть математического анализа.

Первообразные.

Каждую функцию, производная которой равна данной функции f (x ), называют первообразной (или примитивной) для f (x ). Например, х 3 /3 – первообразная для функции х 2 , так как (x 3 /3)ў = x 2 . Разумеется, х 3 /3 – не единственная первообразная функции х 2 , так как x 3 /3 + C также является производной для х 2 при любой константе С . Однако мы в дальнейшем условимся опускать такие аддитивные постоянные. В общем случае

где n – положительное целое число, так как (x n + 1/(n + 1))ў = x n . Соотношение (1) выполняется в еще более общем смысле, если n заменить любым рациональным числом k , кроме –1.

Произвольную первообразную функцию для заданной функции f (x ) принято называть неопределенным интегралом от f (x ) и обозначать его в виде

Например, так как (sin x )ў = cos x , справедлива формула

Во многих случаях, когда существует формула для неопределенного интеграла от заданной функции, ее можно найти в многочисленных широко публикуемых таблицах неопределенных интегралов. Табличными являются интегралы от элементарных функций (в их число входят степени, логарифмы, показательная функция, тригонометрические функции, обратные тригонометрические функции, а также их конечные комбинации, получаемые с помощью операций сложения, вычитания, умножения и деления). С помощью табличных интегралов можно вычислить интегралы и от более сложных функций. Существует много способов вычисления неопределенных интегралов; наиболее распространенный из них метод подстановки или замены переменной. Он состоит в том, что если мы хотим в неопределенном интеграле (2) заменить x на некоторую дифференцируемую функцию x = g (u ), то, чтобы интеграл не изменился, надо x заменить на g ў (u )du . Иначе говоря, справедливо равенство

(подстановка 2x = u , откуда 2dx = du ).

Приведем еще один метод интегрирования – метод интегрирования по частям. Он основан на известной уже формуле

Проинтегрировав левую и правую части, и учитывая, что

Эта формула называется формулой интегрирования по частям.

Пример 2. Требуется найти . Так как cos x = (sin x )ў , мы можем записать, что

Из (5), полагая u = x и v = sin x , получаем

А поскольку (–cos x )ў = sin x мы находим, что и

Следует подчеркнуть, что мы ограничились лишь весьма кратким введением в весьма обширный предмет, в котором накоплены многочисленные остроумные приемы.

Функции двух переменных.

В связи с кривой y = f (x ) мы рассмотрели две задачи.

1) Найти угловой коэффициент касательной к кривой в данной точке. Эта задача решается вычислением значения производной f ў (x ) в указанной точке.

2) Найти площадь под кривой над отрезком оси х , ограниченную вертикальными линиями х = а и х = b . Эта задача решается вычислением определенного интеграла .

Каждая из этих задач имеет аналог в случае поверхности z = f (x ,y ).

1) Найти касательную плоскость к поверхности в данной точке.

2) Найти объем под поверхностью над частью плоскости ху , ограниченной кривой С , а сбоку – перпендикулярами к плоскости xy , проходящими через точки граничной кривой С (см . рис. 22).

Следующие примеры показывают, как решаются эти задачи.

Пример 4. Найти касательную плоскость к поверхности

в точке (0,0,2).

Плоскость определена, если заданы две лежащие в ней пересекающиеся прямые. Одну из таких прямых (l 1) мы получим в плоскости xz (у = 0), вторую (l 2) – в плоскости yz (x = 0) (см . рис. 23).

Прежде всего, если у = 0, то z = f (x ,0) = 2 – 2x – 3x 2 . Производная по х , обозначаемая f ў x (x ,0) = –2 – 6x , при х = 0 имеет значение –2. Прямая l 1 , задаваемая уравнениями z = 2 – 2x , у = 0 – касательная к С 1 , линии пересечения поверхности с плоскостью у = 0. Аналогично, если х = 0, то f (0,y ) = 2 – y y 2 , и производная по у имеет вид

Так как f ў y (0,0) = –1, кривая С 2 – линия пересечения поверхности с плоскостью yz – имеет касательную l 2 , задаваемую уравнениями z = 2 – y , х = 0. Искомая касательная плоскость содержит обе прямые l 1 и l 2 и записывается уравнением

Это – уравнение плоскости. Кроме того, мы получаем прямые l 1 и l 2 , полагая, соответственно, у = 0 и х = 0.

В том, что уравнение (7) действительно задает касательную плоскость, на эвристическом уровне можно убедиться, если заметить, что это уравнение содержит члены первого порядка, входящие в уравнение (6), и что члены второго порядка можно представить в виде –. Так как это выражение отрицательно при всех значениях х и у , кроме х = у = 0, поверхность (6) всюду лежит ниже плоскости (7), кроме точки Р = (0,0,0). Можно сказать, что поверхность (6) выпукла вверх в точке Р .

Пример 5. Найти касательную плоскость к поверхности z = f (x ,y ) = x 2 – y 2 в начале координат 0.

На плоскости у = 0 имеем: z = f (x ,0) = x 2 и f ў x (x ,0) = 2x . На С 1 , линии пересечения, z = x 2 . В точке O угловой коэффициент равен f ў x (0,0) = 0. На плоскости х = 0 имеем: z = f (0,y ) = –y 2 и f ў y (0,y ) = –2y . На С 2 , линии пересечения, z = –y 2 . В точке O угловой коэффициент кривой С 2 равен f ў y (0,0) = 0. Так как касательные к С 1 и С 2 являются осями х и у , касательная плоскость, содержащая их, есть плоскость z = 0.

Однако в окрестности начала координат наша поверхность не находится по одну сторону от касательной плоскости. Действительно, кривая С 1 всюду, за исключением точки 0, лежит выше касательной плоскости, а кривая С 2 – соответственно ниже ее. Поверхность пересекает касательную плоскость z = 0 по прямым у = х и у = –х . Про такую поверхность говорят, что она имеет седловую точку в начале координат (рис. 24).

Частные производные.

В предыдущих примерах мы использовали производные от f (x ,y ) по х и по у . Рассмотрим теперь такие производные в более общем плане. Если у нас имеется функция двух переменных, например, F (x ,y ) = x 2 – xy , то мы можем определить в каждой точке две ее «частные производные», одну – дифференцируя функцию по х и фиксируя у , другую – дифференцируя по у и фиксируя х . Первая из этих производных обозначается как f ў x (x ,y ) или ¶ f x ; вторая – как f f ў y . Если обе смешанные производные (по х и у , по у и х ) непрерывны, то ¶ 2f x y = ¶ 2f y x ; в нашем примере ¶ 2f x y = ¶ 2f y x = –1.

Частная производная f ў x (x ,y ) указывает скорость изменения функции f в точке (x ,y ) в направлении возрастания х , а f ў y (x ,y ) – скорость изменения функции f в направлении возрастания у . Скорость изменения функции f в точке (х ,у ) в направлении прямой, составляющей угол q с положительным направлением оси х , называется производной от функции f по направлению; ее величина представляет собой комбинацию двух частных производных от функции f в касательной плоскости почти равно (при малых dx и dy ) истинному изменению z на поверхности, но вычислить дифференциал обычно бывает легче.

Уже рассмотренная нами формула из метода замены переменной, известная как производная сложной функции или цепное правило, в одномерном случае, когда у зависит от х , а х зависит от t , имеет вид:

Для функций двух переменных аналогичная формула имеет вид:

Понятия и обозначения частного дифференцирования нетрудно обобщить на более высокие размерности. В частности, в случае если поверхность задана неявно уравнением f (x ,y ,z ) = 0, уравнению касательной плоскости к поверхности можно придать более симметричную форму: уравнение касательной плоскости в точке (x (x 2 /4)], затем интегрируется по х от 0 до 1. Окончательный результат равен 3/4.

Формулу (10) можно интерпретировать и как так называемый двойной интеграл, т.е. как предел суммы объемов элементарных «клеток». Каждая такая клетка имеет основание D x D y и высоту, равную высоте поверхности над некоторой точкой прямоугольного основания (см . рис. 26). Можно показать, что обе точки зрения на формулу (10) эквивалентны. Двойные интегралы используются для нахождения центров тяжести и многочисленных моментов, встречающихся в механике.

Более строгое обоснование математического аппарата.

До сих пор мы излагали понятия и методы математического анализа на интуитивном уровне и, не колеблясь, прибегали к геометрическим фигурам. Нам осталось кратко рассмотреть более строгие методы, появившиеся в 19 и 20-м столетиях.

В начале 19 в., когда эпоха штурма и натиска в «создании математического анализа» завершилась, на первый план вышли вопросы его обоснования. В работах Абеля, Коши и ряда других выдающихся математиков были точно определены понятия «предела», «непрерывной функции», «сходящегося ряда». Это было необходимо для того, чтобы внести логический порядок в основание математического анализа с тем, чтобы сделать его надежным инструментом исследования. Потребность в тщательном обосновании стала еще более очевидной после открытия в 1872 Вейерштрассом всюду непрерывных, но нигде не дифференцируемых функций (график таких функций в каждой своей точке имеет излом). Этот результат произвел ошеломляющее впечатление на математиков, поскольку явно противоречил их геометрической интуиции. Еще более поразительным примером ненадежности геометрической интуиции стала построенная Д.Пеано непрерывная кривая, целиком заполняющая некоторый квадрат, т.е. проходящая через все его точки. Эти и другие открытия вызвали к жизни программу «арифметизации» математики, т.е. придания ей большей надежности путем обоснования всех математических понятий с помощью понятия числа. Почти пуританское воздержание от наглядности в работах по основаниям математики имело свое историческое оправдание.

По современным канонам логической строгости недопустимо говорить о площади под кривой y = f (x ) и над отрезком оси х , даже если f – непрерывная функция, не определив предварительно точный смысл термина «площадь» и не установив, что определенная таким образом площадь действительно существует. Эта задача была успешно решена в 1854 Б.Риманом, который дал точное определение понятия определенного интеграла. С тех пор идея суммирования, стоящая за понятием определенного интеграла, была предметом многих глубоких исследований и обобщений. В результате сегодня удается придать смысл определенному интегралу, даже если подынтегральная функция является повсюду разрывной. Новые понятия интегрирования, в создание которых большой вклад внес А.Лебег (1875–1941) и другие математики, приумножили мощь и красоту современного математического анализа.

Вряд ли было бы уместно входить в детали всех этих и других понятий. Ограничимся лишь тем, что приведем строгие определения предела и определенного интеграла.

В заключение скажем, что математический анализ, являясь крайне ценным инструментом в руках ученого и инженера, и сегодня привлекает внимание математиков как источник плодотворных идей. В то же время современное развитие как будто свидетельствует и о том, что математический анализ все более поглощается такими доминирующими в 20 в. разделами математики, как абстрактная алгебра и топология.

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...

  • Суть и определение математических методов исследования экономики

    Определение 1

    Экономико-математическое моделирование - это концентрированное выражение наиболее существенных взаимосвязей и закономерностей поведения управляемой системы в математической форме.

    На сегодняшний день существует целый ряд видов и модификаций методов экономико-математического моделирования. В системе управления инновационным развитием промышленного предприятия применяется значительное их количество. Рассмотрим основные классификационные подходы к методам моделирования.

    По отрасли и целью использования методы экономико-математического моделирования различают на:

    1. теоретико-аналитические - анализируют общие свойства и закономерности;
    2. прикладные - применяются при решении конкретных экономических задач анализа и управления.

    Классификация методов моделирования

    По типу подхода к социально-экономическим системам: дескриптивные модели - предназначены для описания и объяснения явлений, которые фактически наблюдаемых или для прогноза этих явлений; нормативные модели - показывает развитие экономической системы в разрезе влияния определенных критериев.

    По способу отражения реальных объектов: функциональные модели - субъект моделирования пытается достичь сходства модели и оригинала только в понимании того, что они выполняют те же функции; структурные модели - субъект моделирования пытается воссоздать внутреннюю построение моделируемой, и за счет более точного отображения структуры получить более точное отображение функции.

    По учету фактора времени: статические модели - все зависимости относятся к одному моменту времени; динамические модели - описывают экономические системы в развитии. По типу используемой в модели: аналитические модели - задаются на основе априорной информации, строятся с учетом существующих закономерностей, записанных в формально-теоретическом виде; модели, идентифицируются - построены на результатах наблюдений за объектами.

    По ступеням использования типовых элементов: модели с фиксированной структурой - процесс моделирования сводится к подбору и настройке значений параметров типовых блоков; модели с переменной структурой - структура модели создается при моделировании и не является типичной.

    По характеристике математических объектов, включенных в модели (особенности каждого вида обусловлены типом математического аппарата, используемого в модели): матричные модели; структурные модели; сетевые модели; модели линейного и нелинейного программирования; факторные модели; комбинированные; модели теории игр и т.д.

    По способу представления или описания модели: модели, представленные в аналитической форме - модели подаются на языке математики; модели, представленные в виде алгоритма - реализуются численно или с помощью программного обеспечения; имитационные модели - численная реализация соотношений, составляющих модель, осуществляется без предварительных преобразований, в процессе имитации алгоритм расчетов воспроизводит логику функционирования объекта-оригинала.

    По ожидаемым результатом: модели, в которых минимизируются затраты - ожидаемый конечный результат опирается на минимизацию затрат; модели, в которых минимизируется конечный результат - модели, в которых целью поставлено уменьшение показателей, характеризующих объект исследования (если эти показатели направлены до максимума) или увеличить значение показателей (если эти показатели направлены в минимизации).

    Место математических методов исследования в управлении предприятием

    При изучении методов экономико-математического моделирования в разрезе прогнозирования инновационного развития промышленных предприятий возникает необходимость их адаптации к реальным экономическим условиям современности, выдвигает рыночную среду и основы стратегического маркетингового управления. Так, формализованные методы прогнозирования целесообразно сочетать с аналитическими методами, которые могут качественно охватить всю проблематику рыночной среды.

    Замечание 1

    Экономико-математические модели оптимизации включают одну целевую функцию, формализует критерий оптимальности, по которому среди допустимых планов выбирается наилучший, а ограничения по переменных определяют множество допустимых планов.

    Так, составным элементом текущего плана предприятия является план производства или производственная программа, включает систему плановых показателей производства по объему, ассортименту и качеству продукции. Ведь важным этапом разработки производственной программы является формирование оптимальной структуры портфеля продукции предполагает определение такого объема, номенклатуры и ассортимента продукции, которые бы обеспечили предприятию эффективное использование имеющихся ресурсов и получения удовлетворительного финансового результата.

    Утверждение портфеля продукции и ресурсов на ее изготовление происходит благодаря применению экономико-математических методов, к которым предъявляются определенные требования. Прежде всего, они должны быть тождественными внешним условиям рынка, а также учитывать разнообразие путей достижения главной цели предприятия - максимизации прибыли.