Реакции ионного обмена, условия их протекания до конца (на примере двух реакций). Отличие реакций ионного обмена от реакций окислительно-восстановительных

96. В 180мл воды растворили 161г глауберовой соли Na 2 SO 4 ∙10H 2 O. Какой будет массовая доля сульфата натрия в полученном растворе? Сколько ионов каждого вида в нем находится?

97. Запишите уравнения электролитической диссоциации веществ:


А) гидроксид лития

Б) карбонат калия

В) нитрат бария

Г) сернистая кислота

Д) сульфат хрома (III)

Е) фосфат калия


98. Составьте четыре уравнения электролитической диссоциации веществ, образующих в качестве анионов только сульфат-ионы.

99. Напишите формулы веществ, диссоциирующих в воде на ионы:


А) Ba 2+ и Cl ─

Б) Fe 3+ и NO 3 ─

В) H + и SO 4 2─

Г) K + и OH ─


100. Запишите молекулярные и ионные уравнения практически осуществимых реакций:


А) Na 2 CO 3 + Ca(NO 3) 2 →

Б) Cu(OH) 2 + HCl→

В) K 2 CO 3 + HNO 3 →

Г) NaOH + H 3 PO 4 →

Д) KNO 3 + Na 2 SO 4 →

Е) MgCO 3 + HCl→

Ж) Fe(NO 3) 3 + KOH→


101. Напишите по два молекулярных уравнения, сущность которых выражена ионным уравнением а) Ba 2+ + SO 4 2─ → BaSO 4 ↓, б) Н + + OH - → H 2 O.

102. Допишите уравнения реакций, укажите их тип, назовите продукты. Для реакций обмена запишите ионные уравнения.


1) HNO 3 + Li 2 CO 3 →

2) H 2 SO 4 + Al →

3) HCl + Fe 2 O 3 →

4) H 3 PO 4 + KOH→


103. С какими из перечисленных веществ будет взаимодействовать раствор серной кислоты: оксид кремния (IV), гидроксид лития, нитрат бария, соляная кислота, оксид калия, силикат натрия, нитрат калия, гидроксид железа (II)? Запишите уравнения возможных реакций в молекулярном и ионном виде.

104. Какое количество вещества и какая масса получится каждого продукта при проведении следующих превращений: сера → оксид серы (IV) → сернистая кислота → сульфит бария, если было взято серы 16г?

105. С какими из перечисленных веществ будет взаимодействовать раствор гидроксида бария: азотная кислота, оксид натрия, хлорид аммония, гидроксид калия, оксид серы (VI), хлорид меди (II), нитрат натрия, гидроксид железа (II), углекислый газ? Запишите уравнения возможных реакций в молекулярном и ионном виде.

106. Допишите уравнения реакций, укажите их тип, назовите продукты. Запишите ионные уравнения.


1) HNO 3 + Al(OH) 3 →

2) LiOH + H 2 SO 4 →

3) KOH + SO 2 →

4) NaOH + FeCl 3 →


107. Какая масса каждого продукта получится при проведении следующих превращений: кальций → оксид кальция → гидроксид кальция → хлорид кальция, если было взято 80г кальция?

108. Укажите характер оксида и составьте формулу соответствующего ему гидроксида (основание или кислота): Na 2 O, N 2 O 5 , Mn 2 O 7 , CuO, SO 2 , SO 3 , FeO, P 2 O 5 , CaO.



109. Составьте уравнения практически осуществимых реакций, укажите их тип. Для реакций обмена запишите ионные уравнения.


1) K 2 O + H 2 O →

2) CO 2 + HNO 3 →

3) Fe 2 O 3 + H 2 SO 4 →

4) SO 3 + H 2 O →

5) FeO + H 2 O →

6) SO 2 + KOH →

7) CuO + Ca(OH) 2 →

8) P 2 O 5 + CaO →

9) SiO 2 + Cl 2 O 7 →


110. Какую массу соли можно получить при растворении оксида магния в 100г 10%-ного раствора азотной кислоты?

111. Допишите уравнения реакций в молекулярном и ионном виде:


1) CuCl 2 + Al→

2) LiOH + FeSO 4 →

3) Ba(NO 3) 2 + Na 2 SO 4 →

4) CaCO 3 + HNO 3 →

5) FeCl 3 + KOH →

6) K 2 SiO 3 + HCl→


112. Допишите уравнения возможных реакций, укажите их тип, назовите продукты. Для реакций обмена запишите ионные уравнения.


1) Na 3 PO 4 + AgNO 3 →

2) K 2 SO 4 + NaCl→

3) BaCO 3 + HCl→

4) Cu(NO 3) 2 + Zn →

5) NaCl + Ca(OH) 2 →

6) Fe(NO 3) 2 + KOH →


113. Запишите уравнения всех возможных реакций, с помощью которых можно получить соль а) хлорид меди (II), б) сульфат железа (II).

114. Составьте генетические ряды металлов а) натрия, б) магния.

115. Составьте генетические ряды неметаллов а) серы, б) кремния, в) фосфора.

116. Решите цепочку превращений, укажите тип реакций, условия их протекания, назовите продукты:

А) Сa → CaO → Ca(OH) 2 → CaCO 3 → CO 2 → Na 2 CO 3 → MgCO 3

Б) S → SO 2 → SO 3 → H 2 SO 4 → K 2 SO 4 → BaSO 4 .

117. Допишите уравнения реакций и охарактеризуйте их по всем известным признакам:


1) Na 2 SO 4 + BaCl 2 →

2) Al + CuCl 2 →

4) CH 4 + O 2 →


118. Расставьте коэффициенты методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления:

1) NH 3 + O 2 → NO + H 2 O

2) Al + I 2 → AlI 3

3) CO 2 + Mg → MgO + C

4) HNO 3 + P + H 2 O → H 3 PO 4 + NO 2

5) HCl + KMnO 4 → Cl 2 + KCl + MnCl 2 + H 2 O

119. Допишите уравнения реакций обмена и составьте для них ионные уравнения:


1) FeO + HNO 3 →

2) MgCO 3 + HCl →

3) Fe 2 (SO 4) 3 + KOH →


120. Допишите сокращенные ионные уравнения и предложите к ним молекулярные:


1) OH ─ + H + →

2) SiO 3 2─ + 2 H + →


121. Решите цепочку превращений, укажите тип реакций, условия их протекания, назовите продукты: Cu → CuO → CuSO 4 → Cu(OH) 2 → CuO → Cu.

122. Допишите уравнения реакций, определите их тип. Проставьте степени окисления и укажите, какие из реакций являются окислительно-восстановительными:


1) Al + CuSO 4 →

3) Fe + Cl 2 →

4) P 2 O 5 + H 2 O →

6) NaCl + AgNO 3 →

7) Zn + H 2 SO 4 →


123. Расставьте коэффициенты методом электронного баланса:

1) Zn + HCl → ZnCl 2 + H 2

2) NH 3 + O 2 → NO + H 2 O

3) Al + I 2 → AlI 3

4) CO 2 + Mg → MgO + C

5) HNO 3 + P + H 2 O → H 3 PO 4 + NO 2

6) HCl + KMnO 4 → Cl 2 + KCl + MgCl 2 + H 2 O

7) Cu + HNO 3 → Cu(NO 3) 2 + NO 2 + H 2 O

8) K + H 2 SO 4 → K 2 SO 4 + S + H 2 O

9) K 2 S + KMnO 4 + H 2 SO 4 → S + MnSO 4 + K 2 SO 4 + H 2 O

10) Na 2 SO 3 + KIO 3 + H 2 SO 4 → I 2 + Na 2 SO 4 + K 2 SO 4 + H 2 O

На уроке рассматривается сущность окислительно-восстановительных реакций, их отличие от реакций ионного обмена. Объясняются изменения степеней окисления окислителя и восстановителя. Вводится понятие электронного баланса.

Тема: Окислительно-восстановительные реакции

Урок: Окислительно-восстановительные реакции

Рассмотрим реакцию магния с кислородом. Запишем уравнение этой реакции и расставим значения степеней окисления атомов элементов:

Как видно, атомы магния и кислорода в составе исходных веществ и продуктов реакции имеют различные значения степеней окисления. Запишем схемы процессов окисления и восстановления, происходящих с атомами магния и кислорода.

До реакции атомы магния имели степень окисления, равную нулю, после реакции - +2. Таким образом, атом магния потерял 2 электрона:

Магний отдает электроны и сам при этом окисляется, значит, он является восстановителем.

До реакции степень окисления кислорода была равна нулю, а после реакции стала -2. Таким образом, атом кислорода присоединил к себе 2 электрона:

Кислород принимает электроны и сам при этом восстанавливается, значит, он является окислителем.

Запишем общую схему окисления и восстановления:

Число отданных электронов равно числу принятых. Электронный баланс соблюдается.

В окислительно-восстановительных реакциях происходят процессы окисления и восстановления, а значит, меняются степени окисления химических элементов. Это отличительный признак окислительно-восстановительных реакций .

Окислительно-восстановительными называют реакции, в которых химические элементы изменяют свою степень окисления

Рассмотрим на конкретных примерах, как отличить окислительно-восстановительную реакцию от прочих реакций.

1. NaOH + HCl = NaCl + H 2 O

Для того чтобы сказать, является ли реакция окислительно-восстановительной, необходимо расставить значения степеней окисления атомов химических элементов.

1-2+1 +1-1 +1 -1 +1 -2

1. NaOH + HCl = NaCl + H 2 O

Обратите внимание, степени окисления всех химических элементов слева и справа от знака равенства остались неизменными. Значит, эта реакция не является окислительно-восстановительной.

4 +1 0 +4 -2 +1 -2

2. СН 4 + 2О 2 = СО 2 + 2Н 2 О

В результате данной реакции степени окисления углерода и кислорода поменялись. Причем углерод повысил свою степень окисления, а кислород понизил. Запишем схемы окисления и восстановления:

С -8е =С - процесс окисления

О +2е = О - процесс восстановления

Чтобы число отданных электронов было равно числу принятых, т.е. соблюдался электронный баланс , необходимо домножить вторую полуреакцию на коэффициент 4:

С -8е =С - восстановитель, окисляется

О +2е = О 4 окислитель, восстанавливается

Окислитель в ходе реакции принимает электроны, понижая свою степень окисления, он восстанавливается.

Восстановитель в ходе реакции отдает электроны, повышая свою степень окисления, он окисляется.

1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009. (с.67)

2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§22)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.54-55)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с.70-77)

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) ().

3. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. №10.40 - 10.42 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

2. Участие в реакции простых веществ - верный признак окислительно-восстановительной реакции. Объясните почему. Напишите уравнения реакций соединения, замещения и разложения с участием кислорода О 2 .

Реакции обмена в растворах электролитов получили название реакций ионного обмена. Эти реакции протекают до конца в 3-х случаях:

1. Если в результате реакции выпадает осадок (образуется нерастворимое или малорастворимое вещество, что можно определить по таблице растворимости):
CuSO 4 + BaCl 2 = BaSO 4 ↓ + CuCl 2

2. Если выделяется газ (образуется часто при разложении слабых кислот):

3. Если образуется малодиссоциирующее вещество. Например, вода, уксусная кислота:
HCl + NaOH = NaCl + H 2 O

Это связано со смещением химического равновесия вправо, что вызвано удалением одного из продуктов из зоны реакции.

Реакции ионного обмена не сопровождаются переходом электронов и изменением степени окисления элементов в отличие от окислительно-восстановительных реакций.

Если попросят написать уравнение в ионном виде, можно проверять правильность написания ионов по таблице растворимости. Не забывайте менять индексы на коэффициенты. Нерастворимые вещества, выделяющиеся газы, воду (и другие оксиды) на ионы не раскладываем.

Cu 2+ + SO 4 2- + Ba 2+ + 2Cl - = BaSO 4 ↓ + Cu 2+ + 2Cl -
Вычеркиваем не изменившиеся ионы:

SO 4 2- + Ba 2+ = BaSO 4 ↓

2. Задача. Вычисление массовой доли (%) химического элемента в веществе, формула которого приведена.

Формулу для вычисления массовой доли в общем виде можно записать так:

ω = масса компонента / масса целого,

где ω – массовая доля

Для расчета массовой доли элемента в сложном веществе формула будет иметь следующий вид:

ω = Ar n / Mr ,

где Ar – относительная атомная масса,
n – число атомов в молекуле,

Mr – относительная молекулярная масса (численно равна M – молярной массе)

Пример:

Рассчитайте массовую долю элементов в оксиде серы (VI) SO 3 .

Решение :

Mr (SO 3) = 32 + 16 3 = 80

ω (S) = 32: 80 = 0,4 = 40%

ω (O) = 16 3: 80 = 0,6 = 60%

проверка: 40% + 60% = 100%

Ответ: 40%; 60%.

Билет № 11

Кислоты в свете представлений об электролитической диссоциации. Химические свойства кислот: взаимодействие c металлами, основными оксидами, основаниями, солями (на примере хлороводородной кислоты).

С точки зрения теории электролитической диссоциации кислотами называются вещества, диссоциирующие в растворах с образованием ионов водорода:

HCl → H + + Cl -

Более строгая формулировка: отщепляющие в качестве катионов (положительных ионов) только ионы водорода.

Под ионом водорода подразумевают гидратированный протон (т.е. протон, присоединивший воду). Если хотят показать состав иона водорода, его обычно изображают H 3 O +


1. Кислоты окрашивают растворы индикаторов лакмуса и метилового оранжевого в красный цвет

2. Взаимодействуют с металлами, находящимися в ряду напряжений левее водорода, например, с цинком, с образованием соли (хлорида цинка) и газообразного водорода:
Zn + 2HCl = ZnCl 2 + H 2

3. Взаимодействуют с основными оксидами с образованием соли и воды:
CuO + 2HCl = CuCl 2 + H 2 O
(при проведении реакции с оксидом меди (II), пробирку желательно слегка подогреть) получается хлорид меди(II)

4. Взаимодействуют с основаниями с образованием соли и воды:
NaOH + HCl = NaCl + H 2 O

5. Вытесняют слабые кислоты из растворов их солей, например, карбоната натрия:
Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2

6. Реакция с солями может протекать с образованием осадка:
AgNO 3 + HCl = HNO 3 + AgCl↓

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

HNO 3 + KOH = KNO 3 + H 2 O (1)

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O (2)

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO 3 − и K + . Другими словами, по сути, нитрат-ионы и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H + и OH − в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O

мы получим:

H + + OH ‑ = H 2 O (3)

Уравнения вида (3) называют сокращенными ионными уравнениями , вида (2) — полными ионными уравнениями , а вида (1) — молекулярными уравнениями реакций .

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

2HCl+ Ba(OH) 2 = BaCl 2 + 2H 2 O

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H + + 2Cl − + Ba 2+ + 2OH − = Ba 2+ + 2Cl − + 2H 2 O

Сократим одинаковые ионы слева и справа и получим:

2H + + 2OH − = 2H 2 O

Разделив и левую и правую часть на 2, получим:

H + + OH − = H 2 O,

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот (HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4) (список сильных кислот надо выучить!)

2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))

3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H 2 O

2) Слабых кислот (H 2 S, H 2 CO 3 , HF, HCN, CH 3 COOH (и др. практически все органические))

3) Слабых оcнований (NH 4 OH и практически все гидроксиды металлов кроме ЩМ и ЩЗМ

4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).

5) Оксидов (и др. веществ, не являющихся электролитами)

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

2Fe(OH) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH) 3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

2Fe(OH) 3 + 6H + + 3SO 4 2- = 2Fe 3+ + 3SO 4 2- + 6H 2 O

Сократив сульфат-ионы слева и справа, получаем:

2Fe(OH) 3 + 6H + = 2Fe 3+ + 6H 2 O

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Теперь давайте рассмотрим реакцию ионного обмена, в результате которой образуется осадок. Например, взаимодействие двух растворимых солей:

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na + + CO 3 2- + Ca 2+ + 2Cl − = CaCO 3 ↓+ 2Na + + 2Cl −

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

CO 3 2- + Ca 2+ = CaCO 3 ↓

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO 3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы. То есть, например,

CuS + Fe(NO 3) 2 ≠ FeS + Cu(NO 3) 2

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

А вот, например,

Na 2 CO 3 + CaCl 2 = CaCO 3 ↓+ 2NaCl

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

Cu(OH) 2 + Na 2 S – не протекает,

т.к. Cu(OH) 2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO 3) 2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH) 2:

2NaOH + Cu(NO 3) 2 = Cu(OH) 2 ↓+ 2NaNO 3

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2 и соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

Другими словами:

1)Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок

2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть садок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

K 2 S + 2HBr = 2KBr + H 2 S

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H 2 CO 3 , NH 4 OH и H 2 SO 3:

H 2 CO 3 = H 2 O + CO 2

NH 4 OH = H 2 O + NH 3

H 2 SO 3 = H 2 O + SO 2

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

K 2 S + 2HBr = 2KBr + H 2 S

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K + + S 2- + 2H + + 2Br — = 2K + + 2Br — + H 2 S

Сократив одинаковые ионы получаем:

S 2- + 2H + = H 2 S

2) Для уравнения:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + CO 2

В ионном виде запишутся Na 2 CO 3 , Na 2 SO 4 как хорошо растворимые соли и H 2 SO 4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO 2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

2Na + + CO 3 2- + 2H + + SO 4 2- = 2Na + + SO 4 2 + H 2 O + CO 2

CO 3 2- + 2H + = H 2 O + CO 2

3) для уравнения:

NH 4 NO 3 + KOH = KNO 3 + H 2 O + NH 3

Молекулы воды и аммиака запишутся целиком, а NH 4 NO 3 , KNO 3 и KOH запишутся в ионном виде, т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

NH 4 + + NO 3 − + K + + OH − = K + + NO 3 − + H 2 O + NH 3

NH 4 + + OH − = H 2 O + NH 3

Для уравнения:

Na 2 SO 3 + 2HCl = 2NaCl + H 2 O + SO 2

Полное и сокращенное уравнение будут иметь вид:

2Na + + SO 3 2- + 2H + + 2Cl − = 2Na + + 2Cl − + H 2 O + SO 2