Способы дыхания микроорганизмов. Механизм питания и дыхания микроорганизмов. Основы микробиологии, физиологии питания и санитарии

Микроорганизмам, как и всем живым существам, присущи процессы питания, дыхания, роста и размножения . Однако эти процессы у микробов характеризуются своеобразием и рядом особенностей. Микробы занимают особое место среди других живых существ: они способны использовать в качестве питательных веществ как неорганические, так и разнообразные органические соединения ; могут существовать и размножаться в аэробных и анаэробных условиях; длительно сохраняются во внешней среде с помощью спор ; обладают исключительной приспособляемостью к меняющимся факторам окружающей среды.

Дыхание бактерий

Сущность процесса дыхания бактерий заключается в совокупности биохимических реакций, в ходе которых идет образование АТФ, без которого невозможен процесс метаболизма, протекающего с затратой энергии. АТФ является универсальным переносчиком химической энергии между процессами, выделяющими энергию, и реакциями, их использующими. При дыхании - процессе биологического окисления бактерий - потребляются те же соединения, что и на построение отдельных структурных компонентов клетки, но в первую очередь - сахара, спирты, органические кислоты, жиры и т. д.

Большая часть бактерий использует в процессе дыхания свободный кислород. Такие микроорганизмы получили название аэробные (от аег - воздух). Аэробный тип дыхания характеризуется тем, что окисление органических соединений происходит при участии кислорода воздуха с освобождением большого количества калорий. Молекулярный кислород выполняет роль акцептора водорода, образующегося при аэробном расщеплении этих соединений.

Примером может служить окисление глюкозы в аэробных условиях, которое приводит к выделению большого количества энергии:

С 6 Н 12 О 6 + 60 2 6С0 2 +6Н 2 0 + 688,5 ккал.

Процесс анаэробного дыхания микробов заключается в том, что бактерии получают энергию при окислительно-восстановительных реакциях, при которых акцептором водорода является не кислород, а неорганические соединения - нитрат или сульфат.

Многие бактерии могут существовать в аэробных и анаэробных условиях. Такие микроорганизмы получили название факультативных (необязательных) анаэробов.

Например, стафилококки, кишечная палочка и другие факультативные анаэробы имеют полный набор дыхательных ферментов, обеспечивающих им существование как в кислородной, так и в бескислородной среде. Факультативные анаэробы обладают так называемым нитратным дыханием , так как образующийся при окислении органических соединений нитрат (акцептор водорода) восстанавливается до молекулярного азота и аммиака.

Обязательные анаэробы

Облигатные (обязательные) анаэробы могут существовать лишь в строго анаэробных условиях. Среди патогенных - это возбудители столбняка, газовой гангрены, ботулизма. Облигатные анаэробы при окислении органических соединений образуют сульфат, который восстанавливается до сероводорода, поэтому облигатное дыхание называют еще сульфатным.

Для нейтрализации токсичных форм кислорода микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы. У облигатных аэробов и факультативных анаэробов накоплению закисного радикала О 2 - препятствует фермент супероксиддисмутаза, расщепляющая закисный радикал на перекись водорода и молекулярный кислород. Перекись водорода у этих бактерий разлагается каталазой на воду и молекулярный кислород.

В присутствии кислорода рост облигатных анаэробов прекращается. Это связано с тем, что жизнь в аэробных условиях приводит к тому, что конечным продуктом окисления органических соединений оказывается перекись водорода, а поскольку анаэробы не продуцируют фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на анаэробные бактерии.

При выращивании анаэробов в лабораторных условиях используют специальные приборы - анаэростаты, из которых кислород воздуха удаляется или заменяется другим инертным газом. Бескислородные условия можно создать также кипячением среды или химическими веществами, активно поглощающими кислород из пространства, куда помещены чашки и пробирки с посевами.

Образование энергии (АТФ) наблюдается также при процессах брожения , осуществляемых разнообразными микроорганизмами. Особенность брожения заключается в том, что органические соединения одновременно служат как донаторами электронов (при их окислении), так и акцепторами (при их восстановлении). Брожение происходит в отсутствие кислорода, в строго анаэробных условиях. Основными соединениями брожения являются углеводы. В зависимости от участия определенного микроба и от конечных продуктов расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое, маслянокислое и другие виды брожения.

Освобождение энергии при анаэробных процессах значительно меньшее, например, при брожении глюкозы дрожжами образуется спирт и всего 31,2 ккал.

Спиртовое брожение встречается, в основном, у дрожжей. Конечными продуктами являются этанол и СО 2 . Сбраживание глюкозы происходит в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера . Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

Молочнокислое брожение. Различают два типа: гомоферментативное и гетероферментативное.

При гомоферментативном типе расщепление глюкозы происходит гликолитическим распадом (ФДФ-путь) Водород от восстановленного НАД передается на пируват при помощи лактатдегидрогеназы , при этом образуется молочная кислота. Гомоферментативное брожение происходит у S.pyogenes, E.faecalis, S.salivarius у некоторых видов рода Lactobacillus.

Гетероферментативное молочнокислое брожение присутствует у бактерий, у которых отсутствуют ферменты ФДФ-пути: альдолаза и триозофосфатизомераза. Расщепление глюкозы происходит с образованием фосфоглицеринового альдегида (ПФ-путь), который превращается в пируват по ФДФ-пути и в последующем восстанавливается в лактат. Дополнительными продуктами этого типа брожения являются также этанол, уксусная кислота. Гетероферментативное молочнокислое брожение встречается у представителей родов Lactobacillus и Bifidobacterium.

Муравьинокислое (смешанное) брожение встречается у представителей семейств Enterobacteriaceae, Vibrionaceae. В зависимости от продуктов брожения, различают два типа процессов:

    Расщепление пирувата с образованием ацетилкофермента А и муравьиной кислоты, которая в свою очередь, может расщепляться на двуокись углерода и молекулярный водород. Другими продуктами брожения, образующимися через цепь реакций, являются этанол, янтарная и молочная кислота. Сильное кислотообразование можно выявить реакцией с индикатором метил-рот, который меняет окраску в сильно кислой среде.

    Образуется целый ряд кислот, однако главным продуктом брожения являются ацетоин и 2,3-бутандиол. Ацетоин образуется из двух молекул пирувата с последующим двукратным декарбоксилированием. При последующем восстановлении ацетоина образуется 2,3-бутандиол. Эти вещества при взаимодействии с а-нафтолом в щелочной среде вызывают образование окраски бурого цвета, что выявляется реакцией Фогеса-Проскауэра, используемой при идентификации бактерий.

Маслянокислое брожение. Масляная кислота, бутанол,ацетон,изопропанол и ряд других органических кислот, в часности уксусная, капроновая, валерьяновая, пальмитиновая, являются продуктами сбраживания углеводов сахаролитическими строгими анаэробами.

Аэротолерантные микроорганизмы не используют кислород для получения энергии, но могут существовать в его атмосфере. К этой группе относятся молочно-кислые бактерии, получающие энергию гетероферментативным молочнокислым брожением.

Химический состав микробов

Клетки микробов состоят из воды, белков, углеводов, жиров и минеральных веществ.

Вода является основным по содержанию компонентом бактериальной клетки (до 80-90%). Она находится в свободном состоянии как самостоятельное соединение и связана с другими компонентами клетки. Свободная вода необходима бактериальной клетке для осуществления биохимических процессов . Она является универсальной дисперсионной средой для коллоидов и растворителем для кристаллоидов. Высушивание - удаление воды из клетки - ведет к замедлению жизненных процессов.

Белки составляют 40-80% сухой массы бактерий, большая часть которых представляет собой сложные белки - нуклеопротеиды, хромопротеиды. Бактерии могут содержать до 2000 различных белков, составляющих структуру клетки и участвующих в метаболических реакциях. Количественное и качественное разнообразие белковых соединений придает бактериям видовую специфичность , определяет отношение к окрашиванию , обеспечивает вирулентность , токсигенность, антигенные и иммуногенные свойства. Большая часть белков выполняет ферментативные функции клетки.

Нуклеиновые кислоты в бактериях выполняют те же функции, что и в клетках животного происхождения: молекула ДНК (нуклеоид) обеспечивает наследственные свойства, рибонуклеиновые кислоты (информационная, транспортная и рибосомальная) выполняют соответствующие функции. На долю последней приходится около 80% всей бактериалыюй РНК .

Углеводы в бактериальной клетке находятся в виде простых веществ (моно- и дисахариды) и комплексных соединений. Полисахариды выполняют пластическую функцию, входя в структуру клетки; играют основную роль в обеспечении энергией процессов клеточного метаболизма. Часть внутриклеточных полисахаридов - крахмал, гликоген и др. - являются запасными питательными веществами.

Липиды являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки. В некоторых бактериях они выполняют роль запасных питательных веществ.

Органические вещества бактерий не находятся в клетке в виде отдельных компонентов, а представляют собой сложные соединения с большой молекулярной массой.

Минеральные вещества - фосфор, калий, магний, сера, железо, кальций, йод, цинк, молибден и др. - входят в состав различных клеточных структур бактерий. Они необходимы для регулирования осмотического давления, рН, окислительно-восстановительного потенциала, для активации ферментов. Общее содержание минеральных веществ составляет от 2 до 30% сухой массы бактериальной клетки.

В практических бактериологических лабораториях широко применяют микро- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.

Питание бактерий

Своеобразие процесса питания бактерий состоит в том, что

    поступление питательных веществ в клетку происходит по всей поверхности, которая очень велика по сравнению с общей величиной бактерии.

    Второй особенностью является необыкновенная быстрота метаболических процессов

    третьей - высокая адаптация к меняющимся условиям среды.

Типы питания . Разнообразие условий существования микробов обусловливает различные типы питания. Они определяются на основании усвоения двух из четырех необходимых органогенов - углевода и азота. Источником водорода и кислорода служит вода.

По усвоению углерода бактерии можно разделить на два типа:

    аутотрофы (литотрофы)

    гетеротрофы. (органотрофы)

Аутотрофы (от autos - сам, trophe - пища) способны получать углерод из неорганических соединений и даже из углекислоты. Энергию, необходимую для синтеза органических веществ, аутотрофы получают при окислении минеральных соединений. К аутотрофным бактериям относятся нитрифицирующие (находящиеся в почве), серобактерии (живущие в теплых источниках с содержанием сероводорода), железобактерии (размножающиеся в воде с закисным железом) и др.

По способности усваивать азот бактерии делятся также на две группы:

    аминоаутотрофы (аминолитотрофы)

    аминогетеротрофы. (аминоорганотрофы)

Аминоаутотрофы используют молекулярный азот воздуха. Бактерии этой группы - азотфиксирующие почвенные и клубеньковые бактерии - единственные живые существа, усваивающие свободный азот, принимают активное участие в круговороте азота в природе.

Аминогетеротрофы получают азот из органических соединений - сложных белков. К аминогетеротрофам относятся все патогенные микроорганизмы и большинство сапрофитов.

В настоящее время для аутотрофов применяется также название литотрофы, а для гетеротрофов - органотрофы.

По источникам энергии различают

    фототрофы - бактерии, для которых источником энергии является солнечный свет,

    хемотрофы - бактерии, которые получают энергию за счет химического окисления веществ.

В зависимости от окисляемого субстрата среди хемотрофных организмов выделяют хемолитотрофы и хемоорганотрофы .

Однако далеко не все соединения, которые необходимы бактериям в биологических процессах, клетка может синтезировать сама. При составлении питательных сред необходимо добавлять вещества, получившие название факторов роста. Это различные витамины, аминокислоты (без которых невозможен синтез белка), пиридиновые и пиримидиновые основания (предшественники нуклеиновых кислот) и др.

Микроорганизмы, нуждающиеся в каком-то одном или нескольких факторах роста, называются ауксотрофными в отличие от прототрофных бактерий, которые в данных соединениях не нуждаются и способны сами их синтезировать.

Механизм питания бактерий

Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

    Наиболее простой способ - пассивная диффузия , при которой поступление вещества в клетку происходит из-за различия градиента концентрации (разницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, в мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия.

    Одним из таких механизмов является облегченная диффузия , которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия - процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название п е р м е а з , так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

    Третий возможный механизм транспорта веществ поучил название активного переноса . Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы . Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии . Расходуется аденозинтрифосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

    при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов - активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы .

Синтезируемые в бактериальных клетках соединения выходят из них тремя путями:

    Фосфотрансферазная реакция. Происходит при фосфорилировании переносимой молекуды.

    Контрансляционная секреция. В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и др. молекулы.

    Почкование мембраны. Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровывается в окружающую среду.

Ферменты бактерий .

В бактериальной клетке происходят многочисленные реакции, как биосинтетические, направленные на синтез соединений, необходимых для организации структуры бактерии, так и производящие энергию, процессы ассимиляции и диссимиляции. Все эти реакции катализируются соответствующими ферментами. Ферменты являются белками и обладают специфичностью при распознавании соответствующего вещества и последующем превращении его. Большая часть ферментов связана с определенными структурами бактериальной клетки. Так, в цитоплазматической мембране находятся окислительно-восстановительные ферменты, которым принадлежит основная роль в дыхании клетки, ферменты, обеспечивающие доставку питательных веществ, и др. Ферменты, связанные с делением клетки, обнаруживаются в мезосомах, клеточной стенке, в месте образования перегородки.

У бактерий по характеру вызываемых ими превращений обнаруживаются следующие основные группы ферментов:

    г и д р о л а з ы, вызывающие расщепление протеинов, углеводов, липидов путем присоединения молекул воды;

    оксидоредуктазы , катализирующие окислительно-восстановительные реакции;

    трансфера з ы , осуществляющие перенос отдельных атомов, от молекулы к молекуле;

    л и а з ы , отщепляющие химические группы негидролитическим путем;

    изомеразы , участвующие в углеводном обмене;

    л и г а з ы , способствующие биосинтетическим реакциям клетки.

Ферменты бактерий классифицируются на экзоферменты и эндоферменты . Экзоферменты выделяются бактериальной клеткой в окружающую среду для внеклеточного переваривания. Этот процесс осуществляется с помощью гидролаз, которые расщепляют макромолекулы питательных веществ до простых соединений - глюкозы, аминокислот, жирных кислот. Такие соединения могут свободно проходить через оболочку клетки и с помощью пермеаз передаваться в цитоплазму клетки для участия в метаболизме, являясь источниками углерода и энергии. Некоторые экзоферменты выполняют защитную функцию , например, пенициллиназа, выделяемая многими бактериями, делает клетку недосягаемой для антибиотика - пенициллина.

Эндоферменты катализируют метаболические реакции, происходящие внутри клетки.

Ферменты бактерий классифицируются также на конститутивные и индуцибельные . Конститутивными называются такие ферменты, которые синтезируются клеткой независимо от наличия субстрата в среде, индуцибельные ферменты образуются бактериями только при наличии в среде соответствующего индуцирующего соединения, т. е. субстрата данного фермента. Например, в геноме кишечной палочки заложена способность разлагать лактозу, но только при наличии в среде лактозы клеткой синтезируется фермент, катализирующий ее гидролиз.

Известны также ферменты, которые получили название аллостерических. Кроме активного центра у них имеется регуляторный или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. allos - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению (стерически) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами. Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют. Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций.

Патогенные бактерии обладают наряду с ферментами обмена также ферментами агрессии , являющимися факторами вирулентности. К таким ферментам относятся

    гиалуронидаза,

    дезоксирибонуклеаза,

    коллагеназа,

    н е й р а м и и и д аза, и др.

Гиалуронидаза стрептококков, например, расщепляет гиалуроновую кислоту в мембранах клеток соединительных тканей макроорганизма, что способствует распространению возбудителей и их токсинов в организме, обуславливая высокую инвазивность этих бактерий.

Плазмокоагулаза является главным фактором патогенности стафилококков, так как участвует в превращении протромбина в тромбин, который вызывает образование фибриногена, в результате чего каждая бактерия покрывается пленкой, предохраняющей ее от фагоцитоза.

Ферменты бактерий обладают высокой специфичностью , и именно это свойство широко используется при идентификации и определении видов микроорганизмов. Наибольшее значение имеет определение сахаролитических (ферментация сахаров) и протеолитических (разложение белков) свойств.

Споры

Одной из особенностей микроорганизмов является их способность к спорообразованию. Споры образуются при неблагоприятных условиях существования (высушивание, недостаток питательных веществ, изменение рН среды и т. д.), причем из одной клетки формируется только одна спора . Таким образом, образование спор не связано с процессом размножения, а является своеобразным приспособлением к переживанию в неблагоприятных условиях. По принятой номенклатуре спорообразующие аэробы носят название бацилл , а спорообразующие анаэробы - клостридии.

Процесс спорообразования проходит ряд стадий , в течение которых в определенном месте клетки цитоплазма, нуклеоид, рибосомы концентрируются, уплотняются, покрываются мембраной, а затем плотной, плохо проницаемой многослойной оболочкой, включающей кальциевые соли дипиколиновой кислоты, обусловливающей термоустойчивость спор . Споры длительное время могут сохраняться в покое, оставаясь жизнеспособными. Так, в почве споры патогенных микроорганизмов (возбудителя сибирской язвы, столбняка и др.) могут сохраняться десятками лет. При попадании в благоприятную среду споры очень быстро прорастают - из 1 споры возникает 1 бактериальная клетка, которая начинает размножаться.

Спорообразование - видовое свойство палочек, а форма и расположение формирующейся споры по отношению к вегетативной части клетки является дифференциально-диагностическим признаком . Форма спор может быть овальной или круглой , расположение центральное (возбудитель сибирской язвы), субтерминальное - ближе к концу палочки (возбудители газовой гангрены, ботулизма) и терминальное - на конце (возбудитель столбняка).

В зрелой споре различимы: центральный, плохо окрашиваемый участок (спороплазма), двухслойная ЦПМ и оболочка споры.

Спороплазма (протопласт споры) включает цитоплазму, бактериальную хромосому, системы белкового синтеза и некоторые другие (например, анаэробного энергообразования).

Оболочка споры двухслойная: пространство между слоями заполняют гликопептидные полимеры, сходные с пептидогликанами, образующие сетчатую структуру (кортекс), проявляющую высокую чувствительность к лизоциму. Внутренний слой (стенка споры) образован пептидогликанами, аналогичными таковым \ вегетирующей клетки. Внешний слой (собственно оболочка) образуют кератиноподобные белковые структуры с низкой проницаемостью.

Дыхание - это физиологический процесс, необходимый всем живым организмам для получения энергии. Большинство микроор­ганизмов получают энергию в результате сложного процесса фер­ментативных окислительно-восстановительных реакций, в основе которых лежит отделение и присоединение водорода. Принято счи­тать, что перенос водорода равноценен переносу электрона. Веще­ство, которое отдает электроны, окисляется и является донором. Вещество, которое принимает электроны, восстанавливается и на­зывается акцептором. В качестве доноров электронов могут быть органические и неорганические соединения, а конечными акцепто­рами - только неорганические соединения. В зависимости от ко­нечного акцептора водорода различают аэробное дыхание, анаэ­робное дыхание и брожение . Если конечным акцептором водоро­да является молекулярный кислород, то дыхание называют аэроб­ным, При анаэробном дыхании акцептором являются неорганичес­кие соединения типа нитратов или сульфатов. Если донором и ак­цептором водорода является органический субстрат, то такой энер­гетический процесс называется брожением. При брожении водо­род передается на органическое соединение, образующееся в ходе самого брожения.

В процессе брожения высвобождается меньше энергии, чем в аэробных условиях. В аэробных условиях окисление происходит наиболее полно, с выделением максимального количества энергии. При этом конечными продуктами окисления являются диоксид угле­рода и вода. В анаэробных условиях брожение сопровождается лишь частичным высвобождением энергии, связанной в органических веще­ствах. Поэтому для получения того же количества энергии бактериям в анаэробных условиях приходится расходовать больше органи­ческого субстрата. Это сопровождается накоплением в субстрате не полностью окислившихся веществ, содержащих запасы химичес­кой энергии - спирта, молочной кислоты, лимонной кислоты, масля­ной кислоты и др. В зависимости от продукта, который накапливает­ся в результате такого типа брожения, процессы получили название спиртового, молочного, маслянокислого брожения и т.п.

По отношению микроорганизмов к молекулярному кислороду их принято подразделять на облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы.

Облигатные аэробы (от лат. obligatus - обязательный, стро­гий) развиваются при наличии в атмосфере 20 % кислорода, растут на поверхности плотных и жидких питательных сред, содержат ферменты оксидазы, с помощью которых осуществляется перенос водорода от окисляемого субстрата к кислороду воздуха. Реакция протекает по схеме рис. 27. Создаваемая разность потенциалов между водородом и кислородом является источником энергии для всех аэробов.

Передача электронов на кислород происходит не прямым путем, а в результате сложного многоступенчатого процесса - дыха­тельной цепи. В эту цепь входит сложный комплекс ферментов и ко ферментов, в том числе цитохромов, которые представляют собою белковые молекулы, соединенные с химической группиров­кой - гемом. Гем содержит атом железа, обладающий способнос­тью попеременно окисляться и восстанавливаться.

Во время прохождения электронов по цепи энергия освобож­дается отдельными небольшими порциями. Часть освобождающей­ся энергии аккумулируется в макроэргических связях аденозинтрифосфата (АТФ) - происходит окислительное фосфорилирование. Определенное количество энергии выделяется во внешнюю среду. Молодая бактериальная культура вырабатывает больше энергии, чем ей необходимо для жизненных процессов, поэтому иногда на­блюдается саморазогревание субстрата (зерно, навоз, торф и др.), а в отдельных случаях даже самовозгорание.

Рис. 27. Основные схемы цепи переноса электронов

у аэробных микроорганизмов.

Микроаэрофилы нуждаются в значительно меньшем коли­честве кислорода. Высокая концентрация кислорода задерживает рост этих микроорганизмов (актиномицеты, лептоспиры, бруцеллы и др.).

Факультативные анаэробы могут размножаться как в при­сутствии, так и в отсутствии кислорода. В первом случае они ис­пользуют в процессах биологического окисления атмосферный кис­лород в качестве конечного акцептора водорода. При недостатке кислорода в качестве акцептора они используют нитраты, сульфа­ты и другие вещества. К этой группе относится большинство мик­роорганизмов. Типичными представителями факультативных анаэ­робов являются кишечная палочка, сальмонеллы и др.

Облигатные анаэробы размножаются в условиях полного отсутствии кислорода в среде обитания. В середине XIX века Пастер в своих исследованиях по брожению показал, что жизнь воз­можна и без кислорода. У организмов, живущих в анаэробных ус­ловиях, т.е. без кислорода, метаболизм основан на брожении. Пастер так и говорил, что брожение - «это жизнь без кислорода)».

В анаэробных условиях микроорганизмы получают энергию при окислении органических субстратов не кислородом воздуха, а связанным кислородом неорганических соединений (нитратов, суль­фатов), которые при этом восстанавливаются. Это объясняется свойством дыхательных анаэробных ферментов - анаэробных или первичных дегидрогеназ, которые могут передавать водород толь­ко на органический субстрат или другим дегидрогеназам. В аэроб­ных условиях аэробные, или вторичные, дегидрогеназы передают водород кислороду воздуха с образованием пероксида водорода. который затем быстро разрушается каталазой. Анаэробы не обла­дают способностью продуцировать фермент каталазу, разрушающему высокотоксичный для бактерий пероксид водорода. Поэто­му для многих видов анаэробов кислород токсичен даже в ничтож­ных концентрациях.

Кроме того, при наличии кислорода в среде происходит инак­тивация жизненно важных ферментов анаэробов, в результате чего они теряют способность к нормальному питанию. При добавлении в среду редуцирующих веществ, например, глюкозы, жизнедеятель­ность микроорганизмов восстанавливается.

Коблигатным анаэробам относятся: палочка масляиокислого брожения (Clostridium butirycum), палочка ботулизма (Clostridium botulinum), палочка столбняка (Clostridium tetani) и др.

Дыхание, или биологическое окисление, основано на окислительно-восстановительных

реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии.

Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят

процессы окисления и восстановления: окисление. отдача донорами (молекулами или

атомами) водорода или электронов; восстановление. присоединение водорода или электронов

к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое

дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется

анаэробным. нитратным, сульфатным, фумаратным). Анаэробиоз (от греч. аег. воздух +

bios . жизнь) . жизнедеятельность, протекающая при отсутствии свободного кислорода. Если

донорами и акцепторами водорода являются органические соединения, то такой процесс

называется брожением. При брожении происходит ферментативное расщеп-

ление органических соединений, преимущественно углеводов, в анаэробных условиях. С

учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое,

уксуснокислое и ДРУгие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы:

облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.

Облигатные аэробы могут расти только при наличии кислорода. Облигатные анаэробы

(клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на

среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют

перекисные радикалы кислорода, в том числе перекись водорода и супероксид-анион

кислорода, токсичные для облигатных анаробных бактерий, поскольку они не образуют

соответствующие инактивирующие ферменты. Аэробные бактерии инактивируют перекись

водорода и супероксид-анион соответствующими ферментами (каталазой, пероксидазой и

супероксиддисмутазой). Факультативные анаэробы могут расти как при наличии, так и при

отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии

молекулярного кислорода на брожение в его отсутствие. Факультативные анаэробы способны

осуществлять анаэробное дыхание, называемое нитратным: нитрат, являющийся акцептором

водорода, восстанавливается до молекулярного азота и аммиака.

Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при

наличии молекулярного кислорода, но не используют его.

Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты.

специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода.

Воздух можно удалять из питательных сред путем кипячения, с помощью химических

адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.

Страница 16 из 91

Жизнь микробов, как и всех живых существ, связана с беспрерывным расходованием энергии, и, следовательно, для поддержания физиологического равновесия необходимо постоянное возобновление ее запасов. Последнее осуществляется микроорганизмами при помощи процесса дыхания.
В отличие от животных и высших растений процесс дыхания у микробов, несмотря на их микроскопическую величину, отличается своей сложностью и многообразием, в основе которого лежит действие различных ферментов. По типу дыхания микроорганизмы делятся на три группы:

  1. облигатные аэробы, развивающиеся только при свободном доступе кислорода. Процесс дыхания у них осуществляется при участии молекулярного кислорода воздуха (например, холерный вибрион).
  2. облигатные анаэробы, способные жить только в отсутствие кислорода воздуха (например, столбнячная палочка).
  3. факультативные анаэробы, к которым относится огромное большинство патогенных микроорганизмов; они могут существовать как в отсутствие кислорода воздуха, так и при незначительном доступе его.

Работами Пастера впервые было установлено, что ряд микроорганизмов может развиваться в бескислородной среде, получая необходимую энергию при расщеплении сложных органических веществ питательного субстрата. Процессы глубокого расщепления безазотистых органических соединений, в основе которого лежит обычно анаэробное дыхание, называется брожением. Процесс аэробного и анаэробного дыхания осуществляется биологическими катализаторами (ферментами), которые способны при дыхании активировать течение окислительных реакций. При аэробном и анаэробном дыхании в первой фазе процесса отмечается активация водорода ферментами из группы дегидрогеназ, которые отнимают водород от субстрата (питательной среды) и переносят его от одной органической молекулы к другой- от одного акцептора к другому (от лат. acceptor- воспринимающий). А так как в структуре атома водорода на орбите имеется один электрон, то процесс отнятия водорода от субстрата является окислительным. В последней фазе при аэробном дыхании аэробные дегидрогеназы передают отнятый от субстрата водород непосредственно кислороду воздуха, который является конечным акцептором. При этом может образоваться перекись водорода, которая играет роль окислителя органических соединений. Фермент каталаза, имеющийся у всех аэробных организмов, разлагает перекись водорода на воду и кислород, а фермент пероксидаза активирует кислород перекиси.
Анаэробные дегидразы не могут отдавать водород кислороду воздуха, а передают его другим акцепторам (ферментам, другим веществам, появляющимся в процессе брожения).
Как при аэробном, так и при анаэробном дыхании наблюдается, окисление одних веществ и восстановление других.
Сущность окисления состоит в потере электронов окисляющимся веществом, а при восстановлении происходит присоединение электронов восстанавливающимся веществом.
Таким образом, акты дыхания у микроорганизмов представляют собой ряд последовательных окислительно-восстановительных процессов, которые приводят к освобождению необходимой для их жизнедеятельности энергии.
Наиболее доступными продуктами для окисления аэробными микробами являются сахара, спирты и органические кислоты. Сложные азотистые соединения используются для дыхания в последнюю очередь. Анаэробные микробы в качестве окисляемого субстрата используют органические соединения и минеральные вещества.

Анаэробное дыхание является менее экономичным, чем аэробное, что видно из следующего примера. В процессе аэробного расщепления одной молекулы виноградного сахара освобождается 674 калории тепла. (СбН120б+602=6С02+6Н20+674 калории), а при анаэробном разложении той же молекулы - лишь 27 калорий (C6Hi206=2C2H50H+2C02+27 калорий).
Примечание. Тип дыхания микроорганизмов находит свое отражение в характере их роста на искусственных питательных средах. Так, например, туберкулезная палочка, являясь облигатным аэробом, в пробирке или колбе с питательным бульоном растет только поверхностно, в виде пленки, оставляя среду прозрачной, анаэробные бациллы - только придонио, а бактерии кишечно-тифозной группы (факультативные анаэробы) растут одинаково во всех слоях бульона, давая диффузный рост.
Методы культивирования анаэробов. Для культивирования анаэробов, помимо соответствующих питательных сред, необходимо создать бескислородные условия среды. Методов культивирования анаэробных микробов существует много. По принципам, положенным в основу этих методов, их можно разделить на химические, физические и биологические.
Химические методы. Есть два метода выращивания анаэробов. Первый метод заключается в том, что засеянные анаэробами пробирки или чашки помещают в замкнутое пространство (например, эксикатор) и ставят какой-нибудь поглотитель кислорода - гипосульфит натрия и щелочной раствор пирогаллола. На 1 г пирогаллола берут 10 мл 10% раствора NaOH; это количество вещества способно связать кислород в объеме около 200 мл воздуха.
Самые простые способы осуществления анаэробиоза с помощью этой смеси следующие:

  1. Ватную пробку пробирки с посевом данной культуры подрезают, опускают несколько вглубь и смачивают раствором (0,5- 1 мл). Доступ воздуха прекращается путем закупоривания резиновой пробкой или резиновым колпачком.
  1. Удаление воздуха из питательных сред перед засевом кипячением в водяной бане в течение 15 минут и последующим быстрым охлаждением до 45-50°. Для того чтобы не дать возможности воздуху вновь проникнуть в среду, пробирки запаивают, либо поверхность среды заливают стерильным парафиновым маслом.
  2. Получение изолированных колоний в глубоких слоях среды по способу Виньяля. Техника посева по методу Виньяля следующая: в 3-4 пробирки с расплавленной агаровой средой делают посев испытуемого материала с постепенным его разведением. Не застывший еще после засева агар из каждой пробирки набирают в пастеровские пипетки, которые затем запаивают только с оттянутого конца (при запайке во избежание разбрызгивания материала нельзя держать противоположный конец зажатым). Трубки быстро охлаждают и переносят в термостат. Через 2-3 дня при удачном разведении исходного материала можно наблюдать отдельные колонии.

Для выделения колонии у намеченного на трубке места делают надрез напильником, после чего трубка легко надламывается. На этом месте содержимое выливают в стерильную чашку Гейденрейха - Петри, колонию берут петлей или втягивают в тонкую оттянутую пипетку и переносят в бульон или уколом в столбик сахарного агара.

  1. Удаление воздуха (а следовательно, и кислорода) из среды механическим путем. Для этого пользуются особыми приборами - анаэростатами (рис. 41). Анаэростат в простейшей форме представляет собой прямоугольную или цилиндрическую металлическую коробку, закрывающуюся крышкой на резиновой прокладке. Цилиндр снабжен металлическим краном, присоединяющимся к насосу. Пробирки и чашки с посевами помещают внутрь, воздух выкачивают насосом. Для культивирования строгих анаэробов достаточно снизить давление до 1 мм.

Биологические методы. Из биологических методов чаще всего применяется заражение животных и метод Фортнера.
При заражении животных используемый материал вводят животному в смеси со специфической сывороткой. Этот метод может быть использован в двух направлениях:

  1. Для выделения микробов из смеси. Если микроб соответствует сыворотке, он погибает. Другие же микробы, не соответствующие данной сыворотке, выделяются из животного.
  2. Для определения токсинов. При наличии в исследуемом материале токсина животное, получившее его в смеси с антитоксической сывороткой, выживает. Контрольное животное погибает. Такая постановка диагноза широко применяется при биологической пробе на токсин.

Метод Фортнера. Этот метод приближает лабораторную технику к природным условиям развития анаэробных микроорганизмов. Фортнер применил метод симбиоза аэробных микробов, способных энергично поглощать кислород воздуха (Bact. prodigiosum), с анаэробами, засеянных на кровяной агар в чашке Гейденрейха - Петри. Чашка разделена на две части вырезанной полоской агара, чтобы при сплошном росте избежать смешивания культур. На одну половину чашки засевают исследуемый на анаэробы материал, на другую - заведомо известный облигатный аэроб (Bact. prodigiosum Сас. subtilis и др.).
Для изоляции внутреннего пространства чашки от внешней атмосферы края ее заливают воском или заклеивают пластилином. Методом Фортнера можно получить хороший поверхностный рост анаэробов.
Питательные среды для выращивания анаэробов. Бульон Китта - Тароцци. В пробирку с мясо-пептонным бульоном, прибавляют кусочки сваренной и промытой кипятком на сите печени (3-5 г на пробирку) или мясной фарш, заливают вазелиновым маслом и стерилизуют при 115° в течение 30 минут.
Кровяной агар с глюкозой (Цейсслера). Слабощелочной агар, содержащий 2-3% агар-агара и 2% глюкозы, разливают в большие пробирки (25 см длины и 2,5 см в поперечнике), приблизительно по 60 мл в каждую, стерилизуют 30 минут при 110° и в таком виде сохраняют. Перед употреблением агар растапливают в водяной бане, охлаждают до 45°, в каждую пробирку добавляют 12-15 мл стерильной дефибринированной крови, перемешивают и разливают в 3-4 чашки Гейденрейха-Петри. Готовые чашки выдерживают перед посевом 2 суток при комнатной температуре.
Агар для трубок Вейона. К мартеновскому бульону добавляют 2% агара и 0,5% глюкозы. Устанавливают pH 7,4, разливают в узкие пробирки (диаметр 0,3-0,5 см, длина 20 см). Столбик агара должен быть не выше 2/3 длины пробирки и стерилизуют дробно 3 дня по 40 минут в текучепаровом аппарате.

Дыхание микроорганизмов – сопряженный окислительно-восстановительный процесс, при котором происходит перенос электронов и протонов от окисляемого вещества до восстанавливаемого, в результате образуется АТФ – универсальный аккумулятор химической энергии.

Все физиологические процессы – питание, рост, размножение, образование спор, капсул, выработка токсинов – осуществляются при постоянном притоке энергии. Микробы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров. Основную роль в дыхании большинства микроорганизмов играет цикл трикарбоновых кислот, где органические вещества как источник энергии окисляются до углекислого газа и воды, а отнятый от них пиридиновыми и флавиновыми ферментами электрон передается по дыхательной цепи активированному кислороду. Освободившаяся в результате этих процессов энергия закрепляется в АТФ или других органических фосфатах. У микроорганизмов, кроме цикла трикарбоновых кислот, может проходить цикл дикарбоновых кислот, пентозофосфатный шунт.

По типу дыхания все микроорганизмы разделяются на:

1) облигатные (строгие) аэробы ,

2) облигатные анаэробы ,

3) факультативные (необязательные) анаэробы ,

4) микроаэрофилы.

Строгие аэробы (Pseudomonas aeruginosa, Bordetella pertussis ) не могут жить и размножаться в отсутствие молекулярного кислорода, так как они его используют в качестве акцептора электронов. Молекулы АТФ образуются ими при окислительном фосфорилировании с участием оксидаз и флавинзависимых дегидрогеназ с дальнейшим включением в цикл трикарбоновых кислот. При этом, если конечным акцептором электронов является молекулярный кислород, выделяется значительное количество энергии.

Облигатные анаэробы (Сlostridium tetani, Сlostridium botulinum, Сlostridium perfringens, бактероиды) способны жить и размножаться только в отсутствии свободного кислорода воздуха. Они могут образовывать АТФ в результате окисления углеводов, белков, липидов путем субстратного фосфорилирования до пирувата (пировиноградной кислоты). При этом выделяется небольшое количество энергии. Акцептором водорода или электронов у анаэробов может быть сульфат. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением . По конечному продукту расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое, муравьинокислое, маслянокислое и пропионовокислое брожение. Наличие свободного кислорода для строгих анаэробов является губительным, так как у них нет ферментов (каталаз), способных расщеплять Н 2 О 2 ; понижен окислительно-восстановительный (редокс) потенциал; отсутствуют цитохромы.



Факультативные анаэробы могут расти и размножаться как в присутствии кислорода, так и без него (стафилококки, кишечная палочка). Они образуют АТФ при окислительном и субстратном фосфорилировании. Факультативные анаэробы могут осуществлять анаэробное дыхание, которое называется нитратным. Нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака. Среди факультативных анаэробов различают аэротолерантные бактерии , которые растут при наличии молекулярного кислорода, но не используют его.

Микроаэрофилы растут при сниженном парциальном давлении кислорода. Различают микроаэрофильные аэробы (например, гонококки), которые лучше культивируются при уменьшенном содержании О 2 (около 5%), и микроаэрофильные анаэробы , которые способны расти в анаэробных и микроаэрофильных условиях, но не культивируются в обычной воздушной среде или в СО 2 .

Выделяют также капнофильные микроорганизмы . Они представляют собой бактерии, растущие в присутствии повышенных концентраций углекислого газа (3-5%). К ним относятся бактероиды, фузобактерии, гемофильные бактерии и др.

Методы культивирования строгих анаэробов :

1) Посев уколом в высокий столбик сахарного агара, который сверху заливается слоем вазелинового масла.

2) Посев на среду Китта-Тароцци (МПБ, глюкоза, кусочки печени или мяса в качестве редуцирующих веществ, сверху среда залита слоем вазелинового масла).

3) Удаление воздуха из среды механическим путем. Используют анаэростаты, из которых выкачивается воздух.

4) Замена воздуха другим индифферентным газом, например азотом, аргоном, водородом.

5) Механическая защита от кислорода воздуха (метод Виньяль-Вейона). Берут стеклянную трубку, один конец которой вытягивают в капилляр, расплавляют агар, в него засевают культуру и затем насасывают агар в стерилизованную трубку, затем капилляр запаивают и трубку помещают в термостат. В среде вырастают колонии, которые можно извлечь, распилив трубку.

6) Химическое поглощение кислорода воздуха, например щелочным раствором пирогаллола.

7) Биологический метод – комбинированный посев культур анаэробов и аэробов. Посев производят на чашку с толстым слоем кровяного агара с глюкозой, разделенную пополам небольшой дорожкой, вырезанной посередине чашки прокаленным скальпелем. На одной половине чашки делают посев культуры аэробов, а на другой – анаэробов. Края чашки смазывают парафином для герметизации и помещают в термостат. Сначала происходит рост аэробов, когда они исчерпывают из чашки кислород, начинается рост анаэробов.