Связь амплитуды световой волны с ее интенсивностью. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона, уравнение Вейса-Лапика

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

Интенсивность света, связь интенсивности света с амплитудой светового вектора.

Интенсивностью света называют электромагнитную энергию , проходящую в единицу времени через единицу площади поверхности, перпендикулярной направлению распространения света. Частоты видимых световых волн лежат в пределах

= (,39 4-0,75)-10 15 Гц.

Ни глаз, ни какой-либо иной приемник световой энергии не может уследить за столь частыми изменениями потока энергии, вследствие чего они регистрируют усредненный по времени поток . Поэтому правильнее определить интенсивность как модуль среднего по времени значения плотности потока энергии, переносимой световой волной. Плотность потока электромагнитной энергии определяется выражением

Поскольку световая волна- это электромагнитная волна, то складывается из энергии магнитного и электрического полей

(4.5)

где V- объем, занимаемый волновым полем.

Из уравнений Максвелла следует, что векторы напряженности электрического и магнитного полей в электромагнитной волне связаны соотношением

(4.6)

Поэтому выражение (4.5) можно записать следующим образом

Из уравнений Максвелла скорость распространения электромагнитных волн

Выделим некоторый объем волнового поля в форме параллелепипеда (рис.4.5)

Рис.4.5

Тогда , по определению интенсивности

Используя выражение (4,6) и полагая, что в прозрачной среде m=1 получим

где n- показатель преломления среды, в которой распространяется волна. Таким образом, напряженность магнитного поля Н пропорционально напряженности электрического поля Е и n:

Тогда интенсивность волны будет определяться выражением

(4.7)

(коэффициент пропорциональности равен )- Следовательно, интенсивность света пропорциональна показателю преломления среды и квадрату амплитуды вектора напряженности электрического поля световой волны. Заметим, что при рассмотрении распространения света в однородной среде можно считать, что интенсивность пропорциональна квадрату амплитуды вектора напряженности электрического поля () световой волны:

Однако в случае прохождения света через границу раздела сред выражение для интенсивности, не учитывающее множитель n, приводит к не сохранению светового потока.

Рассмотрим сферическую световую волну. Площадь сферического фронта волны , где R- радиус фронта волны. Согласно уравнению (4,4) находим интенсивность

Эти выражения показывают, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника световых волн. Если R достаточно велико, т.е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно считать плоскостью. Волна, фронт волны которой представляется плоскостью, называется плоской, так как энергия волны во всех плоскостях, представляющих фронты волны в различные моменты времени остается постоянной, то амплитуда у такой волны постоянна.

.Понятие интерференции, наложение гармонических волн, условия когерентности.

Свет является электромагнитной волной. Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Рассмотрим наиболее простой случай сложения электромагнитных волн (колебаний):

1) частоты их одинаковы,

В этом случае для каждой точки среды, в которой происходит сложение волн, амплитуда результирующей волны для напряженности электрического поля определяется векторной диаграммой (рис.4.6)

Из диаграммы следует, что результирующая амплитуда определится следующим образом:

где d- разность фаз слагаемых волн (колебаний).

Результат сложения волн зависит от особенностей источников света и может быть различен.

Опыт показывает, что постоянный ток при установившейся силе тока (не выходящей из допустимых пределов) раздражающего действия на ткани организма не оказывает. Раздражение вызывается при изменении силы тока и зависит от скорости, с которой это изменение происходит (закон Дюбуа-Реймона). Учитывая, что сила тока в растворе электролита зависит как от числа движущихся ионов, так и от скорости их перемещения, скорость изменения силы тока
следует сопоставить с их ускорением. Поэтому можно считать, что раздражающее действие тока обусловлено ускорением при перемещении ионов тканевых электролитов.

Раздражающее действие прямоугольных импульсов в значительной мере зависит от их длительности, обуславливающей наибольшее смещение ионов за время действия импульса . Эта зависимость описываетсяуравнением Вейса-Лапика:

,

где I П - пороговая сила тока (амплитуда импульса),t u - длительность импульса, а ив - коэффициенты, зависящие от природы возбудимой ткани и её функционального состояния.

Порогом в физиологии называется минимальная сила раздражения, вызывающая реакцию возбудимой ткани.

Как видно из графика на рис.2, предельно кратковременные импульсы (вызывающие смещение ионов, соизмеримое с амплитудой колебаний в тепловом движении) не оказывают раздражающего действия. При достаточно длительных импульсах (правая ветвь графика) раздражающее действие их становится независимым от длительности, значение порогового тока при этом называется реобазой (R). Точка “С ” кривой, ордината которой равна удвоенной реобазе, определяет длительность импульса, называемуюхронаксией (сhr). Хронаксия и реобаза характеризуют возбудимость органа или ткани и могут служить показателями их функционального состояния или диагностическим признаком при их поражении.

Согласно закону Дюбуа-Раймона ,раздражающее действие тока зависит от скорости нарастания его мгновенных значений, то есть от крутизны переднего фронта импульса . Это связано со свойством возбудимых тканей повышать порог (“приспосабливаться”) к постепенно нарастающей силе раздражения. Это свойство тканей называется аккомодацией и характеризуется снижением порогового тока “I n ” при возрастании крутизны переднего фронта одиночных достаточно длительных импульсов. Исследование аккомодации производится с помощью треугольных или трапецеидальных импульсов с регулируемой крутизной переднего фронта.

Способность к аккомодации у возбудимых тканей зависит от их функционального состояния. Например, у патологически измененных мышц способность к аккомодации снижается и для них более физиологическими является постепенно (экспоненциально) нарастающие импульсы.

Амплитуда импульсов, обуславливающая силу тока в цепи, зависит главным образом от числа ионов, вовлеченных в движение. Изменением амплитуды импульсов при определенных их форме и длительности обычно регулируется сила раздражения при данной процедуре.

Действие на ткани ритмически повторяющихся одиночных импульсов называется частотным раздражением . Частотное раздражение позволяет выявить особое свойство возбудимых тканей, названное Н.Введенским лабильностью или функциональной подвижностью, которое характеризует способность ткани давать оптимальную реакцию только в определенных пределах частоты повторения раздражающих импульсов. Определение лабильности осуществляется путем наблюдения характера реакции, например, тетанического сокращения мышц, при различной частоте раздражающих импульсов тока.

Из области физиологических исследований электростимуляция перешла в клинику, где она используется в качестве лечебного воздействия при недостаточности или нарушении естественной функции тех или иных органов или систем.

Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды. Так, например,увеличение крутизны фронта импульса уменьшает пороговую силу тока, который вызывает сокращение мышц. Это свидетельствует о том, что мышцы приспосабливаются к изменению силы тока, наступают ионные компенсационные процессы. Крутизна прямоугольного импульса очень велика (теоретически - бесконечна), поэтому для таких импульсов пороговая сила тока меньше, чем для других. Существует определенная связь между пороговой I m ах амплитудой и длительностью прямоугольного импульса, который вызывает раздражение (рис. 15.2). Каждой точке кривой и точкам, лежащим выше кривой, соответствуют импульсы, которые вызывают сокращение мышц. Точки, расположен­ные ниже кривой, отображают импульсы, не вызывающие раздражения. Кривая на рисунке называется характеристикой воз буждения. Она специфична для разных мышц.

Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции центральной нервной системы (электросон, электронаркоз), нервно-мышечной системы, сердечно-сосудистой системы (кардиостимуляторы, дефибрилляторы) и т. д. используют токи с различной временной зависимостью.

Ток с импульсами прямоугольной формы с длительностью импульсов и = 0,1 -1 мс и диапазоном частот 5-150 Гц иcпользуют для лечения электросном, токи с  и = 0,8-3 мс и диапазоном частот 1-1,2 Гц применяют во вживляемых (имплантируемых) кардиостимуляторах. Ток с импульсами треугольной формы (рис. 15.3,а ; с и = 1 -1,5 мс, частота 100 Гц), а также с импульсами экспоненциальной формы (рис. 15.3, б;  и = 3-60 мс, частоты 8-80 Гц) применяют для возбуждения мышц, в частности при электрогимнастике. Для разных видов электролечения используют диадинамические токи, предложенные Бернаром. На рис. 15.3,в показанаформа одного из видов такого импульсного тока, частота следования импульсов около 100 Гц.

Звуковые радиопередачи стали возможными после изобретения электронных усилительных ламп.

Трудность звуковой передачи состоит в том, что для радиосвязи необходимы колебания высокой частоты, а колебания звукового диапазона являются колебаниями низкой частоты, для излучения которых невозможно построить эффективные антенны. Поэтому колебания звуковой частоты приходится тем или иным способом накладывать на колебания высокой частоты, которые уже переносят их на большие расстояния.

Управление колебаниями высокой частоты в соответствии с колебаниями низкой частоты называется модуляцией колебаний высокой частоты. Модулирование представляет собой изменение с низкой (звуковой) частотой одного из параметров высокочастотных колебаний. Колебания высокой частоты называют несущими колебаниями, поскольку они выполняют служебную роль - переносчика колебаний звуковой частоты. Несущая частота должна быть строго постоянной, т. е. стабилизированной.

При амплитудной модуляции изменяют со звуковой частотой амплитуду высокочастотных колебаний. Амплитудную модуляцию можно осуществить следующим образом. В цепь сетки лампового генератора незатухающих колебаний высокой частоты включают источник электрических колебаний звуковой частоты. Звуковые колебания возбуждают в цепи микрофона М (рис. 27.11) электрические колебания, которые через трансформатор передаются в цепь сетки электронной лампы.

Поскольку вторичная обмотка этого трансформатора не пропускает колебания высокой частоты, то параллельно к ней подключается конденсатор через который они легко проходят. В то же

время колебания низкой частоты не замыкаются через него, поскольку для них он представляет большое сопротивление. В цепь сетки включена еще батарея смещения чтобы потенциал сетки всегда оставался отрицательным по отношению к катоду.

Если нет звуковых колебаний, установка работает как генератор незатухающих высокочастотных колебаний (§ 27.3) постоянной амплитуды. Когда в цепи микрофона возникают электрические колебания (рис. 27.12, а), напряжение на сетке, продолжая изменяться с высокой частотой в такт с колебаниями в контуре начинает изменяться еще и со звуковой частотой.

Вследствие этого анодный ток лампы и амплитуда колебаний тока в контуре непрерывно изменяются в соответствии с колебаниями звуковой частоты (рис. 27.12, б), т. е. происходит модуляция колебаний высокой частоты.

Модулированные высокочастотные колебания улавливаются антенной радиоприемника, усиливаются и детектируются (рис. 27.12, в). В телефоне возникают колебания звуковой частоты (рис. 27.12, г),

и мембрана телефона или громкоговорителя воспроизводит переданные звуковые колебания.

На принципиальных схемах радиотелефонной связи для звуковых передач, изображенных на рис. 27.13, показаны основные блоки, из которых состоят передатчик и приемник. Первый блок передатчика - генератор незатухающих колебаний Г, второй - модулятор М, в котором происходит модуляция колебаний с помощью микрофона третий - усилитель высокочастотных колебаний и четвертый - передающая антенна