Условия расположения корней квадратного трехчлена. Квадратные уравнения с параметрами



При каком значении параметра a один корень уравнения

больше 1, а другой меньше 1?

Рассмотрим функцию -


Цель работы:

  • Исследование всевозможных особенностей расположения корней квадратного трехчлена относительно заданной точки и относительно заданного отрезка на основе свойств квадратичной функции и графических интерпретаций.
  • Применение изученных свойств при решении нестандартных задач с параметром.

Задачи:

  • Изучить различные приемы решения задач на основе исследования расположения корней квадратного трехчлена графическим методом.
  • Обосновать всевозможные особенности расположения корней квадратного трехчлена, разработать теоретические рекомендации для решения нестандартных задач с параметром.
  • Овладеть рядом технических и интеллектуальных математических умений, научится их использовать при решении задач.

Гипотеза:

Использование графического метода в нетрадиционных задачах с параметром упрощает математические выкладки и является рациональным способом решения.


тогда и только тогда:

1. Оба корня меньше числа А,

2. Корни лежат по разные стороны от числа А,

тогда и только тогда:

  • тогда и только тогда:

тогда и только тогда:

3. Оба корня больше числа А, то есть


Найти все значения параметра а, для которых один корень уравнения

больше 1, а другой меньше 1.


При каких значениях параметра уравнение

имеет два различных корня одного знака?

-6

-2

3

a


1. Оба корня лежат между точками A и B , то есть

тогда и только тогда:

2. Корни лежат по разные стороны от отрезка

тогда и только тогда:

3. Один корень лежит вне отрезка, а другой на нем, то есть

тогда и только тогда:


Исследуйте уравнение

на количество корней в зависимости от параметра.

уравнение не имеет решений.

имеет одно решение.


Исследуйте уравнение

на количество корней в

зависимости от параметра.


Если один корень лежит на отрезке, а другой слева от него.

Если один корень лежит на отрезке, а другой справа от него.

первоначальное уравнение будет иметь два различных корня.

при которых

уравнение имеет три различных корня.

Ответ: при

при которых

первоначальное уравнение будет иметь два

различных корня.

уравнение имеет четыре различных корня.

Скачать:


Предварительный просмотр:

Муниципальное казённое учреждение

Ермоловская СОШ

Расположение корней квадратного уравнения в задачах с параметрами

Выполнил Галкин Сергей Андреевич,

Ученик 9-го класса

Руководитель: Малей Н.И.,

Учитель математики

2013

Введение…………………………………………………….. 3

Основная часть. Расположение корней квадратного уравнения и примеры………………………………………..4-15

Проверка качества применимости изложенного материала..16

Заключение…………………………………………………….17

Литература …………………………………………………….18

Приложение ……………………………………………….......19

Цель:

Сформулировать и обосновать утверждения о расположении корней квадратного уравнения и показать применение полученных утверждений для решения задач с параметрами.

Задачи:

1. Изучить литературу по данной теме.

2. Сформулировать утверждения и дать геометрическую интерпретацию

Введение

В последнее время в материалах выпускных экзаменов, ЕГЭ в задачах повышенной сложности предлагаются задания по теме «Уравнения с параметрами»

Особую роль среди уравнений с параметрами играют задачи, связанные с расположением корней квадратного уравнения.

Рассмотрим два наиболее распространённых типа таких задач

1-ый тип задачи в которых изучается расположение корней относительно заданной точки.

2-ой тип задачи в которых исследуется расположение корней относительно числового промежутка

Утверждения о расположении корней квадратного уравнения

Пусть f(x)=ax 2 +bx+c имеет действительные корни x 1 и x 2 , а M – какое-нибудь действительное число, D=b 2 – 4ac.

Утверждение 1. Для того чтобы оба корня квадратного уравнения были меньше, чем число M (т.е. лежали на числовой оси левее, чем точка M), необходимо и достаточно выполнение следующих условий:

или

Пример 1:

Найти все значения параметра а, при которых оба корня квадратного уравнения x²+4ax+(1-2a+4a²)=0 меньше -1.

Решение:

Рассмотрим функцию y=x²+4ax+1(1-2a+4a²)

Ответ: (1; +∞).

Утверждение 2 . Для того чтобы один из корней квадратного уравнения был меньше, чем число M, а другой больше, чем число M (т.е. точка M лежала бы между корнями), необходимо и достаточно выполнение условий:

Пример 2:

Найти все значения параметра m , при каждом из которых один корень уравнения 2mx²-2x-3m-2=0 больше 1,а другой меньше 1.

Решение:

2mf(1)

2m(2m-2-3m-2)

2m²-8

2m(m+4)

m(m+4)>0

Ответ: (-∞; -4)U(0; + ∞).

Утверждение 3. Для того чтобы оба корня квадратного уравнения были больше, чем число M (т.е. лежали на числовой оси правее, чем точка M), необходимо и достаточно выполнение условий:

или

Пример 3:

Найти все значения параметра а, при которых оба корня квадратного уравнения x²-6ax+(2-2a+9a²)=0 больше 3

Решение: f(x)=x²-6ax+(2-2a+9a²)

Ответ: а>11/9

Утверждение 4. Для того чтобы оба корня квадратного уравнения были больше, чем число M, но меньше, чем число N (M ) , т.е. лежали в интервале между M и N, необходимо и достаточно:

или

Пример 4:

При каких значениях m корни уравнения 4x²-(3m+1)x-m-2=0 лежат в промежутке между -1 и 2?

Решение:

Ответ:(- ; ).

Утверждение 5 . Для того чтобы только больший корень квадратного уравнения лежал в интервале [ M , N ](M N ) , необходимо и достаточно:

(при этом меньший корень лежит вне отрезка ).

5.Найти все значения а, для которых при каждом x из промежутка (-3; -1] значение выражения
(задача С3 из ЕГЭ).

Решение:

1.Значения указанных выражений не равны друг другу тогда и только тогда,когда выполнено условие:

Обозначим t=x², тогда t²-8t-2 at.

t²-8t-at-2=t²-(a+8)t-2 0

f(t)=t²-(a+8)t-2 0

Следовательно, в задаче требуется, чтобы уравнение f(t)=0 не имело корней на промежутке , необходимо и достаточно:

(при этом больший корень лежит вне отрезка [ M , N ]) .

Утверждение 7 . Для того чтобы один из корней квадратного уравнения был меньше, чем M, а другой больше, чем N (M [ M , N ] целиком лежал внутри интервала между корнями, необходимо и достаточно:

Пример 6:

Найти все значения параметра а, при которых меньший корень уравнения x²+(a+1)x+3=0 лежал в интервале (-1; 3)

Решение:


Ответ: (-∞; -5)

Пример 7:

При каких значениях параметра а один корень уравнения x²-(3a+2)x+2a-1=0 меньше -1, а другой больше 2.

Решение:

Ответ: решений нет.

Проверка качества применимости изложенного материала

Проверочную работу выполняли четыре человека: три ученика 11 класса и один ученик 10 класс (задания см. в Приложении)

В результате анализа проверочной работы была выявлена необходимость совершенствования навыков решения задач на расположение корней квадратного уравнения

Заключение:

В процессе исследования были рассмотрены основные случаи расположения корней квадратного уравнения, приведены утверждения, к которым даны иллюстрации, помогающие понять, как выводятся эти утверждения. Данный материал облегчит понимание решений заданий, содержащих параметры о расположении корней квадратного уравнения. Он может быть использован для индивидуального обучения, а также на внеклассных и факультативных занятий по математике.

Литература:

1. Задачи с параметрами П.И. Горнштейн, .Б. Полонский, М.С. Якир

3. Рабочая тетрадь для подготовки к итоговой аттестации по математике в новой форме (Негосударственное образовательное учреждение «Интернациональные коммуникации»)

4. Школа решения задач с параметрами, авторы Севрюков П.Ф., Смоляков А.Н.

Приложение

Задания:

  1. Найти все значения параметра а, при которых корни уравнения 4x²+2(а-1)х-а²+а=0 меньше -1.
  2. Найти все значения параметра а, при которых корни уравнения x²+(a-4)x-2a=0 больше 1
  3. При каких значениях параметра a оба корня уравнения x²-ax+2=0 больше 1, но меньше 3

Данные об авторе

Стукалова Надежда Васильевна

Место работы, должность:

МБОУ СОШ №15,учитель математики

Тамбовская область

Характеристики урока (занятия)

Уровень образования:

Среднее (полное) общее образование

Целевая аудитория:

Учащийся (студент)

Целевая аудитория:

Учитель (преподаватель)

Класс(ы):

Предмет(ы):

Алгебра

Предмет(ы):

Математика

Цель урока:

Тип урока:

Комбинированный урок

Учащихся в классе (аудитории):

Используемые учебники и учебные пособия:

А. Г. Мордкович, алгебра,9 класс, учебник,2011

А. Г. Мордкович, алгебра,9 класс, задачник,2011

С.А. Теляковский, алгебра 9 класс, учебник, 2009

Используемая методическая литература:

Мирошин, В.В. Решение задач с параметрами: Теория и практика / В.В. Мирошин.- М.: Экзамен, 2009.

Л. В Кузнецова Сборник заданий для экзамена

Используемое оборудование:

Компьютер, кинопроектор

Краткое описание:

План урока: 1. Организационный момент. 2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой). 3. Решение задач с параметрами (работа в группах). 4. Самостоятельная работа с последующей проверкой. 5. Подведение итогов. 6. Домашнее задание.

Конспект урока

на тему

«Расположение корней квадратного трёхчлена

в зависимости от значений параметра»

учитель математики Стукалова Н.В. МБОУ СОШ №15

г. Мичуринск - наукоград РФ 2011г.

Цель урока:

Развивать практические умения и навыки учащихся по решению заданий с параметрами;

Подготовить учащихся к успешной сдачи ГИА по математике;

Развивать исследовательскую и познавательную деятельности учащихся;

Формировать интерес к математике;

Развивать математические способности учащихся.

План урока:

1. Организационный момент.

2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой).

3. Решение задач с параметрами (работа в группах).

4. Самостоятельная работа с последующей проверкой.

5. Подведение итогов.

6. Домашнее задание.

Ход урока.

1. Организационный момент.

Учитель сообщает тему урока, ставит цели и задачи перед учащимися, сообщает план урока.

Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.

Наш урок посвящен решению задач по расположению корней квадратного трёхчлена на числовой прямой.

2. Обобщение и систематизация знаний:

Вспомнить необходимые и достаточные условия для выполнения различных требований расположения корней квадратного уравнения относительно заданных точек или промежутков.

После ответа учащихся демонстрируются слайды с правильным ответом.

1. Расположение корней по обе стороны от заданной на числовой прямой

точки.

условию х 1 < m<х 2, необходимо и достаточно выполнения неравенства аf(x)<0.

2. Расположение корней по обе стороны от заданного отрезка.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию х 1 < m, х 2 < n, где m

системы неравенств

3. Расположение корней с одной стороны от заданной на числовой прямой

Точки.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию m<х 1 <х 2, т.е располагались на числовой прямой правее точки х = m,

необходимо и достаточно выполнения системы неравенств

Если левее точки х = m, необходимо и достаточно выполнения

системы неравенств

4. Принадлежность корней заданному интервалу.

интервалу (m;n), необходимо и достаточно выполнения системы

неравенств

5.Принадлежность корней заданному отрезку.

Для того чтобы корни квадратного уравнения при а ≠ 0 принадлежали

интервалу , необходимо и достаточно выполнения системы

неравенств

3. Решение задач с параметрами.

Учащиеся разделены на 4 группы. В каждой группе есть дети более успешные в алгебре. Каждая группа начинает решение задачи, совпадающей с номером своей группы. После обсуждения хода решения задачи, от каждой группы по одному представителю выходят к доске и оформляют решение задачи своей группы, и объясняет её решение (на откидных досках). В это время ребята должны решить задачи другой группы (можно получать консультацию у учителя).

Задача №1.

При каких значениях параметра а один корень уравнения (12а + 7)х 2 + (9а - 42)х + +11 - 3а = =0 больше 1, другой корень меньше 1?

Решение.

Графиком функции у = f(х), где f(х) = (12а + 7)х 2 + (9а - 42)х + +11 - 3а, при

а ≠ - 7/12 является параболой, ветви которой при а > - 7/12 направлены вверх, при а < - 7/12 - вниз. Тогда значения параметра а удовлетворяют неравенству

(12а +)f(1)< 0, где f(1) = 12а+7+9а-42+11-3а = 18а-24. Решив неравенство (12а+7)(18а-24)<0, получим, что - 7/12<а<4/3. Ответ: (-7/12; 4/3).

Задача № 2 .

Найдите значения параметра а, при которых корни уравнения (1+а)х 2 - 3ах +4а = 0 больше 1.

Решение.

При а≠-1 заданное уравнение является квадратным и D= -а(7а+16). Получим систему , откуда -16/7≤а≤ -1.

Значения параметра, при которых корни данного уравнения при а ≠ - 1 больше 1, принадлежат промежутку [-16/7; -1).

При а = -1 заданное уравнение имеет вид3х - 4 = 0 и единственный корень

Ответ: [-16/7; -1]

Задача № 3 .

При каких значениях параметра kкорни уравнения (k-2)х 2 -2kх+2k-3=0

принадлежат интервалу (0;1)?

Решение.

При k≠2 искомые значения параметра должны удовлетворять системе неравенств

ГдеD= 4k 2 -4(k-2)(2k-3) = -4(k 2 -7k+6), f(0) = 2k-3? F(1) = k-5, x в = k/(k-2).

Данная система не имеет решений.

При k = 2 заданное уравнение имеет вид -4х+1 = 0, его единственный корень

х = ¼, который принадлежит интервалу (0;1).

Задача №4 .

При каких значениях а оба корня уравнения х 2 -2ах+а 2 -а = 0 расположены на отрезке?

Искомые значения должны удовлетворять системе неравенств

где D= 4а 2 -4(а 2 -а) = 4а, f(2) = a 2 -5a+4, f(6) = a 2 -13a+36, х в = а.

Единственным решением системы является значение, а = 4.

4. Самостоятельная работа (контрольно - обучающая).

Учащиеся работают в группах, выполняют один и тот же вариант, так как материал очень сложный и не всем может быть по силам.

№1. При каких значениях параметра а оба корня уравнения х 2 -2ах+а 2 - 1 =0 принадлежит интервалу (-2;4)?

№2. Найдите все значения k, при которых один корень уравнения

(k-5)x 2 -2kx+k-4=0 меньше1, а другой корень больше 2.

№3. При каких значениях а число 1 находится между корнями квадратного трехчлена х 2 + (а+1)х - а 2 ?

По окончании времени демонстрируются ответы. Осуществляется самопроверка самостоятельной работы.

5. Итог урока. Закончить предложение.

«Сегодня на уроке…».

«Мне запомнилось …».

«Хотелось бы отметить …».

Учитель анализирует весь ход урока и его основные моменты, оценивает деятельность каждого ученика на уроке.

6. Домашнее задание

(из сборника заданий для подготовки к ГИА в 9 классе авт. Л. В. Кузнецова)

Уравнения содержащие параметр.
Урок 2: Расположение корней квадратного уравнения в зависимости
от параметра.
Цель: Формировать умение распознавать положение параболы в
зависимости от ее коэффициентов.
I.
Объяснение нового материала.
Ход урока
Решение многих задач с параметрами, предлагаемых на экзаменах, в
частности, на ЕГЭ по математике, требует умения правильно
формулировать необходимые и достаточные условия, соответствующие
различным случаям расположения корней квадратного трёхчлена на
числовой оси.
Рассмотрим пример: найдите все значения параметра с, при которых оба

меньше, чем – 1.
1
2). Теперь нужно
Уравнение имеет два различных корня при D > 0 (с >
составить систему уравнений когда х1>−1 и х2>−1 . Ее будет
достаточно сложно решить.
Для решения заданий такого типа существует специальный метод.
Сначала рассмотрим квадратичную функцию f(x) = ax2+bx+c,a≠0.
Запишем ее в виде f(x)=a(x+ b
2a)
Вспомним основные характеристики параболы, позволяющие построить ее
график. При решении заданий с параметрами эти характеристики
применяются в другом контексте.
+ 4ac−b2
4a
2
.
1. Прямая x=−b
2a – ось параболы, которая является одновременно
осью ее симметрии. Вершиной параболы является точка (
−b
2a
;4ac−b2
4a).
2. Знак числа а показывает, куда направлены ветви параболы: если а >
0, то вверх, если а < 0, то вниз.

3. Дискриминант D=b2−4ac показывает, пересекается ли парабола с
осью абсцисс.
Объединим вышесказанное в таблице:
Расположение графика по отношению к оси абсцисс в зависимости от
знаков коэффициента а и дискриминанта.
а > 0
а < 0
D > 0
D = 0
D < 0
Утверждение 1: Оба корня меньше числа А, то есть х1 < А и х2 < А тогда
и только тогда, когда { D>0,
a>0,
x0f(A)>0
или { D>0,
a<0,
x0f(A)<0.
Утверждение 2: Корни лежат по разные стороны от числа А, то есть х1 <
А < х2 , тогда и только тогда, когда { a>0,
системы можно заменить формулой a⋅f(A)<0.
f(A)<0 или { a<0,
f(A)>0.
Эти две
Утверждение 3: Оба корня больше числа А, то есть х1 > А и х2 > А, тогда
и только тогда, когда { D>0,
a>0,
x0>A,
f(A)>0
или { D>0,
a<0,
x0>A,
f(A)<0.

Утверждение 4: Оба корня лежат между точками А и В, то есть А < х1 <
a<0,
А<х0<В,
f(A)<0,
f(В)<0.
a>0,
А<х0<В,
f(A)>0,
f(В)>0
В и А < х2 < В, тогда и только тогда, когда { D>0,
> х2 и А < х1 < В, тогда и только тогда, когда { a>0,
> х2 и А < х2 < В, тогда и только тогда, когда { a>0,
или { D>0,
f(В)>0 или { a<0,
или { a<0,
f(A)>0,
f(В)<0
f(A)>0,
f(В)<0.
f(A)<0,
f(В)>0.
f(A)<0,
Утверждение 5: Больший корень лежит между точками А и В, то есть х1
Утверждение 6: Меньший корень лежит между точками А и В, то есть х1
Утверждение 7: Корни лежат по разные стороны от отрезка
есть х1 < А < В < х2, тогда и только тогда, когда { a>0,
f(A)<0,
f(В)<0
или { a<0,
f(A)>0,
f(В)>0.
[А;В]
, то
Вернемся к примеру1: найдите все значения параметра с, при которых оба
корня квадратного уравнения х2+4сх+(1−2с+4с2)=0 различны и
меньше, чем – 1. (Для решения необходимо воспользоваться утверждением
1.)
Пример 2: При каких действительных значениях k оба корня (в том числе
кратных) уравнения (1 + k)х2 – 3kх + 4k = 0 больше 1? (Для решения
необходимо воспользоваться утверждением 3.)
II. Закрепление пройденного материала. Практическая работа в
группах.
1 группа:
1. При каких значениях k число 2 находится между корнями уравнения 2х2
1
2 х + (k – 3)(k + 5) = 0?

2. При каких значениях параметра а оба корня уравнения х2 – ах + 2 = 0
лежат в интервале (0; 3)?

2 группа:
1. При каких значениях k число 3 находится между корнями уравнения х2
+
х + (k – 1)(k + 7) = 0?
2. Существуют ли такие значения параметра а, что корни уравнения х2 +
2х + а = 0 лежат между – 1 и 1?
3 группа:
1. Найдите множество значений параметра k, при число 2 находится
между корнями уравнения 9х2 – 6х – (k – 2)(k + 2) = 3.
2. При каких значениях параметра а все решения уравнения (а – 1)х2 – (а +
1)х + а = 0 имеет единственное решение удовлетворяющее условию 0 <
x < 3?
III. Домашняя работа.
1. При каких значениях параметра а оба корня уравнения (а + 4)х2 – 2(а +
2)х + 3(а + 6) = 0 положительны?
2. При каких значениях параметра а оба корня уравнения (а – 3)х2 – 3(а –
4)х + 4а – 16 = 0 принадлежат интервалу (2; 5)?
3. При каких значениях параметра а один из корней уравнения 2ах2 – 2х –
3а – 2 = 0 больше 1, а другой меньше 1?

4. Расположение корней квадратного трехчлена в зависимости от параметра

Часто встречаются задачи с параметрами, в которых требуется определить расположение корней квадратного трехчлена на числовой оси. Опираясь на основные положения и обозначения предыдущего параграфа, рассмотрим следующие случаи:

1. Пусть задан квадратный трехчлен , где
и точка m на оси Ox . Тогда оба коня
квадратного трехчлена
будут строго меньше m

или

Геометрическая иллюстрация приведена на рисунке 3.1 и 3.2.


2.Пусть задан квадратный трехчлен , где и точка m на оси Ox . Неравенство
выполняется тога и только тогда, когда числа a и
имеют разные знаки, то есть
(рис. 4.1 и 4.2.)


3. Пусть задан квадратный трехчлен , где и точка m на оси Ox . Тогда оба коня
квадратного трехчлена будут строго больше m тогда и только тогда, когда выполняются следующие условия:

или

Геометрическая иллюстрация приведена на рисунке 5.1 и 5.2.


4. Пусть задан квадратный трехчлен , где и интервал (m , M ) Тогда оба корня квадратного трехчлена принадлежат указанному интервалу тогда и только тогда, когда выполняются следующие условия:

или

Геометрическая иллюстрация приведена на рисунке 6.1 и 6.2.


5. Пусть задан квадратный трехчлен , где , - его корни и отрезок
. Отрезок лежит в интервале
тогда и только тогда, когда выполняются следующие условия:

Геометрическая иллюстрация приведена на рисунке 7.1 и 7.2.


Пример. Найти все значения параметра a , при каждом из которых оба корня уравнения
больше -2.

Решение. В условии задачи указано. Что уравнение имеет два корня, поэтому . Рассматриваемая ситуация описывается случаем 3 и изображена на рисунке 5.1. и 5.2.

Найдем ,
,

Учитывая все это, запишем совокупность двух систем:

или

Решая эти две системы, получим .

Ответ. При каждом значении параметра a из промежутка оба корня уравнения больше -2.

Пример. При каких значениях параметра a неравенство
выполняется для любых
?

Решение. Если множество X – решение данного неравенства, то условие задачи означает, что промежуток
должен находиться внутри множества X , то есть

.

Рассмотрим все возможные значения параметра а .

1.Если а=0 , то неравенство примет вид
, и его решением будет промежуток
. В этом случае условие выполняется и а=0 является решением задачи.

2.Если
, то графиком правой части неравенства является квадратный трехчлен, ветви которого направлены вверх. Решение неравенства зависит от знака .

Рассмотри случай, когда
. Тогда для того, чтобы для всех выполнялось неравенство , требуется, чтобы корни квадратного трехчлена были меньше числа -1, то есть:

или

Решив эту систему, получим
.

Если
, то парабола лежит выше оси О x , и решением неравенства будет любое число из множества действительных числе, в том числе, и промежуток . Найдем такие а из условия:

или

Решив эту систему, получим
.

3.Если
, то при
решением неравенства является промежуток , который не может включать в себя промежуток , а при
данное неравенство не имеет решений.

Объединяя все найденные значения а , получим ответ.

Ответ. Для любого значения параметра из промежутка
неравенство выполняется для любых .

Пример. При каких значениях параметра а множество значений функции содержит отрезок
?

Решение. 1. Если
, то

а) при а = 1 функция примет вид y = 2, и множество ее значений состоит из единственной точки 2 и не содержит отрезок ;

б) при а = -1 функция примет вид y = -2 x +2 . Ее множество значений
содержит отрезок , значит а = -1 является решением задачи.

2.Если
, то ветви параболы направлены вверх, наименьшее значение функция принимает в вершине параболы
:

,
.

Множество значений функции есть промежуток
, который содержит отрезок
, если выполняются условия:


.

3. Если
, то ветви параболы направлены вниз, наибольшее значение функция принимает в вершине параболы
. Множество значений функции есть промежуток
, который содержит отрезок , если выполняются условия:

Решая эту систему неравенств, получим
.

Объединяя решения, получим
.

Ответ. При
множество значений функции содержит отрезок .

Задачи для самостоятельного решения

1. Не вычисляя корней квадратного уравнения
, найти

а)
, б)
, в)

2. Найти множество значений функции

а)
, б)
, в)
, г)

3. Решить уравнения

а)
, б)

4. При каких значениях параметра а оба корня уравнения
лежат на интервале (-5, 4)?

5. При каких значениях параметра а неравенство выполняется при всех значениях x ?

6. При каких значениях параметра а наименьшее значение функции

На отрезке
равно -1?

7. При каких значениях параметра а уравнение
имеет корни?

Карпова Ирина Викторовна

ПРОГРАММА И УЧЕБНЫЕ МАТЕРИАЛЫ ЭЛЕКТИВНОГО КУРСА по математике для учащихся 8-9 классов «Элементы теории вероятностей и математической статистики»

Пояснительная записка

В настоящее время становится очевидной универсальность вероятностно-статистических законов, они стали основой описания научной картины мира. Современная физика, химия, биология, демография, лингвистика, философия, весь комплекс социально-экономических наук развиваются на вероятносто-статистической базе.

Ребенок в своей жизни ежедневно сталкивается с вероятностными ситуациями. Круг вопросов, связанных с осознанием соотношения понятий вероятности и достоверности, проблемой выбора наилучшего из нескольких вариантов решения, оценкой степени риска и шансов на успех – все это находится в сфере реальных интересов становления и саморазвития личности.

Все вышесказанное обусловливает необходимость знакомства ребенка с вероятностно-статистическими закономерностями.

Цель курса: познакомить учащихся с некоторыми теоретико-вероятностными закономерностями и статистическими методами обработки данных.

Задачи курса

    Познакомить учащихся с основным понятийным аппаратом теории вероятностей.

    Научить определять вероятность событий в классической схеме испытаний.

    Познакомить с методами первичной обработки статистических данных.

Требования к уровню усвоения содержания курса

В результате освоения программы курса учащиеся должны знать:

    основные понятия теории вероятностей: испытание, исход испытания, пространство элементарных событий, случайное, достоверное, невозможное события, совместные и несовместные события;

    условия классической схемы испытаний и определение вероятности события в классической схеме испытаний;

    определение относительной частоты появления события и статистической вероятности;

    определение вариационного ряда и его основных числовых характеристик.

В процессе изучения курса учащиеся должны пробрести умения:

    определять все возможные исходы испытания, совместность и несовместность событий;

    решать теоретико-вероятностные задачи на вычисление вероятности в классической схеме испытаний;

    вычислять относительную частоту появления события;

    составлять статистическое распределение выборки и вычислять её числовые характеристики.

Программа предполагает развитие у учащихся навыков :

    использования имеющихся алгоритмов и при необходимости их творческой переработки в конкретных условиях задачи;

    самостоятельного решения задач;

    использования при решении задач обобщенных схем, содержащих основные определения и формулы.

Объем курса: предлагаемый курс рассчитан на 20 часов

Тематическое планирование

Темы занятий

Количество часов

Основные понятия теории вероятностей.

Классическая схема испытаний. Определение вероятности в классической схеме испытаний.

Частота абсолютная и относительная.

Статистическое определение вероятности.

Генеральная и выборочная совокупности.

Статистическое распределение выборки.

Числовые характеристики статистического распределения.

Статистическое оценивание и прогноз.

Текст пособия

Математику многие любят за её вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон. В любой задаче, которую вы решали на уроках математики, у всех получался один и тот же ответ – нужно было только не делать ошибок в решении.

Реальная жизнь не так проста и однозначна. Исходы многих явлений заранее предсказать невозможно, какой бы полной информацией мы о них не располагали. Нельзя, например, сказать наверняка, какой стороной упадет подброшенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе захотят в течение ближайшего часа позвонить по телефону. Такие непредсказуемые явления называются случайными .

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений. Если подбросить монету 1000 раз, то «орёл» выпадет приблизительно в половине случаев, чего никак нельзя сказать о двух или даже десяти бросаниях. Обратите внимание на слово «приблизительно» – закон не утверждает, что число «орлов» будет в точности 500 или окажется в промежутке от 490 до 510. Он вообще ничего не утверждает наверняка, но дает определенную степень уверенности в том, что некоторое случайное событие произойдет. Такие закономерности изучает специальный раздел математики – теория вероятностей.

Теория вероятностей неразрывно связана с нашей повседневной жизнью. Это дает замечательную возможность установить многие вероятностные законы опытным путем, многократно повторяя случайные эксперименты. Материалами для этих экспериментов чаще всего будут обыкновенная монета, игральный кубик, набор домино, рулетка и даже колода карт. Каждый из этих предметов, так или иначе, связан с играми. Дело в том, что случай здесь предстает в наиболее чистом виде, и первые вероятностные задачи были связаны с оценкой шансов игроков на выигрыш.

Современная теория вероятностей ушла от азартных игр так же далеко, как геометрия от задач землеустройства, но их реквизит по-прежнему остается наиболее простым и надежным источником случая. Поупражнявшись с рулеткой и кубиком, вы научитесь вычислять вероятность случайных событий в реальных жизненных ситуациях, что позволит вам оценивать свои шансы на успех, проверять гипотезы, принимать решения не только в играх и лотереях.

Математическая статистика – раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления существующих закономерностей.

В некотором смысле задачи математической статистики обратны задачам теории вероятностей: имея дело только с экспериментально полученными значениями случайных величин, статистика ставит своей целью выдвижение и проверку гипотез о распределении этих случайных величин и оценку параметров их распределения.

1. Случайные события. Как сравнивать события?

Как любой другой раздел математики, теория вероятностей имеет свой понятийный аппарат, который используется при формулировке определений, доказательстве теорем и выводе формул. Рассмотрим понятия, которые будем использовать при дальнейшем изложении теории.

Испытание – осуществление комплекса условий.

Исход испытания (элементарное событие) – любой результат который может произойти при проведении испытания.

Примеры.

1) Испытание:

Исходы испытания: ω 1 – на верхней грани кубика появилось одно очко;

ω 2 – на верхней грани кубика появилось два очка;

ω 3 – на верхней грани кубика появилось три очка;

ω 4 – на верхней грани кубика появилось четыре очка;

ω 5 – на верхней грани кубика появилось пять очков;

ω 6 – на верхней грани кубика появилось шесть очков.

Всего возможно 6 исходов испытания (или 6 элементарных события).

2) Испытание: ученик сдает экзамен.

Исходы испытания: ω 1 – ученик получил двойку;

ω 2 – ученик получил тройку;

ω 3 – ученик получил четверку;

ω 4 – ученик получил пятерку.

Всего возможно 4 исхода испытания (или 4 элементарных события).

Замечание . Обозначение ω – является стандартным обозначением для элементарного события, в дальнейшем мы будем пользоваться этим обозначением.

Будем называть исходы данного испытания равновозможными , если исходы испытания имеют одинаковые шансы на появление.

Пространство элементарных событий – множество всех элементарных событий (исходов испытания), которые могут появиться при проведении испытания.

В примерах, которые мы рассмотрели выше, фактически были описаны пространства элементарных событий данных испытаний.

Замечание. Число точек в пространстве элементарных событий (ПЭС), т.е. число элементарных событий в дальнейшем будем обозначать буквой n .

Рассмотрим основное понятие, которым мы будем пользоваться в дальнейшем.

Определение 1.1. Событием называется совокупность некоторого числа точек ПЭС.

События в дальнейшем мы будем обозначать большими латинскими буквами: А, В, С .

Определение 1.2. Событие, которое может произойти, а может и не произойти при проведении испытания, называется случайным событием.

Купив лотерейный билет, мы можем выиграть, а можем и не выиграть; на очередных выборах правящая партия может победить, а может и не победить; на уроке Вас могут вызвать к доске, а могут и не вызвать и т.п. Все это примеры случайных событий, которые при одних и тех же условиях могут произойти, а могут и не произойти при проведении испытания.

Замечание. Любое элементарное событие так же является случайным событием.

Определение 1.3. Событие, которое происходит при любом исходе испытания, называется достоверным событием.

Определение 1.4. Событие, которое не может произойти ни при каком исходе испытания, называется невозможным событием.

Пример.

1) Испытание: подбрасывается игральный кубик.

Событие А: на верхней грани кубика выпало четное число очков;

Событие В: на верхней грани кубика выпало число очков, кратное 3;

Событие С: на верхней грани кубика выпало 7 очков;

Событие D: не верхней грани кубика выпало число очков меньшее 7.

События А и В могут произойти, а могут и не произойти при проведении испытания, поэтому это случайные события.

Событие С не может произойти никогда, поэтому оно является невозможным событием.

Событие D происходит при любом исходе испытания, значит это достоверное событие.

Мы говорили, что случайные события при одних и тех же условиях могут произойти, а могут и не произойти. При этом у одних случайных событий шансов произойти больше (значит, они более вероятные – ближе к достоверным), а у других меньше (они менее вероятные – ближе к невозможным). Поэтому в первом приближении можно определить вероятность, как степень возможности наступления того или иного события.

Понятно, что более вероятные события будут происходить чаще, чем менее вероятные. Так что сравнивать вероятности можно по частоте, с которой события происходят.

Попытаемся расположить на специальной вероятностной шкале следующие события в порядке возрастания вероятности их появления.

Событие А: в следующем году первый снег в Хабаровске выпадет в воскресенье;

Событие В: свалившийся со стола бутерброд упал маслом вниз;

Событие С: при подбрасывании игрального кубика выпадет 6 очков;

Событие D: при подбрасывании игрального кубика выпадет четное число очков;

Событие Е: при подбрасывании игрального кубика выпало 7 очков;

Событие F: при подбрасывании игрального кубика выпадет число очков, меньшее 7.

Итак, в начальной точке нашей шкалы расположим невозможные события, так как степень возможности их наступления (вероятность) практически равна 0. Таким образом, это будет событие Е . В конечной точке нашей шкалы расположим достоверные событие – F . Все остальные события являются случайными, попробуем расположить их на шкале в порядке возрастания степени их появления. Для этого мы должны выяснить какие из них менее вероятные, а какие более вероятные. Начнем с события D : когда мы подбрасываем игральный кубик, каждая из 6 граней имеет равные шансы оказаться верхней. Четное число очков – на трёх гранях кубика, на трёх других – нечетное. Значит, ровно половина шансов (3 из 6) за то, что событие D произойдет. Поэтому расположим событие D в середине нашей шкалы.

У события С только один шанс из 6, в то время как у события D – три шанса из 6 (как мы выяснили). Поэтому С менее вероятно и будет расположено на шкале левее события D .

Событие А еще менее вероятно, чем С , ведь в недели 7 дней и в любой из них с равной вероятностью может выпасть первый снег, поэтому у события А один шанс из 7. Событие А , таким образом, будет расположено еще левее, чем событие С .

Труднее всего расположить на шкале событие В . Здесь нельзя точно подсчитать шансы, но можно призвать на помощь жизненный опыт: бутерброд гораздо чаще падает на пол именно маслом вниз (есть даже «закон бутерброда»), поэтому событие В гораздо вероятнее, чем D , поэтому на шкале расположим его правее, чем D . Таким образом, получим шкалу:

Е А С D В F

невозможное случайные достоверное

Построенная вероятностная шкала не совсем настоящая – на ней нет числовых меток, делений. Перед нами встает задача научиться вычислять степень возможности наступления (вероятность) того или иного события.