Закон вебера фехнера устанавливает соответствие между. §4. Закон Бугера-Вебера. Закон Фехнера. Закон Стивенса

Психофизика - это наука об измерении ощущений, изучающая количественные отношения между интенсивностью раздражителя и силой ощущения.

Основной психофизический закон

Предпринял попытку разработать точный количественный метод измерения ощущений (душевных явлений). То, что сильные раздражители вызывают сильные ощущения, а слабые раздражители – слабые, было известно давно. Задача состояла в том, чтобы определить величину ощущения для каждого предъявляемого раздражителя. Попытка сделать это в количественной форме восходит к исследованиям греческого астронома Гиппарха (ок. 180 или 190-125 до н.э.) . Он разработал шкалу звездных величин, делящую видимые невооруженным глазом звезды на шесть категорий: от самых слабых (шестой величины) до самых ярких (первой величины).

Эрнст Генрих Вебер на основе экспериментов по различению силы давления на кожу (веса поднимаемых на ладони грузов) установил, что вместо того, чтобы просто воспринимать разницу между раздражителями, мы воспринимаем отношение этой разницы к величине исходного раздражителя. До него аналогичный вывод уже был сделан в середине XIX в. французским физиком и математиком Пьером Бугером в отношении яркости зрительных ощущений. Г. Фехнер выразил сформулированную Э. Вебером закономерность в математической форме:

ΔR - изменение раздражителя, необходимое для обнаружения едва заметного различия в стимуляции;
R величина раздражителя;
k константа, значение которой зависит от вида ощущений.

Конкретное числовое значение k называют отношением Э. Вебера . В последующем было обнаружено, что величина k не остается постоянной во всем диапазоне интенсивности раздражителя, а увеличивается в области низких и высоких значений. Тем не менее отношение приращения величины раздражителя и силы ощущения (или отношение увеличения стимула к исходному его значению) остается постоянным для средней области диапазона интенсивности раздражителей, вызывающих практически все виды ощущений (закон Бугера – Вебера ).

В дальнейшем измерение ощущений стало предметом исследований . Опираясь на закон Бугера – Вебера, а также на собственное допущение о том, что ощущение раздражителя представляет собой накопленную сумму равных приращений ощущения, Г. Фехнер сначала выразил все это в дифференциальной форме как dR = adI / I , затем проинтегрировал [принимая R=О при интенсивности раздражителя, равной абсолютному порогу (Iο) ] и получил следующее уравнение:

R=clog Iο/I

где R величина ощущения ;
с константа, величина которой зависит от основания логарифма и от отношения Вебера ;
I интенсивность раздражителя ;
Iο - величина абсолютного порога интенсивности .

Приведенное выше уравнение получило название основного психофизического закона, или закона Вебера – Фехнера , согласно которому ощущения описываются кривой уменьшающегося прироста (или логарифмической кривой). Например, увеличение яркости, ощущаемое при замене одной лампочки десятью, будет таким же, как и в случае замены десяти лампочек сотней. Иначе говоря, возрастанию величины раздражителя в геометрической прогрессии соответствует прирост ощущения в арифметической прогрессии.

Позже были сделаны попытки уточнить основной закон психофизики. Так, американский психофизик С. Стивенс выявил степенной, а не логарифмический характер зависимости между силой ощущения и интенсивностью раздражителя:

где R сила ощущения ;
с константа ;
I интенсивность раздражителя;
Iο - величина абсолютного порога ощущения ;
n показатель степени, зависящий от модальности ощущений (значения приводятся в справочниках) .

Обобщенный психофизический закон, предложенный Ю. Забродиным, учитывал тот факт, что характер зависимости между ощущениями и воздействующими раздражителями обусловлен осведомленностью человека о процессах ощущения. Исходя из этого, Ю. Забродин ввел в формулу закона С. Стивенса показатель z, характеризующий степень осведомленности:

Из формулы видно, что при z=0 формула обобщенного закона Ю. Забродина принимает вид закона Вебера – Фехнера , а при 2=1 - закона Стивенса .

Современные исследования шкалирования указывают, что уравнение Ю. Забродина не является обобщенным «в последней инстанции » психофизическим законом, т.е. оно не может охватить все существующее многообразие психофизических функций. В целом же Ю. Забродиным разработан системно-динамический подход к анализу сенсорных процессов.

Ставя перед собой задачу измерения ощущений, Г. Фехнер предполагал, что человек не способен непосредственно количественно оценить их величины. Поэтому он предложил косвенный способ измерения – в единицах физической величины стимула. Величина ощущения представлялась как сумма едва заметных его приращений над исходной точкой. Для ее обозначения Г. Фехнер ввел понятие порога ощущений , измеряемого в единицах стимула. Он различал абсолютный порог чувствительности и различительный (дифференциальный) порог.

В 1760 г. французский ученый, создатель фотометрии П.Бугер исследовал свою способность различать тень, отбрасываемую свечой, если экран, на который падает тень, одновременно освещается другой свечой. Его измерения доволь-

но точно установили, что отношение л К/К (где л К - минимальный воспринимаемый прирост освещения, К - исходное освещение) - величина сравнительно постоянная.

В 1834 г. немецкий психофизик Э.Вебер повторил и подтвердил опыты П.Бугера. Э.Вебер, изучая различение веса, показал, что минимально воспринимаемая разница в весе представляет собой постоянную величину, равную приблизительно 1/30. Груз в 31 г различается от груза в 30, груз в 62 г от груза в 60 г; 124 г от 120 г.

В историю исследования по психофизике ощущений это соотношение вошло под названием закона Бугера-Вебера: дифференциальный порог ощущений для разных органов чувств различен, но для одного и того же анализатора он представляет собой постоянную величину, т.о. л R/R = const.

Это отношение показывает, какую часть первоначальной величины стимула необходимо прибавить к этому стимулу, чтобы получить едва заметное изменение ощущения.

Дальнейшие исследования показали, что закон В ебера действителен лишь для раздражителей средней величины: при приближении к абсолютным порогам величина прибавки перестает быть постоянной. Закон Вебера применим не только к едва заметным, но и ко всяким различиям ощущений. Различие между парами ощущений кажутся нам равными, если равны геометрические соотношения соответствующих раздражителей. Так, увеличение силы освещения от 25 до 50 свечей дает субъективно такой же эффект, как увеличение от 50 до 100.

Исходя из закона Бугера-Вебера, Фехнер сделал допущение, что едва заметные различия (е.з.р.) в ощущениях можно рассматривать как равные, поскольку все они - величины бесконечно малые. Если приращение ощущения, соответствующее едва заметной разнице между стимулами, обозначить как л Е, то постулат Фехнера можно записать как л Е = const.

Фехнер принял е.з.р. (лЕ) как единицу меры, при помощи которой можно численно выразить интенсивность ощущений как сумму (или интеграл) едва заметных (бесконечно малых) увеличений, считая от порога абсолютной чувствительности. В результате он получил два ряда переменных величин - величины раздражителей и соответствующие им величины ощущений. Ощущения растут в арифметической прогрессии, когда раздражители растут в геометрической прогрессии.

Как это понимать? Берем, например, такие раздражители, как 10 свечей, увеличиваем их количество: 10 - 100 - 1000 -10000 и т.д. Это геометрическая прогрессия. Когда было 10 свечей, у нас имелось соответствующее ощущение. При увеличении раздражителей до 100 свечей ощущение увеличилось вдвое; появление 1000 свечей вызвало увеличение ощущения в три раза и т.д. Увеличение ощущений идет в арифметической прогрессии, т.е. намного медленнее увеличения самих раздражителей. Отношение этих двух переменных величин можно выразить в логарифмической формуле: Е = К lg R + С, где Е - сила ощущения, R - величина действующего раздражителя, К - коэффициент пропорциональности, С - константа, различная для ощущений разных модальностей.

Эта формула получила название основного психофизического закона, который по сути дела представляет собой закон Вебера-Фехнера. Согласно этому закону, изменение силы ощущения пропорционально десятичному логарифму изменения силы воздействующего раздражителя (рис.8).

Рис. 8. Логарифмическая кривая зависимости величины ощущения от силы раздражителя, иллюстрирующая закон Вебера-Фехнера

Ряд явлений, вскрытых исследованиями чувствительности, не укладывается в рамки закона Вебера-Фехнера. Например, ощущения в области протопатической чувствительности не обнаруживают постепенного нарастания по мере усиления раздражения, а по достижении известного порога сразу же появляются в максимальной степени. Они приближаются по своему характеру к типу реакций «все или ничего».

Спустя примерно полстолетия после открытия основного психофизического закона он вновь привлек к себе внимание и, на основе новых экспериментальных данных, породил дискуссию об истинном, точно выраженном математической формулой характере связи между силой ощущения и величиной раздражителя. Американский ученый С.Стивенс рассуждал следующим образом: что происходит при удвоении освещенности пятна света и, с другой стороны, силы тока (частота 60 гц), пропускаемого через палец? Удвоение освещенности пятна на темном фоне удивительно мало влияет на его видимую яркость. По оценке типичного наблюдателя кажущееся увеличение составляет всего лишь 25%. При удвоении же силы тока ощущение удара увеличивается в десять раз. С.Стивенс отвергает постулат Фехнера (лЕ = const.) и заявляет, что константной является другая величина, а именно отношение л Е/Е. Распространяя закон Бугера-Вебера на сенсорные величины (лЕ/Е = const), С.Стивенс через ряд математических преобразований получает степенную зависимость между ощущением и стимуляцией: Е= кРД где к - константа, определяемая избранной единицей измерения, Е - сила ощущения, R - значение воздействующего раздражителя, п- показатель, зависящий от модальности ощущения. Показатель п принимает значение 0,33 для яркости и 3,5 для электрическо-г2о удара. Эта закономерность получила название закона Стивенса.

По мнению С.Стивенса, степенная функция имеет то преимущество, что при использовании логарифмического масштаба на обеих осях, она выражается прямой линией, наклон которой соответствует значению показателя (п). Это видно на рис. 9: медленное увеличение яркостного контраста и быстрое усиление ощущения удара электрическим током.

J 235 Ю 203050 100 200500500"1000

Рис. 9. Степенная кривая зависимости величины ощущения от силы раздражителя, иллюстрирующая закон Стивенса. 1.Электрический удар. 2. Яркость.

Сто с лишним лет не прекращаются споры между сторонниками логарифмической зависимости силы ощущения от величины стимула (закон Фехнера) и степенной (закон Сти-венса). Если пренебречь чисто психофизическими тонкостями этого спора, то оба закона по своему психологическому смыслу окажутся весьма близкими: тот и другой утверждают, во-первых, что ощущения меняются непропорционально силе физических стимулов, действующих на органы чувств, и, во-вторых, что сила ощущения растет гораздо медленнее, чем величина физических стимулов.

Вопросы для самопроверки

1. Докажите несостоятельность на сегодняшний день методологической основы исследований Фехнера.

2.В чем состоит различие между психофизикой-I и психофизикой-П, классической и современной психофизикой?

3.Какие методы измерения психических процессов (ощущений) получили почетное наименование классических?

4.Что такое порог исчезновения ощущения и порог появления ощущения?

З.Приведите примеры влияния на человека допороговых сигналов.

6.В чем состоит сущность центральной проблемы психофизики-1?

У.Как зависит величина ощущения от силы раздражителя (по Фехнеру и по Стивенсу)?

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера : если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.

Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость ) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности, поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I 0 = 10 -12 Вт/м 2:называют уровнем интенсивности звука (L):

(1)

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L . Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда L измеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I 0 ) уровень интенсивности звука L=0 , а на пороге болевого ощущения (I = 10 Вт/м 2)– L = 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнерапрямо пропорциональна уровнем интенсивности L:

Е = kL, (2)

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент k в формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах . Постановили, что на частоте 1000 Гц 1 фон = 1 дБ , т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают(в формуле (2) коэффициент k = 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).

Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.


Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 - энкодер.

Управление генератором осуществляется с помощью нескольких меню, которые выводятся на жидкокристаллический индикатор (ЖКИ). Система меню организована в виде кольцевой структуры. Короткое нажатие кнопки энкодера позволяет «по кругу» переходить между меню, длинное нажатие в любом из пунктов меню приводит к переходу на главное меню. Любое действие по переходу между пунктами меню сопровождается звуковым сигналом.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.

Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц... 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1 мВ... 1 В.

Порядок выполнения работы.

1. Подключите к сети (220В. 50 Гц ) шнур питания генератора SG-530 нажатием кнопки «POWER» на задней панели;

2. Однократно нажмите кнопку энкодера - произойдет переход из главного меню в меню установки частоты «FREQUENCY» - и вращением энкодера установите первое значение частоты ν =100 Гц;

3. Нажатие кнопки энкодера в меню установки частоты приводит к переходу к меню установки амплитуды «AMPLITUDE» - установите значение амплитуды Uген =300 мВ;

4. Подключите наушники к генератору;

5. Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

6. Если при минимальной амплитуде (100 мВ) звук в наушниках ещё слышен, нажатием кнопки энкодера перейдите в меню установки ослабления аттенюатора «ATTENUATOR» и установите минимальное ослабление L (например, -20dB), при котором звук исчезает ;

7. Запишите полученные значения частотыν , амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1) ;

8. Аналогично добейтесь отсутствия звука для каждой из предложенных частотν ;

9. Произведите расчёт амплитуды на выходе генератораUвых по формулеUвых = Uген ∙ K, где коэффициент ослабленияK определяется по величинеослабления L из таблицы2;

10. Определите минимальное значениеамплитуды на выходе генератораUвых min как наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвых для всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min ;

12. Постройте график зависимости величины уровня громкости на пороге слышимости E от значения логарифма частоты lg ν . Полученная кривая будет представлять собой порог слышимости.

Таблица 1 . Результаты измерений.

ν, Гц lg ν Uген, мВ L, дБ Коэффициент ослабления, K U вых = К·U ген мВ Уровень интенсивности (дБ ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K (1, 0,1, 0,01, 0,001).

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1. Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

Литература:

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.

Каждое ощущение, кроме качества, непременно обладает определенной степенью интенсивности, или силы. Представляется интересным выяснить, каково взаимоотношение между интенсивностью ощущения и интенсивностью раздражения. Возможно, что интенсивность ощущения либо совершенно не связана с интенсивностью раздражения, либо, наоборот, она представляет собой прямое отражение этого последнего, либо же, наконец, между ними имеется специфическая взаимосвязь, подчиняющаяся определенной закономерности.

Решить данный вопрос невозможно ни путем простого наблюдения, ни на основе того или иного теоретического соображения. В этом случае дать что-либо значимое может только эксперимент. Поэтому неудивительно, что первый шаг, сделанный на пути научного решения данного вопроса, носил экспериментальный характер; вместе с тем, это был тот первый психологический вопрос, разрешить который попытались путем эксперимента. История экспериментальной психологии начинается с того времени, когда физиолог Вебер поставил вопрос о соотношении между ощущением и раздражением, то есть между психическим и физическим, с точки зрения их интенсивности. В последующем опыты Вебера продолжил физик Фехнер, окончательно заложив тем самым основы той части психологии, которая известна под названием «психофизики» и которая в течение нескольких десятилетий считалась наиболее интересной и важной отраслью психологии.

Так, что же выяснилось о взаимосвязи между ощущением и раздражением с точки зрения их интенсивности?

Во-первых, окончательно подтвердились наблюдения, свидетельствующие о том, что человек ощущает отнюдь не любое изменение раздражения, а чувствует лишь раздражение относительно большой интенсивности. Во-вторых, в результате точных исследований был найден закон, лежащий в основе соотношения между ин-тенсивностями раздражения и ощущения.

Для понимания этого закона особенно важным является понятие так называемого «порога», установленное в процессе психофизических исследований.

Выяснилось, что интенсивность раздражения должна достигнуть определенного уровня с тем, чтобы мы хоть как-то почувствовали его воздействие. Уровень раздражения, дающий такое едва заметное ощущение, называется «нижним порогом» ощущения. Однако существует и такой уровень интенсивности раздражения, после увеличения которого интенсивность ощущения уже не усиливается. Этот уровень называется «верхним порогом» ощущения. Воздействие раздражения мы чувствуем только в интервале между этими порогами, поэтому их принято называть и «внешними порогами» ощущения.

Примечательно, что полного параллелизма между интенсивностями ощущения и раздражения не существует и в межпороговом интервале интенсивностей. Например, беря в руки книгу, мы, разумеется, чувствуем ее вес. Следовательно, в данном случае интенсивность ее веса находится в промежутке между нижним и верхним порогами. А теперь заложим в книгу лист бумаги; физически вес книги увеличится, то есть уровень интенсивности раздражения повысится. Однако, взяв книгу в руки, мы это изменение ее веса не почувствуем. Увеличение веса должно достигнуть определенного уровня, чтобы мы могли это как-то заметить. Величина прироста раздражения, необходимого для получения этого едва заметного различия между ощущениями, называется «порогом различения». Раздражение, по интенсивности превышающее данную величину, называется «запороговым», а раздражение с меньшей интенсивностью - «допороговым». Уровень порога различения (высокий или низкий) зависит от чувствительности к различению: чем выше чувствительность к различению, тем ниже порог различения.

Вебер первым обратил внимание (1834) на то, что порог различения бывает двояким - абсолютным и релятивным и что очень важно отличать их друг от друга. Абсолютным порогом различения называется прирост интенсивности раздражения, необходимый для достижения порога различения. Например, если для того, чтобы почувствовать едва заметное изменение 2000-граммового веса, к нему необходимо добавить 200 грамм, и тогда эта величина представляет собой абсолютный порог ощущения. Показатель абсолютного порога не является постоянной величиной и зависит от веса основного раздражителя. Например, если к основному раздражителю весом в 2000 грамм следует добавить 200 грамм, то в случае 4000-граммового раздражителя 200 грамм уже недостаточно - к нему нужно прибавить больше.

Если эту же величину (в нашем примере - 200 грамм) выразить не в твердых физических единицах измерения (в нашем примере - граммах), а числом, выражающим отношение между добавочным раздражением и основным раздражением, то получим релятивный порог различения (в нашем примере вес основного раздражителя составлял 2000 грамм, а добавочного - 200 грамм; отношение между ними составляет 200/2000 = 0,1. Следовательно, релятивный порог равен 0,1). Когда Вебер вычислил релятивный порог различения для различных случаев основного раздражения, выяснилось, что этот порог представляет собой константную величину. В области модальности веса он равен 0,1. Это означает, что для того, чтобы почувствовать едва заметное изменение веса, его нужно увеличить или уменьшить на одну десятую часть.

Именно в этом заключается известный основной психофизический закон Вебера, сыгравший столь значительную роль в истории психологии. Его формула очень проста и выражается следующим образом:

где dr - величина дополнительного раздражения, а r - величина основного раздражения.

После опубликования Вебером формулы своего закона было проведено множество экспериментальных исследований с целью установления величины релятивного порога различения во всех модальностях ощущения. Фехнер дал закону Вебера точное математическое выражение: для того, чтобы интенсивность ощущения росла в математической прогрессии, интенсивность раздражения должна расти в геометрической прогрессии. Более короткая математическая формула данного положения выглядит следующим образом:

где Е - интенсивность ощущения, R - интенсивность раздражения.

Последующие интенсивные исследования подтвердили, что закон Вебера-Фехнера имеет приблизительное значение - он действителен лишь в определенных пределах. В этих пределах величина порога различения для разных модальностей оказалась следующей:

Вес - 10% (в пределах 2000- 6000 грамм).

Давление - 5% (на кончике указательного пальца, в пределах 50-2000 грамм).

Свет - 1-3% (в пределах 1000-2000 люкс).

Острота зрения - 2% (при сравнении линий, плоскостей).

Тон - 12% (в пределах средней высоты и средней силы).

Ошибка Фехнера главным образом заключалась в том, что он счел возможным точное измерение интенсивности ощущения, приняв за единицу измерения так называемую «едва заметную разницу между интенсивностями ощущения». Экспериментальное изучение вопроса не подтвердило правильности его подхода.

Закон Вебера -Фехнера

Во второй половине XIX в. отдельные вопросы и проблемы, лежащие на границе физиологии и психологии, становятся предметом специальных и систематических исследований, которые затем обособляются и оформляются в относительно самостоятельные научные направления. Одной из первых таких областей и явилась психофизика, созданная немецким физиологом Г. Фехнером (1801-1887).

Психофизика была задумана Фехнером как наука о всеобщей связи физического и духовного мира. Исследователь выступил с учением о тождестве психического и физического, выдвинул принцип всеобщей одушевленности природы. По мнению Фехнера, должна быть создана специальная наука, которая с помощью эксперимента и математики могла бы доказать выдвинутую им философскую концепцию. Такой наукой и явилась психофизика, которая определялась им как точное учение о функциональных отношениях между телом и душой.

Согласно Фехнеру, психофизика должна заниматься экспериментально-математическим изучением различных психических процессов в их отношении, с одной стороны, к физическим факторам, что должно составить предмет внешней психофизики, с другой - в отношении к анатомо-физиологическим основаниям, что должно было представить предмет внутренней психофизики.

Особую роль в изучении этого вопроса сыграли работы Э. Вебера по изучению осязания и порогов чувствительности. Именно опыты Вебера показали, что существует определенная зависимость между физическим и психическим, в частности, между раздражением и ощущением, и что обнаруженные отношения между ними поддаются экспериментальному измерению. Немалое значение для определения специфики новой науки сыграли идеи Гербарта, в частности, его учение о порогах сознания и обоснование возможности применения математики в психологии.

Психофизика становилась наукой о связи раздражений и ощущений. Установленные Фехнером положения об измеримости психофизических отношений и о возможности применения математического закона к ним ставили на передний план проблему разработки специальных методов психофизического измерения и способов математического анализа и описания психофизических отношений. Общая программа построения психофизики включила три главные задачи:

1) установить, какому закону подчиняются отношения психического и физического мира, на примере связи раздражений и ощущений;

2) дать математическую формулировку этому закону;

3) разработать психофизические методы измерения.

Закон,открытый Э.Г.Вебером (1834)и развитыйГ.Т.Фехнером,основной закон психофизики.

Фехнер, считал, что материальное и идеальное -- это две стороны единого целого. Поэтому он задался целью выяснить, где проходит граница между материальным и идеальным. Фехнер подошел к этой проблеме как естествоиспытатель. По его мнению, процесс создания психического образа может быть представлен следующей схемой:

Раздражение --> Возбуждение --> Ощущение --> Суждение (физика) (физиология) (психология) (логика)

Самым главным в идее Фехнера было то, что он впервые включил элементарные ощущения в круг интересов психологии. До Фехнера считали, что исследованием ощущений, если это кому-нибудь интересно, должны заниматься физиологи, врачи, даже физики, но только не психологи. Для психологов это слишком примитивно.

По мнению Фехнера, искомая граница проходит там, где начинается ощущение, т. е. возникает первый психических процесс. Величину стимула, при которой начинается ощущение, Фехнер назвал нижним абсолютным порогом. Для определения этого порога Фехнер разработал методы, которые активно используются и в наше время. В основу методологии своих исследований Фехнер положил два утверждения, называемые первой и второй парадигмой классической психофизики. 1. Сенсорная система человека -- это измерительный прибор, который соответствующим образом реагирует на воздействующие физические стимулы. 2. Психофизические характеристики у людей распределены по нормальному закону, т. е. случайным образом отличаются от какой-то средней величины, аналогично антропометрическим характеристикам. Сегодня не вызывает сомнения, что обе эти парадигмы уже устарели и в определенной степени противоречат современным принципам исследования психики. В частности, можно отметить противоречие принципу активности и целостности психики, поскольку сегодня мы понимаем, что невозможно выделить и исследовать в эксперименте одну, даже самую примитивную, психическую систему из целостной структуры человеческой психики. В свою очередь, активизация в эксперименте всех психических систем от самых низших до самых высших приводит к очень большому разнообразию реакций испытуемых, что требует индивидуального подхода к каждому испытуемому. Тем не менее, исследования Фехнера по своей сути были новаторскими. Он считал, что человек не может непосредственно оценивать свои ощущения количественно, поэтому он разработал «косвенные» методы, с помощью которых можно количественно представить отношения между величиной раздражителя (стимула) и интенсивностью вызванного им ощущения. Предположим, нас интересует, при какой минимальной величине звукового сигнала испытуемый может слышать этот сигнал, т. е. мы должны определить нижний абсолютный порог громкости. Измерение методом минимальных изменений проводится следующим образом. Испытуемому дают инструкцию говорить «да», если он сигнал слышит, и «нет», -- если не слышит. Сначала испытуемому предъявляют стимул, который он явно может расслышать. Затем при каждом предъявлении величина стимула уменьшается. Эту процедуру проводят до тех пор, пока не изменятся ответы испытуемого. Например, вместо «да» он может сказать «нет» или «вроде бы нет» и т. д.

Величина стимула, при которой изменяются ответы испытуемого, соответствует порогу исчезновения ощущения. На втором этапе измерения в первом предъявлении испытуемому предлагают стимул, который он никак не может слышать. Затем на каждом шаге величина стимула возрастает до тех пор, пока ответы испытуемого перейдут от «нет» к «да» или «может быть, да». Это значение стимула соответствует порогу появления ощущения. Но порог исчезновения ощущения редко бывает равен порогу появления. Соответственно абсолютный порог будет равен среднеарифметическому порогов появления и исчезновения. Аналогичным способом определяется и верхний абсолютный порог -- значение стимула, при котором он перестает восприниматься адекватно. Верхний абсолютный порог иногда называют болевым порогом, потому что при соответствующих ему величинах стимулов мы испытываем боль -- резь в глазах при слишком ярком свете, боль в ушах при слишком громком звуке.

Абсолютные пороги -- верхний и нижний -- определяют границы доступного нашему восприятию окружающего мира. По аналогии с измерительным прибором абсолютные пороги определяют диапазон, в котором сенсорная система может измерять раздражители, но кроме этого диапазона работу прибора характеризует его точность, или чувствительность. Величина абсолютного порога характеризует абсолютную чувствительность. Например, чувствительность двух людей будет выше у того, у кого появляются ощущения при воздействии слабого раздражителя, когда у другого человека ощущений еще не возникает (т. е. у кого меньше величина абсолютного порога). Следовательно, чем слабее раздражитель, вызывающий ощущение, тем выше чувствительность. Таким образом, абсолютная чувствительность численно равна величине, обратно пропорциональной абсолютному порогу ощущений. Различные анализаторы обладают разной чувствительностью. О чувствительности глаза мы уже говорили. Очень высока чувствительность и нашего обоняния. Порог одной обонятельной клетки человека для соответствующих пахучих веществ не превышает восьми молекул. Чтобы вызвать вкусовое ощущение, требуется по крайней мере в 25 000 раз больше молекул, чем для возникновения обонятельного ощущения. Абсолютная чувствительность анализатора в равной степени зависит как от нижнего, так и от верхнего порога ощущения. Величина абсолютных порогов, как нижнего, так и верхнего, изменяется в зависимости от разных условий: характера деятельности и возраста человека, функционального состояния рецептора, силы и длительности действия раздражения и т. д. Другая характеристика чувствительности -- это чувствительность к различию. Ее еще называют относительной, или разностной, так как это чувствительность к изменению раздражителя. Если мы положим на руку груз весом 100 граммов, а затем добавим к этому весу еще один грамм, то этой прибавки ни один человек ощутить не сможет. Для того чтобы ощутить прибавку к весу, необходимо добавить три-пять граммов. Таким образом, для того чтобы почувствовать минимальное различие в характеристиках воздействующего раздражителя, необходимо изменить силу его воздействия па определенную величину, а то минимальное различие между раздражителями, которое дает едва заметное различие ощущений, называется порогом различения.

Ощущения возникают в результате преобразования специфической энергии раздражителей в энергию нервных процессов организма. Физиологической основой ощущения является нервный процесс, стимулируемый действием того или иного раздражителя на адекватный анализатор. Ощущение имеет рефлекторный характер.

Вебера -- Фехнера закон, основной психофизический закон, определяет связь между интенсивностью ощущения и силой раздражения, действующего на какой-либо орган чувств. Основан на наблюдении немецкого физиолога Э. Вебера, который установил (1830--34), что воспринимается не абсолютный, а относительный прирост силы раздражителя (света, звука, груза, давящего на кожу, и т.п.):

где?I - разностный порог, I - исходный раздражитель.

Отношение разностного порога к величине исходного раздражителя является величиной постоянной и называется относительным разностным или дифференциальным порогом. Величина, обратная дифференциальному порогу, называется дифференциальной чувствительностью. Исследования показали, что величина дифференциальной чувствительности не одинакова для различных модальностей.

Так, люстра в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в разы, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Например, если добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости. В то же время, одна лампочка, добавленная к люстре из двух лампочек, даёт значительный кажущийся прирост яркости.

Любопытно, что Фехнер вывел своё уравнение отнюдь не исходя из общих соображений, как Бернулли (хотя, в принципе, мог бы). Он проанализировал результаты, полученные другим немецким физиологом, Эрнстом Вебером. В середине 19-го века этот ученый изучал особенности человеческого восприятия веса различных грузов, и обнаружил интересную закономерность. Отвлекаясь от конкретных цифр Вебера, она такова: если испытуемый держал в руке груз весом в 100 гр., он не замечал прибавки в 5 гр., но замечал прибавку в 10 гр. Однако, если испытуемый держал в руке груз весом в 200 гр., он не замечал прибавки в 10 гр., а лишь прибавку в 20 гр. Иными словами, минимальная заметная прибавка к весу груза оказалась прямо пропорциональной его исходному весу. Вебер выяснил, что эта закономерность действует довольно в широких пределах в восприятии веса, силы звука, яркости и т.д. Серьезные отклонения от неё наблюдались лишь при очень слабых и очень сильных интенсивностях стимулов. Математический анализ результатов Вебера и привёл Фехнера к выражению, один-в-один похожему на уравнение Бернулли.

Обратим внимание, что Вебер не просил своих испытуемых как-то субъективно оценивать вес грузов, он просил лишь отмечать тот момент, когда они фиксируют изменение веса. Это значит, что выделенная закономерность относится не к каким-то высокоуровневым психологическим особенностям восприятия и мышления - как это можно счесть исходя из закона Бернулли - а характеризует довольно низкоуровневые, первичные процессы восприятия. Более того, закон Вебера-Фехнера действует даже там, где наше восприятие, вроде бы, вообще ни причем. В частности, если в качестве стимула используется инъекция гормона, то интенсивность физиологической реакции организма на инъекцию также подчиняется этому закону. То есть, возможно, что закон Вебера-Фехнера относится не к особенностям восприятия органами чувств, а вообще описывает реакцию человека и его организма на любого рода внешние воздействия.

Но закон Вебера-Фехнера действует не только на человека. Ещё в 20-х годах прошлого века были получены свидетельства, что ему подчиняются и насекомые. В частности, двигательная активность жуков PopilliaJaponicaувеличивается с увеличением интенсивности светового стимула в соответствии с законом Вебера-Фехнера.

У нас достаточно оснований, чтобы выдвинуть довольно смелую гипотезу:закономерность вида закона Вебера-Фехнера описывает интенсивность реакции любой сложной когнитивной системы на внешние стимулы - будь это организм человека или любая другая органическая или социальная система.

Закон Стивенса

Закон Стивенса - это вариант основного психофизического закона, устанавливающий степенную, а не логарифмическую (см. Закон Фехнера) зависимость между субъективным рядом (рядом ощущений, впечатлений) и рядом раздражителей:

где Y -- субъективная величина ощущения, S -- величина стимула (раздражителя), К -- константа, зависящая от единицы измерения. Показатель п степенной функции различен для разных модальностей-ощущений. По мнению Стивенса, этот закон справедлив для любого ряда раздражителей, как физических, которые легко подвергаются объективному измерению (вес, сила звука и света, длина линии, температура т. д.), так и любых других, для которых не существует объективных мер (серия почерков, рисунков и др.). С помощью 3. С. были получены численные или количественные оценки величины ощущений в форме установления заданного отношения двух стимулов. Благодаря этому были созданы шкалы величин: субъективные шкалы громкости, светлоты, тяжести, зрительно-воспринимаемой длины, площади, удаленности, скорости мельканий; субъективные шкалы электрического удара, вкуса, множественности, слуховых биений и др. Оказалось, что степенной ряд справедлив для всех исследованных модальностей стимулов. Показатель л лежит в пределах от 0,3 (для громкости) до 3,5 (для электрического удара). Степенная функция, будучи изображена в логарифмическом масштабе на обеих осях координат, имеет вид линейной зависимости с наклоном, определяемым показателем степени п. Наряду с законом Фехнера, устанавливающим логарифмическую зависимость между величиной раздражителя и величиной ощущения, 3. С. относится к числу важнейших психофизических законов. Однако вопрос о том, какой из них является более универсальным и какому из них следует отдать предпочтение, остается пока еще дискуссионным.