Биологическая продуктивность экосистем

Продуктивность экосистемы тесно связанна с потоком энергии, проходящим через нее. В каждой экосистеме только часть поступающей энергии накопляется в виде органических соединений. Скорость ассимиляции энергии называется продукцией, а величина продукции, отношение к единице площади экосистемы называется продуктивностью. Первичная продуктивность (Р) экосистемы определяется как скорость, с которой лучистая энергия усваивается продуцентами в процессе фото- и хемосинтеза накапливаясь в виде органических веществ, количество ее выражают в сырой или сухой фазе растений или энергетических единицах (ккал, Дж). Первичная продукция определяется общим потоком энергии через биотический компонент экосистем, а следовательно и биомасса живых организмов, которые могут существовать в биосистеме В создании первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Из общего количества лучевой энергии 44% составляет ФАР – фотосинтетически активная радиация т.е. свет по длине волны пригоден для фотосинтеза. Максимальная КПД фотосинтеза 10-12% ФАР, что является приблизительной половиной от теоретически возможного. По земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за влияния на фотосинтез роста растений различных факторов: климатических, физических, химических.

В процессе производства органического вещества выделяют 4 последовательных уровня:

1 валовая первичная продуктивность – это общая продукция (В) фотосинтеза с учетом органических веществ, которые за время измерений были израсходованы на дыхание (Р).

2 чистая первичная продуктивность сообщества (Р чист) это - накапливание органического вещества в растительных тканях за вычетом органического вещества, которая израсходовалась на дыхание растений.

3 чистая продуктивность сообщества – это продукция накапливания органического вещества не потребленного гетеротрофами т.е. разность между чистой первичной продукцией и количеством органического вещества, потребленного гетеротрофами.

4 Вторичная продуктивность – накопление энергии на уровне консументов т.к. консументы используют ранее созданные питательные вещества часть из них расходуется на дыхание, а остальная часть на формирование тканей и органов (вторичную продукцию вычисляют отдельно для каждого проживающего уровня, т. к прирост массы для каждого из них происходит за счет энергии, поступающие предыдущем.

3.4. Гомеостаз и динамика экосистемы

Гомеостаз - способность биологических систем (организма, популяции и экосистем) противостоять изменениям и сохранять равновесие. Для управления экосистемами не требуется регуляция извне - это саморегулирующаяся система. Гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов, например, субсистема «хищник - жертва». Если рассматривать хищника и жертву как условно выделенные блоки - кибернитеческие системы, то управление между ними должно осуществляться посредством положительных и отрицательных связей. Положительная обратная связь «усиливает отклонение», например, увеличивает чрезмерно популяцию жертвы. Отрицательная обратная связь «уменьшает отклонение», например, ограничивает рост популяции жертвы за счет увеличения численности популяции хищников. Эта кибернетическая схема отлично иллюстрирует процесс коэволюции в системе «хищник-жертва», так как в этой «связке» развиваются и взаимные адаптационные процессы. Если в эту саморегулирующуюся систему не вмешиваются другие факторы (например, человек уничтожил хищника), то отрицательные и положительные связи будут сами уравновешиваться, в противном случае система погибнет. Иными словами, для существования экосистемы ее параметры не должны выходить за те пределы, когда уже невозможно восстановить равновесие между положительными и отрицательными связями.

Экологическое равновесие – это состояние экосистемы, при котором состав и продуктивность биотической части (растения, водоросли, бактерии, животные) в каждый конкретный момент времени наиболее полно соответствует абиотическим условиям (состав почвы, климат). Главной особенностью экологического равновесия является его подвижность.

Различают 2 типа подвижности равновесия:

    обратимые изменения;

    экологические сукцессии;

1.Обратимые изменения в экосистеме – это изменения экосистемы в течение года при колебаниях климата и изменения, связанные с ролью некоторых видов живых организмов в зависимости от ритма их жизненного цикла (смена времени года, зимняя спячка, перелёт птиц, растения в стадии семян). При этом видовой состав экосистемы сохраняется, она лишь подстраивается к колебаниям внешних и внутренних факторов.

Экологические сукцессии или закон сукцессионного замедления - это последовательная смена экосистем при постепенном изменении условий среды. При этом изменяется состав живых организмов, отдельные виды выбывают из экосистемы, а иные её пополняют, и соответственно изменяется продуктивность экосистемы. При резких изменениях условий среды (пожар, разлив нефти) – экологическое равновесие нарушается.

Первичная и вторичная продукция. Одно из важнейших свойств экосистем – способность создавать органическое вещество, которое называют продукцией . Продуктивность экосистем – это скорость образования продукции в единицу времени (час, сутки, год) на единицу площади (метр квадратный, гектар) или объёма (в водных экосистемах). Органическую массу, создаваемую продуцентами за единицу времени, называют первичной продукцией сообщества. Она подразделяется на валовую и чистую продукцию. Валовая первичная продукция – это количество органического вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание). В лесах умеренного пояса и тропических растения тратят на дыхание от 40 до 70 % валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Перерабатываясь в цепях питания, она идёт на пополнение массы гетеротрофных организмов.

Вторичная продукция – это прирост массы консументов за единицу времени. Её вычисляют отдельно для каждого трофического уровня. Консументы живут за счёт чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстаёт от темпов прироста растений, то это ведёт к постепенному увеличению биомассы продуцентов. Биомасса – это суммарная масса организмов данной группы или всего сообщества в целом. В стабильных сообществах с уравновешенным круговоротом веществ вся продукция тратится в цепях питания и биомасса остаётся постоянной.

Продукция и биомасса экосистем – это не только ресурс, используемый в пищу, от этих показателей в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем: интенсивность поглощения углекислоты и выделение кислорода растениями, регулирование водного баланса территорий, гашение шумов и т.д. Биомасса, в том числе и мёртвое органическое вещество, является основным резервуаром концентрации углерода на суше. Теоретически прогнозируемая скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Как известно, лишь 44% солнечного излучения относятся к фотосинтетически активной радиации (ФАР) – по длине волны, пригодной для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза – это 10–12% энергии ФАР, что составляет около половины от теоретически возможного. Он отмечается в наиболее благоприятных условиях. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как фотосинтетическая активность растений ограничивается множеством факторов: недостатком тепла и влаги, неблагоприятными почвенно-грунтовыми условиями и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны (табл. 2.) На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с ростом притока тепла и продолжительности вегетационного периода. Годовой прирост растительности изменяется от 20 ц/га на побережье Северного Ледовитого океана до 200 ц/га на Черноморском побережье Кавказа. Самый большой прирост растительной массы достигает в среднем 25 г/м 2 в день при очень благоприятных условиях, при высокой обеспеченности растений водой, светом и минеральными веществами. На больших площадях продуктивность растений не превышает 0,1 г/м 2: в жарких и полярных пустынях и обширных внутренних пространствах океанов с крайним дефицитом питательных веществ для водорослей.



Таблица 2

Биомасса и первичная продуктивность основных типов экосистем

(по Т.А. Акимовой, В.В. Хаскину, 1994)

Экосистемы Биомасса, т/га Продукция, т/га·год
Пустыни 0,1 – 0,5 0,1 – 0,5
Центральные зоны океана 0,2 – 1,5 0,5 – 2,5
Полярные моря 1 – 7 3 – 6
Тундра 1 – 8 1 – 4
Степи 5 – 12 3 – 8
Агроценозы 3 – 10
Саванна 8 – 20 4 – 15
Тайга 70 – 150 5 – 10
Лиственный лес 100 – 250 10 – 30
Влажный тропический лес 500 – 1500 25 – 60
Коралловый риф 15 – 50 50 – 120

Для пяти континентов мира средняя продуктивность экосистем различается сравнительно мало (82–103 ц/га в год). Исключением является Южная Америка (209 ц/га в год), на большей части которой условия для жизни растительности очень благоприятны.



Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд тонн. Более трети его образуется в океанах, около двух третей – на суше.

Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10% площади суши. Сельскохозяйственные площади при рациональном их использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большую численность населения планеты, чем существующую. Сложнее обеспечить население вторичной продукцией. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% от потребностей современного населения Земли. Следовательно, большая часть населения планеты находится в состоянии хронического белкового голодания. В связи с этим увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из важнейших задач человечества.

Экологические пирамиды. Каждая экосистема имеет определённую трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо их биомассой, либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне. Графически это обычно представляют в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды.

Рис. 17. Упрощённая схема пирамиды численности (по Г.А. Новикову, 1979)

Различают три основных типа экологических пирамид – чисел, биомассы и продукции (или энергии).

Пирамида чисел отражает распределение особей по трофическим уровням. Установлено, что в трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило: общее число особей в цепях питания на каждом последующем трофическом уровне уменьшается (рис. 17).

Это объясняется тем, что хищники, как правило, крупнее своих жертв и одному хищнику для поддержания его жизни требуется несколько жертв. Например, одному льву требуется 50 зебр в год. Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами (например, оленей). Пауки и змеи, обладая ядом, убивают крупных животных.

Пирамида биомассы отражает суммарную массу организмов каждого трофического уровня. В большинстве наземных экосистем суммарная масса растений больше, чем биомасса всех растительноядных организмов, а масса последних, в свою очередь, превышает массу всех хищников (рис. 18)

З Ф

Коралловый риф Залежь Пелагиаль

Рис. 18. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976):

П – продуценты, РК – растительные консументы, ПК – плотоядные консументы, Ф – фитопланктон, З – зоопланктон

В океанах и морях, где основными продуцентами являются одноклеточные водоросли, пирамида биомассы имеет перевёрнутый вид. Здесь вся чистая первичная продукция быстро вовлекается в цепи питания, накопление биомассы водорослей очень мало, а их потребители гораздо крупнее, имеют большую продолжительность жизни, поэтому на высших трофических уровнях преобладает тенденция к накоплению биомассы.

Пирамида продукции (энергии) даёт наиболее полное представление о функциональной организации сообщества, так как отражает законы расходования энергии в пищевых цепях: количество энергии, содержащейся в организмах на каждом последующем трофическом уровне цепи питания меньше, чем на предыдущем уровне.


Рис. 19. Пирамида продукции


Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне цепи питания количество продукции, создаваемой за единицу времени, меньше, чем на предыдущем . Это правило является универсальным, действует во всех типах экосистем (рис. 19). Пирамиды энергии никогда не бывают перевёрнутыми.

Изучение законов продуктивности экосистем, возможность количественного учёта потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ является основным источником запасов пищи для человечества. Не менее важна и вторичная продукция, которую получают за счёт сельскохозяйственных животных. Точные расчёты потока энергии в масштабах продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность.

Динамика экосистем

Экосистемы непрерывно изменяются и развиваются под влиянием многих эндогенных и экзогенных факторов. Динамичность – одно из фундаментальных свойств экосистем, отражающее не только их зависимость от комплекса факторов, но и адаптивный ответ системы в целом на их воздействие. Все многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов.

Суточная динамика экосистем связана главным образом с ритмикой природных явлений: изменениями температуры, влажности, условий освещённости и других факторов днём и ночью. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов – фотосинтеза, дыхания, транспирации. У животных изменяется характер активности тех видов, которые отличаются суточной ритмикой жизнедеятельности. Так, в лесах умеренной зоны днём в биоценозе господствуют насекомые, птицы и другие животные, отличающиеся дневной активностью, в ночное время на первое место выходит активность ночных видов животных (ночные бабочки, совы, козодои, многие млекопитающие и др.). В пустынях днём в полуденные часы наблюдается резкий спад активности большинства видов, даже тех из них, которые отличаются дневной активностью. Более того, в летний период, когда суточные изменения температуры наиболее экстремальны, ряд дневных видов меняет характер активности на сумеречную или даже ночную (некоторые насекомые, змеи и др.).

Разделение периодов активности во времени снижает уровень прямой конкуренции между видами сообщества и таким образом даёт возможность сосуществования видов со сходными экологическими требованиями и способствует более полному использованию ресурсов среды.

Сезонная изменчивость затрагивает более фундаментальные характеристики экосистем. Прежде всего это касается видового состава биоценозов. В неблагоприятные сезоны года одни виды мигрируют в районы с лучшими условиями существования, другие переносят неблагоприятные периоды в состоянии покоя, спячки, оцепенения или на стадии яиц и семян, т.е. практически полностью на определённое время года выключаются из жизни сообщества. Во всех случаях уменьшение числа активных видов влечёт за собой снижение общего уровня биологического круговорота веществ. Сезонная изменчивость биоценозов наиболее отчётливо выражена в климатических зонах, отличающихся резкими изменениями физических параметров среды летом и зимой. В тропиках она выражена не столь ритмично, так как длительность дня, температура и режим влажности очень мало изменяются в течение года.

Многолетняя изменчивость зависит от изменения по годам количества осадков, температуры или других внешних факторов, воздействующих на сообщество. Кроме того, она может быть связана с особенностями жизненного цикла растений-эдификаторов, с массовым размножением животных или патогенных для растений микроорганизмов. Например, в засушливое лето на нормальных суходольных лугах в лесной зоне нередко преимущественное развитие получают виды растений, имеющие признаки ксероморфной организации и повышенную устойчивость к засухе (клевер горный, подорожник средний, полынь равнинная, лапчатка серебристая и др.), тогда как во влажные годы их обилие заметно уменьшается. Многолетние изменения в составе биоценозов повторяются вслед за периодическими изменениями климата.

В процессе циклических изменений целостность сообществ обычно сохраняется. Биоценоз испытывает лишь периодические колебания количественных и качественных характеристик.

Поступательные изменения в экосистеме приводят в результате к смене одного сообщества другим. Причинами подобных смен могут быть внешние по отношению к биоценозу факторы, длительное время действующие в одном направлении, например заболачивание почв, усиленный выпас скота и т.д. Данные смены одного сообщества другим называют экзогенетическими . Смены, приводящие к упрощению структуры сообщества, обеднению его видового состава и снижению продуктивности, называют дигрессиями .

Эндогенетические смены возникают в результате процессов, происходящих внутри самого сообщества. Закономерный направленный процесс изменения сообщества в результате взаимодействия живых организмов между собой и окружающей их абиотической средой называют сукцессией . В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Популяции при длительном существовании в сообществе изменяют условия среды обитания в неблагоприятную для себя сторону и оказываются вытесненными популяциями других видов, для которых вызванные изменения среды оказываются благоприятными. Таким образом, в сообществе происходит смена господствующих видов.

Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних видов организмов, благоприятны для других с противоположными требованиями. Последовательный ряд закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией .

Сукцессии в природе можно наблюдать повсеместно: в лужах и прудах, в листовом опаде, на заброшенных пашнях, лугах, вырубках и т.д. Даже в стабильных экосистемах постепенно происходит множество локальных сукцессионных смен, поддерживающих сложную внутреннюю структуру сообществ.

Выделяют два основных типа сукцессионных смен: 1) с участием как автотрофных, так и гетеротрофных организмов; 2) с участием только гетеротрофов. Сукцессии второго типа происходят только в условиях, где имеется запас или постоянное поступление органических соединений, за счёт которых существует сообщество, например, в кучах навоза или компоста, скоплениях разлагающихся растительных остатков, в пещерах и т.п. Сукцессии со сменой растительности могут быть первичными и вторичными.

Первичные сукцессии начинаются на местах, лишённых жизни, – на скалах, сыпучих песках, отвалах горнодобывающей промышленности. Процесс сукцессии включает несколько этапов: 1) возникновение незанятого участка; 2) миграция на него организмов или их зачатков; 3) приживание их на данном участке; 4) конкуренция их между собой и вытеснение некоторых видов; 5) преобразование живыми организмами местообитания, постепенная стабилизация условий и отношений. Занос спор, семян, проникновение животных на освободившийся участок происходят случайно и зависят от того, какие виды есть в окружающих биотопах. Из попавших на новое место видов закрепляются лишь те, чьи экологические потребности соответствуют абиотическим условиям данного местообитания. Новые виды постепенно осваивают биотоп, конкурируют друг с другом и вытесняют наименее приспособленные к этим условиям виды. Со временем происходят и перестройка сообщества и преобразование среды обитания. Основная роль принадлежит накоплению отмерших растительных остатков или продуктов разложения. Постепенно формируется почва, изменяются гидрологический режим участка, его микроклимат.

Примером первичной сукцессии может служить зарастание скал. Сообщество первых поселенцев на скалах слагается из хемотрофных и азотфиксирующих бактерий и некоторых водорослей (преимущественно синезелёных и диатомовых). Отмирание этих организмов кладёт начало накоплению на камне мёртвого органического вещества, которое даёт пищу грибам. Грибы в симбиозе с водорослями образуют лишайники. Сообщества накипных лишайников разрушают своими выделениями минеральную породу, что приводит к накоплению на поверхности камня мелкозёма, удерживающего мёртвые органические вещества и растворы минеральных солей. Так возникает почва, которая уже пригодна для более крупных и требовательных к субстрату растений. На ней формируются сообщества листовых и кустистых лишайников и мхов, которые вытесняют накипные лишайники. С утолщением слоя мелкозёма появляется возможность укоренения в нём травянистых растений с поверхностной корневой системой, а затем кустарников и деревьев.

Вторичные сукцессии представляют собой восстановительные смены. Они начинаются там, где уже сложившиеся сообщества частично нарушены, например в результате вырубки, пожара, выпаса и т.д. Смены, ведущие к восстановлению прежнего состава биоценоза, называют демутационными . Примером может служить восстановление елового леса после вырубки. В первые два года на вырубках обычно разрастаются светолюбивые травянистые растения – иван-чай, вейник, крапива двудомная и др. Всходы ели на открытых местах повреждаются заморозками, страдают от перегрева и не могут конкурировать со светолюбивыми растениями. Вскоре на вырубке появляются многочисленные всходы берёзы, осины, сосны, семена которых легко разносятся ветром. Деревья вытесняют светолюбивые травянистые растения, и постепенно развивается мелколиственный или сосновый лес, в котором возникают условия, благоприятные для возобновления ели. Когда ель достигает верхнего яруса, она полностью вытесняет мелколиственные деревья.

Восстановительные смены совершаются быстрее и легче, чем первичные сукцессии, так как в нарушенном сообществе сохраняются почвенный профиль, семена, зачатки и часть прежнего населения. Темпы происходящих изменений в процессе сукцессии постепенно замедляются. Каждый последующий этап длится дольше предыдущего. Итогом сукцессии является формирование климаксового сообщества . Начальные группировки видов отличаются наибольшей динамичностью и неустойчивостью. Климаксовые сообщества способны к длительному самоподдержанию, так как круговорот веществ в них сбалансированный. В ходе сукцессии постепенно нарастает видовое многообразие, вследствие чего усложняются связи внутри биоценоза и усиливаются регуляторные возможности внутри системы. В незрелых сообществах преобладают мелкоразмерные виды с короткими жизненными циклами и высоким потенциалом размножения. Постепенно в развивающихся сообществах появляются более крупные формы с длительными циклами развития. Нарастание биологического разнообразия ведёт к более чёткому распределению организмов по экологическим нишам. В результате сообщества приобретают определённую степень независимости от окружающих условий, не подчиняя свою жизнь изменениям внешней среды, а вырабатывая собственные эндогенные ритмы.

В ходе сукцессии общая биомасса системы стабилизируется. Это происходит потому, что на первых этапах сукцессии, когда видовой состав сообществ ещё беден и пищевые цепи коротки, не вся чистая продукция потребляется гетеротрофами. Поэтому накапливаются как общая масса живых организмов, так и запасы мёртвого неразложившегося вещества. В зрелых, устойчивых экосистемах весь годовой прирост растительности расходуется в цепях питания гетеротрофами, поэтому чистая продукция биоценоза приближается к нулю.

Знание этих закономерностей имеет большое значение в практической деятельности человека. Изымая избыток чистой продукции из биоценозов, находящихся на начальных стадиях сукцессии, мы задерживаем её, но не подрываем основу существования сообщества. Вмешательство же в климаксовые экосистемы неминуемо вызывает нарушение сложившегося равновесия. Пока нарушения не превышают самовосстановительной способности биоценоза, демутационные смены могут вернуть его к исходному состоянию. Но если сила воздействия выходит за рамки этих возможностей, то сообщество постепенно деградирует, сменяясь производными с малой способностью к самовозобновлению.

ВТОРИЧНАЯ ПРОДУКТИВНОСТЬ

В широком смысле термин «вторичная продуктивность» обозначает накопление живой материи (т. е. энергии) на уровне гетеротрофов: консументов и деструкторов.

Существует лишь один тип вторичной продуктивности. Действительно, каким бы ни был трофический уровень, который мы рассматриваем, он всегда подразумевает превращение чистой первичной продукций в различные ткани многочисленных гетеротрофов, благодаря единому и общему для всех процессу, так как и животные и микроорганизмы-деструкторы всегда преобразуют уже готовую органическую материю. Этот процесс протекает с довольно низкой эффективностью: большая часть поглощенной энергии рассеивается на различных фазах клеточного дыхания и при других метаболических процессах.

Отсюда следует, что общий приток энергии на уровень гетеротрофов, включающий чистую первичную продукцию, может ежегодно расходоваться на дыхание гетеротрофов, расположенных в конце пищевой цепи. Однако небольшая часть способна аккумулироваться в биомассе последних (вторичная продуктивность), в почве и отложениях отмершего органического вещества, иногда даже подвергаться окаменению (углеводороды, глубоководные морские отложения).

Эффективность преобразований энергии значительно меняется от одной пищевой цепи к другой: требуется 80 кг зеленой травы, чтобы получить 1 кг говядины, но только 5 кг мяса для производства 1 кг форели в рыбоводстве.

В естественных экосистемах также обнаруживаются значительные флуктуации. К тому же вторичная продукция в них часто ниже, чем полученная в агроэкосистемах, но это объясняется отклонениями, возникающими в процессе сельскохозяйственного производства. Действительно, в практике скотоводства человек исключил все, что могло бы конкурировать с домашними животными (травоядными), тогда как в естественной экосистеме вторичная продукция распределяется между многочисленными видами консументов. Происходит в некотором смысле концентрация вторичной продуктивности в агроэкосистемах, что позволяет субъективно переоценить их значимость, если принять антропоцентрическую точку зрения. Так, Бурльер и Вержурен (Bourliere, Verschuren, 1960) показали, что, принимая во внимание продуктивность не только отдельного вида, но и всего зооценоза млекопитающих, вторичная продуктивность копытных в саваннах центральной Африки выше продуктивности рогатого скота, которым человек пытается заменить диких животных в этих широтах.

Следует отметить, что в некоторых естественных биоценозах существуют популяции диких травоядных, продуктивность которых можно сравнить с продуктивностью домашних копытных.

Исследования в степях Уганды показали, что вторичная продуктивность антилоп сравнима с продуктивностью коров, вскормленных на экстенсивных выпасах: 74 ккал/(год*м 2) превращаются в 0,81 ккал/(год*м 2) биомассы. Этот вид потребляет 10 % первичной продукции и аккумулирует очень значительную часть притока энергии по сравнению с другими дикими млекопитающими (Buchner, Dajoz. 1971).

Если рассмотрим организмы, находящиеся в конце пищевой цепи, то обнаружим, что их продуктивность очень мала.

Можно оценить вторичную продуктивность в рыболовной зоне у восточного побережья Соединенных Штатов Америки: 3-Ю 6 ккал приходится каждый день на 1 м 2 поверхности моря. Эта энергия превращается в 9000 кал у диатомей (фитопланктон), затем преобразуется в 4000 кал/сут у зоопланктона и 5 кал/сут у хищных рыб. Низкая эффективность обусловлена потерями в каждом звене пищевой цепи. Чем больше ее длина, тем меньше вторичная продуктивность, которой может воспользоваться человек. Часто это и наблюдается в водной среде: производительность мирового рыболовства не превышает 0,05 г/(год-м 2), а это еще сырая масса! Однако в отдельных водных экосистемах вторичная продуктивность может быть увеличена как следствие высокой эффективности некоторых пойкилотермных позвоночных при превращении энергии.

Большие акватории океанических или континентальных вод имеют меньшую продуктивность, чем ограниченные участки воды, в которые попадает обильное естественное или искусственное (рыбоводство) удобрение.

При переходе с одного трофического уровня на другой отношение биомасс может меняться от 100 до 1000. Во многих наземных экосистемах биомасса позвоночных сильно уплотнена, особенно это касается лесов, где, за исключением насекомых-фитофагов, основная часть гетеротрофных организмов помещается в пищевой цепи типа детритофаго-сапрофитной.

Так, Бурльер (Bourliere) приводит биомассу 1 кг/га для всех млекопитающих (включая приматов и грызунов) влажных тропических лесов Ганы. Дювиньо (Duvigneaud) оценил биомассу кабанов в 0,7 кг/га, косуль - в 0,5 кг/га и мелких грызунов - в 5 кг/га, и это для млекопитающих лесных массивов Арденн!

Биомасса животных имеет более высокие значения в океанических и пресных водах. В частности, здесь наблюдается изобилие различных беспозвоночных зоопланктона, что подчеркивается наличием перевёрнутой экологической пирамиды.

Не следует путать понятия продуктивности и биомассы. Суммарная биомасса животных в наземных экосистемах выше, чем в Мировом океане, тогда как площадь поверхности Мирового океана вдвое больше площади суши. Напротив, средняя вторичная продуктивность наземных биомов составляет 61 кг/(год*га), а океанов - 75 кг/(год*га). Итак, прямо пропорциональной связи между фактической биомассой животных и вторичной продуктивностью не существует. Если в морском или озерном биоценозах иногда можно встретить высокие значения вторичной продуктивности, то в этих средах, как правило, биомасса продуцента - фитопланктона - очень мала. Однако ее быстрый круговорот, т. е. большая скорость роста и воспроизводства различных организмов фитопланктона, обеспечивает высокие значения чистой продукции, достаточные для питания большой биомассы животных.

И наоборот, несмотря на очень большую биомассу, чистая продуктивность лесов низкая или нулевая. Путаница между этими двумя различными понятиями очень часто приводила к просчетам при эксплуатации природных ресурсов, особенно лесных.

Хотя богатый и продуктивный биоценоз может включать в себя число и биомассу организмов большие, чем сообщество, менее продуктивное, это отнюдь не означает, что таково общее правило.

Действительно, понятие продуктивности включает фактор времени. Биомасса какой-либо экосистемы может быть очень большой, но не имеется прямо пропорциональной зависимости между ее продуктивностью и продуктивностью сообщества, состоящего из организмов меньшего размера, но обладающих более высокой скоростью роста и более высоким воспроизводством.



Биомасса многовекового дубового леса в 30 раз больше биомассы кукурузного поля, однако продуктивность леса очень мала или равна нулю, так как вся чистая первичная продукция потребляется гетеротрофами, главным образом деструкторами, плотность заселения которых достигла максимума и больше не увеличивается. Таким образом, на метаболизм сообщества расходуется вся сумма производимой органической материи. Напротив, продуктивность сельскохозяйственных культур высока, и большая часть первичной продукции может быть использована человеком. Весьма вероятно, что стремление людей упрощать природные экосистемы вытекает из более или менее осознанного естественного желания модифицировать биоценоз с целью увеличения их продуктивности.

Изучение параметра Q (отношение чистой первичной продуктивности к общей биомассе) показывает, что для наземных экосистем он уменьшается с возрастанием сложности биоценоза, т. е. по мере того, как мы рассматриваем сообщества с большим разнообразием видов и возрастающей плотностью пищевой сети.

Коэффициент Q максимален для тундр и других субарктических экосистем (мало видов, простота пищевых цепей) и, напротив, минимален для влажных тропических лесов, где биоценоз предельно сложен (большое разнообразие видов и многоступенчатые трофические сети).

Та же картина наблюдается и в морской среде, где коэффициент Q колеблется от 5 до 10 для пелагического фитопланктона, но составляет только 2-3 для коралловых рифов - наиболее сложных и разнообразных океанических экосистем.

Автотрофные экосистемы можно сравнить с промышленным предприятием, которое производит различные органические вещества. Используя солнечную энергию, диоксид углерода и элементы минерального питания, экосистемы производят биологическую продукцию – древесину, листовую массу растений, плоды, животную биомассу. Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью . Единицы измерения продуктивности: г/м 2 в день, кг/м 2 в год, т/км 2 в год.

На рис. показана структура биологической продукции экосистемы.

Рис. Структура биологической продукции экосистемы

Различают разные уровни продуцирования, на которых создаётся первичная вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов – вторичной продукцией .

Первичная продукция подразделяется как бы на два уровня – валовую и чистую продукцию. Валовая первичная продукция – это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70 % от валовой продукции. Меньше всего её тратят планктонные водоросли – около 40 % от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией : она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счёт первичной продукции, т.е. используют ранее созданную продукцию.

При переходе энергии с одного трофического уровня на другой (от растений к фитофагам, от фитофагов к хищникам первого порядка, от хищников первого порядка к хищникам второго порядка) с экскрементами и затратами на дыхание теряется примерно 90 % энергии. Кроме того, фитофаги съедают только около 10 % биомассы растений, остальная часть пополняет запас детрита и затем её разрушают редуценты. Поэтому вторичная биологическая продукция в 20 – 50 раз меньше, чем первичная.

По продуктивности экосистемы разделяются на четыре класса.

1. Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м 2 в год. К ним относятся заросли тросника в дельтах Волги, Дона и Урала. По продуктивности они близки к экосистемам тропических лесов и коралловых рифов.

2. Экосистемы высокой биологической продуктивности – 1 – 2 кг/м 2 в год. Это липово-дубовые леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав при орошении и удобрении высокими дозами минеральных удобрений.



3. Экосистемы умеренной биологической продуктивности – 0,25 – 1 кг/м 2 в год. Такую продуктивность имеют многие посевы, сосновые и берёзовые леса, сенокосные луга и степи, заросшие водными растениями озёра, «морские луга» из водорослей в Японском море.

4. Экосистемы низкой биологической продуктивности – менее 0,25 кг/м 2 в год. Это арктические пустыни островов Северного Ледовитого океана, тундры, пустыни, полупустыни Прикаспия, вытоптанные скотом степные пастбища с низким и редким травостоем, горные степи. Такая же низкая продуктивность и у большей части морских экосистем.

Средняя продуктивность экосистем Земли не превышает 0,3 кг/м 2 в год, так как на планете преобладают низкопродуктивные экосистемы пустынь и океанов.

Биологическая продуктивность экосистемы отличается от запаса биомассы . Некоторые организмы в экосистеме живут много лет (деревья, крупные животные), и их биомасса переходит из года в год как некоторый капитал.

На рис. показано соотношение запаса биомассы и биологической продуктивности в некоторых экосистемах.

Рис. Соотношение запаса биомассы и биологической продуктивности в некоторых экосистемах

Биомасса леса велика за счёт многолетних частей деревьев – стволов, веток, корней. Поэтому ежегодный прирост биологической продукции – новые листья, молодые веточки и корни, очередное годичное кольцо древесины и травяной покров – в 30 – 50 раз меньше, чем запас биомассы. На лугу запас биомассы значительно меньше, и он образован в основном корнями, живущими в почве по несколько лет, и корневищами растений. Он больше биологической продуктивности только в 3 – 5 раз. В полях биологическая продуктивность и запас биомассы практически равны, так как урожай надземных частей растений (и подземных, если это корнеплоды) убирают, а пожнивные остатки ржи или пшеницы запахивают в почву, где они к весне перегнивают. Как в луговой системе, так и в экосистеме поля длительность жизни многочисленных почвенных беспозвоночных измеряется неделями и месяцами. Их биологическая продуктивность либо равна запасу биомассы, либо больше. Водоросли и мелкие беспозвоночные животные в водоёмах живут по несколько дней или недель и потому за лето дают несколько поколений. В каждый конкретный момент биомасса организмов в озере или пруду меньше, чем их биологическая продукция за вегетационный сезон.

В некоторых водных экосистемах за счёт того, что рыбы живут по несколько лет, а жизнь организмов фитопланктона непродолжительна, запас биомассы животных может быть выше запаса биомассы растений. Превышение биомассы животных над биомассой растений в морских экосистемах (исключая «водорослевые луга») является правилом.

Все живые компоненты экосистемы – продуценты, консументы и редуценты – составляют общую биомассу («живой вес») сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах – в калориях, джоулях и т.п., что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

На образование биомассы расходуется не вся энергия, но та энергия, которая используется, создаёт первичную продукцию и может расходоваться в разных экосистемах по-разному. Если скорость её изъятия консументами отстаёт от скорости прироста растений, то это ведёт к постепенному приросту биомассы продуцентов и возникает избыток мёртвого органического вещества. Последнее приводит к заторфовыванию болот, зарастанию мелких водоёмов, созданию большого запаса подстилки в таёжных лесах и т.п.

В стабильных сообществах практически вся продукция тратится в трофических сетях, и биомасса остаётся постоянной.

Продуктивность экосистемы - это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией , а прирост за единицу времени массы консументов - вторичной продукцией .

Первичная продукция подразделяется на два уровня - валовую и чистую продукцию. Валовая первичная продукция - это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли - около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы - продуценты, консументы и редуценты - составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах - в калориях, джоулях и т.п, что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

1) экосистемы очень высокой продуктивности - >2 кг/м2 0 в год (тропические леса, коралловые рифы);

2) экосистемы высокой продуктивности – 1-2 кг/м2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);

3) экосистемы умеренной продуктивности - 0,25-1 кг/м2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);

4) экосистемы низкой продуктивности - < 0,25 кг/м2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м2 в год.

  1. Классификация и особенности экосистем (Биомы:степи (чаппарали, гарриги, эспинали), пустыни, тундра, джунгли, хвойные леса, зоны морских (аппвелинга, коралловые рифы, аутвеллинга) и пресноводных (лотические: перекаты, плесы) лентические (озера и их стратификация) экосистем).

При классификации наземных экосистем принято использовать признаки растительных сообществ и климатические признаки, например, лес хвойный, лес тропический, холодная пустыня и т.п.

Гари́га , или гарри́га (фр. garrigue и окс. garriga ) - разрежённые заросли низкорослых вечнозелёных кустарников, главным образом дуба кустарникового (Quercus dumosa ) и пальмы хамеропс (Chamaerops ). Также могут быть тимьян (Thymus ), розмарин (Rosmarinus ), дрок (Genista ) и другие растения. Можно встретить в Средиземноморье, в менее сухом климате, чем фригана, на каменистых склонах, на месте сведённых, перевыпасом и палами, лесов из дуба каменного.

Чапара́ль (чапарраль, чапаррель, чапарель , исп. chaparral , от chaparro - заросли кустарникового дуба) - тип субтропической жестколистной кустарниковой растительности. Распространён в узкой полосе Тихоокеанского побережья Калифорнии и на Севере Мексиканского нагорья, на высоте 600-2400 м.

Подобные биомы находятся и в четырех других регионах Средиземноморского климата во всем мире, в том числе Средиземноморского бассейна (где он известен как маквис, маккия, maquis), центральной части Чили (где он называется Matorral), в Капской области ЮАР (мыс Доброй Надежды) (известен там как финбош) и на юго-востоке и юго-западе Австралии.

Отсутствие деревьев не связано с деятельностью человека, хотя ряд исследователей рассматривает чапараль, подобно маквису, как стадиюдеградации дубовых вечнозелёных лесов. Заросли чапараля достигают в высоту 3-4 м.

Наиболее типичной для чапараля является аденостома (Adenostoma fasciculatus), образующая чистые естественные насаждения. Широко распространены заросли кустарниковых вечнозелёных дубов, толокнянок (18 видов), представителей родов сумах, цеанотус (25 видов) и другие. У верхней границы чапараль увеличивается доля листопадных видов дуба, ирги, церциса.

Пустыня – это территория, где испарение превышает количество осадков, причем их уровень составляет менее 250мм/г. В таких условиях произрастает скудная, разреженная и обычно низкорослая растительность. Преобладание ясной погоды и разряженная растительность способствуют быстрой потере теплоты ночью, накопленной почвой днем. Для пустыней характерно значительное различие между дневной и ночной температурами. Пустынные экосистемы занимают около 16% поверхности суши и расположены практически во всех широтах Земли.

Тропические пустыни. Это такие пустыни, как Южная Сахара, которые составляют около 20% общей площади пустынь. Температура там круглый год высокая, а количество осадков минимальное.

Пустыни умеренных широт. Такие пустыни, как пустыня Мохаве в южной Калифорнии, отличаются высокими дневными температурами летом и низкими - зимой.

Холодные пустыни. Для них характерна очень низкая температура зимой и средняя – летом.

Растения и животные всех пустынь приспособлены улавливать и сохранять дефицитную влагу.

Медленный рост растений и малое видовое разнообразие делают пустыни весьма уязвимыми. Уничтожение растительности в результате выпаса или езды вне дорог ведет к тому, что на восстановление утраченного требуются десятилетия.

Травянистые экосистемы

Тропические травянистые экосистемы или саванны.

Такие экосистемы характерны для районов с высокими средними температурами, двумя продолжительными сухими сезонами и обильными осадками в остальное время года. Они образуют широкие полосы по обе стороны экватора. Некоторые из этих биомов представляют собой открытое пространство, покрытое только травянистой растительностью.

Травянистые экосистемы умеренных широт. Они встречаются во внутренних районах материков, главным образом Северной и Южной Америки, Европы и Азии. Основные типы травянистых сообществ умеренного пояса: высокотравные и низкотравные прерии США и Канады, пампы Южной Америки, вельды Южной Африки и степи от Центральной Европы до Сибири. В этих экосистемах (биомах) почти постоянно дуют ветры, способствуя испарению влаги. Густая сеть корней травянистых растений обеспечивает стабильность почвы до тех пор, пока не начинается ее распашка.

Полярные травянистые экосистемы или арктические тундры.

Они расположены в районах прилегающих к арктическим ледяным пустыням. Большую часть года тундры находятся под воздействием штормовых холодных ветров и покрыты снегом и льдом. Зимы здесь очень холодные и темные. Осадков немного, и выпадают они в основном в виде снега.

Медленное разложение органических веществ, малая мощность почвы, низкие темпы прироста растительности делают арктическую тундру одной из наиболее уязвимых экологических систем земного шара.

Лесные экосистемы.

Влажные тропические леса. Эти леса располагаются в ряде приэкваториальных районов. Они характеризуются умеренно высокими среднегодовыми температурами, которые мало изменяются в течение суток и по сезонам, а также значительной влажностью и почти ежедневно выпадающими осадками. В таких биомах доминируют вечнозеленые деревья, сохраняющие большую часть листьев или хвои круглый год, что обеспечивает непрерывное круглогодичное протекание процессов фотосинтеза.

Так как климатические условия во влажных тропических лесах практически неизменны, влага и теплота не имеют лимитирующего значения, как в других экосистемах. Основным лимитирующим фактором становится содержание биогенов в часто бедных органическим веществом почвах.

Листопадные леса умеренных широт. Они произрастают в районах с невысокими средними температурами, значительно меняющимися по сезонам. Зимы здесь не очень суровы, летний период продолжителен, осадки выпадают равномерно в течение всего года. По сравнению с тропическими леса умеренного пояса быстро восстанавливаются после вырубки и, следовательно, более устойчивы к антропогенным нарушениям.

Северные хвойные леса. Эти леса, называемые также бореальными, или тайгой, распространены в районах субарктического климата. Зимы здесь продолжительны и засушливы, с коротким световым днем и небольшими снегопадами. Температурные условия меняются от прохладных до исключительно холодных. В тайге добывают значительную часть деловой древесины, большое значение имеет промысел пушнины.

Конец работы -

Эта тема принадлежит разделу:

Предметом экологии являются взаимоотношения организмов и надорганизменных систем с окружающих их органической и неорганической средой

Термин экология в г ввел немецкий эволюционист эрнст геккель э геккель считал что экология должна изучать различные формы борьбы за.. экология как и любая наука характеризуется наличием собственного объекта.. объектом экологии являются биологические системы надорганизменного уровня популяции сообщества экосистемы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: