Что такое геометрическая оптика в физике. Закон преломления и отражения. Призмы и линзы

Все законы геометрической оптики следуют из закона сохранения энергии. Все эти законы не являются независимыми друг от друга.

4.3.1. Закон независимого распространения лучей

Если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света.

4.3.2. Закон обратимости

Траектория и длина хода лучей не зависят от направления распространения.

То есть, если луч, который распространяется от точки до точки , пустить в обратном ходе (от к ), то он будет иметь такую же траекторию, как и в прямом.

4.3.3. Закон прямолинейного распространения

В однородной среде лучи - прямые линии (см. параграф 4.2.1).

4.3.4. Закон преломления и отражения

Закон отражения и преломления подробно рассматривается в Главе 3. В рамках геометрической оптики формулировки законов преломления и отражения сохраняются.

4.3.5. Принцип таутохронизма


Рис.4.3.1. Принцип таутохронизма.

Рассмотрим распространение света, как распространение волновых фронтов (рис.4.3.1).

Оптическая длина любого луча между двумя волновыми фронтами одна и та же:

(4.3.1)

Волновые фронты - поверхности, которые оптически параллельны друг другу. Это справедливо и для распространения волновых фронтов в неоднородных средах

4.3.6. Принцип Ферма

Пусть имеются две точки и , расположенные, возможно, в различных средах. Эти точки можно соединить между собой различными линиями. Среди этих линий будет только одна, которая будет являться оптическим лучом, который распространяется в соответствии с законами геометрической оптики (рис.4.3.2).

Рис.4.3.2. Принцип Ферма.

Принцип Ферма:

Оптическая длина луча между двумя точками минимальна по сравнению со всеми другими линиями, соединяющими эти две точки:

(4.3.2)

Существует более полная формулировка:

Оптическая длина луча между двумя точками является стационарной по отношению к смещению этой линии.

Луч - кратчайшее расстояние между двумя точками. Если линия, вдоль которой мы измеряем расстояние между двумя точками, отличается от луча на величину 1-го порядка малости, то оптическая длина этой линии отличается от оптической длины луча на величину 2-го порядка малости.

Если оптическую длину луча, соединяющего две точки, поделить на скорость света, то получим время, необходимое на преодоление расстояния между двумя точками:

Еще одна формулировка принципа Ферма:

Луч, соединяющий две точки, идет по такому пути, который требует наименьшего времени (по самому быстрому пути).

Из этого принципа могут быть выведены законы преломления, отражения и т.д.

4.3.7 Закон Малюса-Дюпена

Нормальная конгруэнция сохраняет свойства нормальной конгруэнции в процессе прохождения через различные среды.

4.3.8 Инварианты

Инварианты (от слова неизменный) - это соотношения, выражения, которые сохраняют свой вид при изменении каких-либо условий, например, при прохождении света через различные среды или системы.

Интегральный инвариант Лагранжа

Пусть имеется некоторая нормальная конгруэнция (пучок лучей), и две произвольные точки в пространстве и (рис.4.3.4). Соединим эти две точки произвольной линией и найдем криволинейный интеграл.

(4.3.4)
Криволинейный интеграл (4.3.3), взятый между двумя любыми точками и не зависит от пути интегрирования.

Рис.4.3.3. Интегральный инвариант Лагранжа.

Дифференциальный инвариант Лагранжа

Луч в пространстве полностью описывается радиус-вектором , который содержит три линейные координаты , и оптическим вектором , который содержит три угловые координаты . Всего, таким образом, имеется 6 параметров для определения некоторого луча в пространстве. Однако из этих 6 параметров только 4 являются независимыми, так как можно получить два уравнения, которые связывают параметры луча друг с другом.

Первое уравнение определяется длину оптического вектора:

Где - показатель преломления среды.

Второе уравнение вытекает из условия ортогональности векторов и :

Из выражений (4.3.5) и (4.3.6), воспользовавшись аналитической геометрией, можно вывести следующее соотношение:

(4.3.7)
где и - это пара любых из 6-ти параметров луча.

Дифференциальный инвариант Лагранжа:
Величина сохраняет свое значение для данного луча при распространении пучка лучей через любую совокупность оптических сред.

Геометрический фактор остается инвариантным при распространении лучевой трубки через любую последовательность различных сред (рис.4.3.5).

Инвариант Штраубеля выражает закон сохранения энергии, так как он показывает неизменность лучистого потока.

Из определения яркости можно получить следующее равенство:

(4.3.9) где - приведенная яркость, которая инвариантна, как уже было сказано в главе 2.

Геометрическая оптика изучает законы распространения света, рассмотрим основные моменты этой науки по отношению получения фотографий. Это позволит глубже понять процессы, которые протекают в вашем фотоаппарате.

Слово «фотография» означает писать с помощью света (от греч. «фотос» — свет и «графио» — писать). Действительно, фотография как метод получения устойчивых изображений использует многие физические и химические свойства света. С помощью физических свойств света получается оптическое изображение снимаемых предметов, а при химическом воздействии света это изображение закрепляется и делается устойчивым.

ПРИРОДА СВЕТА

Свет подобно звуку имеет волновую природу. Волны, образуемые перемещающимися сгущениями и разрежениями воздуха вследствие механического колебания какого-либо предмета, называются звуковыми, а световые являются электромагнитными волнами, распространяющимися со скоростью 300 000 км/с.

Источниками света считаются все тела, которые можно видеть независимо от освещения и которые сами освещают окружающие тела. От источника Света по всем направлениям распространяются электромагнитные колебания, т. е. свет. Для освещения имеет значение только та часть света, которая, попадая в глаз человека, вызывает зрительное ощущение. Эта часть, света называется световым потоком. Единица светового потока — люмен (лм). Для примера укажем, что обычная свеча дает световой поток всего в 10—15 лм, а электрические лампы — в сотни и тысячи люменов. Световой поток солнца равен 10 25 лм. Вот почему легче производить фото- и киносъемку в хорошую солнечную погоду.

Для характеристики электрических ламп часто применяют другой показатель — световую отдачу, которая выражается световым потоком в люменах на один ватт мощности лампы. В фотографии для создания искусственного освещения применяют фотолампы относительно небольшого размера, но отличающиеся от обычных значительно большей светоотдачей. Так, обычная лампа мощностью 500 Вт на напряжение 127 В имеет световую отдачу 17,8 лм/Вт, а перекальная фотолампа той же мощности и на такое же напряжение — 32 лм/Вт.

Световые потоки почти никогда не излучаются источниками света по всем направлениям в равной степени. Например, электрическая лампа, подвешенная к потолку, излучает больший световой поток вниз, меньший — по сторонам и совсем незначительный — вверх. Для характеристики источника света по количеству света, излучаемого им в определенном направлении, применяется понятие силы света. За единицу силы света принята кандела. Чем мощнее и острее световой поток, тем больше сила света источника. Большой силой света характеризуются специальные фотолампы. Например, сила света зеркальных ламп мощностью 500 Вт составляет 10 тыс. кандел.

Силу света ламп в направлении освещения можно значительно увеличить с помощью рефлекторов или отражателей. Поэтому в фотографии для искусственного освещения обычно применяют специальные фотоосветители.

Один и тот же источник света освещает по-разному в зависимости от расстояния между ним и освещаемой поверхностью. Действительно, вблизи лампы световой поток распределяется по малой площади, и на единицу площади падает много света. Вдали от лампы тот же световой поток приходится на большую площадь, и на единицу площади падает мало света. Кроме расстояния от лампы, имеет значение угол направления лучей. При перпендикулярном падении лучей световой поток распределяется на меньшей площади, чем при наклонном падении лучей.

Отношение светового потока к площади, на которую он падает, называется освещенностью. За единицу освещенности принимается люкс (лк). Люкс — это освещенность, создаваемая световым потоком в 1 лм на площади 1 м 2 . В фотографии для быстрого определения освещенности снимаемых предметов, а также необходимой экспозиции при съемке применяют прибор, называемый фотоэкспонометром.

Законы распространения света в прозрачных средах рассматриваются в одном из разделов физики называемом геометрической, или лучевой оптикой.

Для понимания принципов работы оптических приборов (фотокиноаппаратов, биноклей и др.) необходимо ознакомиться с законами геометрической оптики.

ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ СВЕТА

Луч света, распространяющийся в однородной среде, является прямолинейным. На границе двух сред, например «воздух — стекло» или «воздух — вода», направление светового луча изменяется. При этом часть света возвращается в первую среду. Это явление называется отражением.

Закон отражения света определяет взаимное расположение падающего луча АО, отраженного луча ОС и перпендикуляра ВО к поверхности ММ, восстановленного в точке падения. Если угол между падающим лучом АО и перпендикуляром ВО к поверхности ММ, восстановленным из точки падения, назвать углом падения, а угол между перпендикуляром и отраженным лучом ОС — углом отражения, то угол отражения равен углу падения. Причем падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред лежат в одной плоскости.

Известно, что на границе двух сред меняется направление распространения света. Происходит, как мы отмечали, частичное отражение света. Другая часть света, в тех случаях, когда вторая среда прозрачная, проходит через границу сред, при этом направление распространения, как правило, изменяется. Иначе говоря, если луч света до преломления распространяется по направлению АО, то, преломившись в точке О, дальше идет по направлению OD. Это явление называется преломлением.

При преломлении света на матовых поверхностях, как и при отражении, происходит рассеивание его. Это явление учитывают при фото- и киносъемках. Окружая источник света матовым или молочным стеклом, делают освещение более «мягким» и устраняют прямое попадание слишком яркого света в глаза.

Измеряя углы падения и преломления, можно установить следующие законы преломления света: отношение синуса угла падения к синусу угла преломления — величина постоянная для данных двух сред (показатель преломления веществ обычно указывается относительно воздуха) и называется показателем (коэффициентом) преломления второй среды относительно первой; падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

Показатели преломления различны для разных сред. Так, оптические стекла, применяемые в производстве фото- и киноаппаратуры, имеют показатель преломления от 1,47 до 2,04. Оптические стекла с большим показателем преломления называются флинтами, с меньшим — кронами.

ПРИЗМЫ И ЛИНЗЫ

Призмы. В оптических системах очень часто используется явление прохождения света сквозь клиновидные тела, ограниченные непараллельными плоскостями. Стеклянные клинья в оптике называются призмами. В оптических приборах часто применяют стеклянную призму, основанием которой является равнобедренный треугольник. Луч света, проходя сквозь призму, преломляется дважды — в точках В и С и отклоняется всегда в сторону ее более широкой части. Призма позволяет поворачивать пучок света на 90°, что необходимо, например, в дальномерах фотоаппаратов. Направление пучка света можно изменять и на 180° (призматические бинокли).

Дисперсия света . Лучи различных цветов преломляются в стекле по-разному. Наибольший показатель преломления имеют фиолетовые лучи, наименьший — красные. Поэтому при попадании на призму луча белого света, состоящего из различных цветов, происходит разложение его на ряд цветных лучей, т. е. образуется спектр. Это явление называется дисперсией света.

Линзы. Наиболее ответственной частью почти всех оптических приборов являются линзы — прозрачные, чаще всего стеклянные тела, ограниченные сферическими поверхностями. Первая слева линза называется двояковыпуклой четвертая — двояковогнутой. Третья и последняя линзы с одной стороны выпуклые, с другой — вогнутые. Такие линзы называются менисковыми, или просто менисками. Три левые линзы посередине толще, чем по краям, и называются собирающими. Три правые линзы —рассеивающие, они толще у краев.

Поясняет действие собирающих и рассеивающих линз. Собирающую линзу можно условно представить как совокупность большого числа призм, расширяющихся к середине, а рассеивающую — как совокупность призм, расширяющихся к краям. Призмы отклоняют лучи света в сторону расширения, поэтому линзы, более толстые посередине, отклоняют лучи к середине, т. е. собирают их, а более толстые у краев — отклоняют лучи к краям, т. е. рассеивают их.

Если собирающую линзу расположить перед источником света и поместить за ней экран, то, изменяя расстояние между источником света и линзой или линзой и экраном, можно получить на экране отчетливое перевернутое (обратное) изображение источника света.

Это значит, что лучи, исходящие из какой-либо точки А источника света, пройдя сквозь линзу, снова собираются в одну точку A 1 , и притом как раз на экране.

Прямая, проходящая через центры сферических поверхностей C 1 и С 2 , ограничивающих линзу, называется оптической осью линзы ОО. Точка, в которой пересекаются лучи, шедшие до линзы пучком, параллельным оптической оси, называется фокусом линзы, а плоскость, проходящая через фокус и перпендикулярная оптической оси, — фокальной плоскостью. Расстояние от линзы до фокуса называется фокусным расстоянием линзы. Фокусные расстояния разных линз различны в зависимости от сорта стекла, из которого сделана линза, и от ее формы. Чем меньше фокусное расстояние линзы, тем сильнее она собирает или рассеивает лучи. Величина, обратная фокусному расстоянию линзы, называется ее оптической силой. Оптическая сила линзы с фокусным расстоянием 100 см принимается за единицу и называется диоптрией.

Между фокусным расстоянием собирающей линзы, а также расстояниями от предмета до линзы и от линзы до изображения существует определенная зависимость, выражаемая так называемой основной формулой линзы:

1/а+1/а 1 = 1/Ф

где a 1 — расстояние от предмета до линзы;

а — расстояние от линзы до изображения;

Ф — фокусное расстояние линзы.

Из формулы видно, что при увеличении расстояния от предмета до линзы уменьшается расстояние от его изображения до линзы, и наоборот.

Отношение линейных размеров оптического изображения к линейным размерам изображаемого объекта называется масштабом изображения.

Простая линза не лишена недостатков. Так, если использовать в качестве фотообъектива простую линзу, то изображение будет недостаточно резким и искаженным. Эти дефекты изображения обусловливаются рядом недостатков линзы — сферической и хроматической аберрацией, дисторсией, астигматизмом и комой.

Сферическая аберрация возникает вследствие того, что средняя часть линзы в меньшей степени собирает лучи, чем края, и лучи, прошедшие близко к середине линзы, собираются дальше, чем лучи, прошедшие близко к краям линзы. В результате сферической аберрации на главной оптической оси линзы получается несколько фокусов, что приводит к образованию нерезкого изображения. При изготовлении объективов влияние сферической аберрации уменьшают путем подбора к собирающей линзе менее сильной рассеивающей линзы. Разновидностью сферической аберрации является кома, которая характерна для предмета, расположенного под углом к оптической оси линзы. Изображение в этом случае получается в виде кометообразной фигуры.

Возникновение хроматической аберрации объясняется дисперсией света. Цветное изображение в этом случае получается нерезким, так как фокусы лучей различных цветов спектра в силу неодинакового показателя преломления располагаются в разных точках оптической оси. В последнее время резко повысились требования к хроматической коррекции объективов вследствие широкого развития цветной фотографии и кино. На практике хроматическую аберрацию устраняют путем подбора собирающих и рассеивающих линз, имеющих необходимый показатель преломления.

Причина возникновения дисторсии примерно та же, что и сферической аберрации. Этот недостаток простой линзы приводит к заметным искривлениям прямых линий предметов. На характер дисторсии влияет положение диафрагмы (непрозрачной пластинки с круглым отверстием в середине): если диафрагма расположена перед линзой, то дисторсия приобретает бочкообразную форму; если диафрагма расположена за линзой — подушкообразную. Дисторсия заметно снижается при расположении диафрагмы между линаами.

В случае когда предмет располагается под некоторым углом к оптической оси линзы, резкость вертикальных или горизонтальных линий нарушается. Такие искажения изображения возникают вследствие астигматизма — наиболее трудноисправимого недостатка линзы. Оптическая система с значительно устраненным астигматизмом называется анастигматом.

ПОЛУЧЕНИЕ ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ В ФОТОАППАРАТЕ

Оптическое изображение снимаемого предмета в фотоаппарате в момент съемки получается аналогично линзе. Любой предмет съемки представляет собой совокупность светящихся или освещенных точек, поэтому построение изображений двух крайних точек предмета определяет положение всего изображения. В каждом фотоаппарате имеются светонепроницаемая камера и объектив, представляющий собой откоррегированную от аберраций собирательную оптическую систему из определенного числа линз. Объектив строит оптическое изображение предмета на светочувствительном материале, помещаемом в задней стенке фотоаппарата. Располагая предмет на разном расстоянии от объектива, можно получать оптическое изображение его неодинаковой величины. Наиболее часто предметы находятся далеко от объектива, и изображения получаются действительными, уменьшенными и обратными. При расположении предмета несколько дальше фокуса (переднего) изображение получается действительным, увеличенным и обратным. Если поместить предмет ближе фокуса, то действительного изображения не получится. В этом случае изображение мнимое, увеличенное и прямое.

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:



Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотнуюn 2 <n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптическихсветоводов, называется волоконной оптикой .



Введение.

Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории – корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Единство корпускулярных и волновых свойств электромагнитного излучения.

Рассмотренные в данном разделе явления- излучение чёрного тела, фотоэффекта, эффект Комптона- служат доказательством квантовых(корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств- непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг друга.

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волны той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

Волновые свойства света.

Дисперсия.

Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S`. Поместив на пути призму P, ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S`. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN , на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1)Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2)Белый цвет есть совокупность простых цветов.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом:

Показатель преломления вещества зависит от длины световой волны.

Обычно он увеличивается по мере уменьшения длины волны.

Дифракция.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

Квантовые свойства света.

Фотоэффект.

Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

Эффект Комптона.

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. Рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.

Заключение.

Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Корпускулярно-волновой дуализм 1. Сущность дуализма в оптике2. История возникновения Сущность дуализма в оптике Определение 1 Существование у света свойств и волны и потока частиц (корпускул) называют корпускулярно -- волновым дуализмом. Противоположность свойств частиц и волн в рамках классической физики не дает возможности утверждать, что свет является одновременно и волной и потоком частиц. Смысл корпускулярно - волнового дуализма свойств света в том, что он может описываться с использованием волновых представлений или корпускулярных понятий, что зависит от условий эксперимента. Нам известны убедительные эмпирические факты, доказывающие волновую природу света (опыты по интерференции, дифракции, поляризации). Но экспериментальные доказательства корпускулярных проявлений света не менее убедительны (эффект Комптона, фотоэффект, тепловое излучение). Ограничения в применении образов классической физики для описания свойств света проявляются также в условности применения образов волн и корпускул. Так, используя корпускулярные представления при описании фотоэффекта надо помнить, что свойства фотона существенно отличаются от свойств частиц в классической физике. Его масса покоя считается равной нулю, скорость движения в любой инерциальной системе отсчета одинакова, всегда отлична от нуля. При этом рассматривая свет как совокупность частиц (фотонов) для нахождения их массы следует использовать волновую характеристику -- частоту.
При рассмотрении волновых явлений, таких как интерференция и дифракция света для фиксации соответствующей картины требуется применение фотоэлемента, что означает использование квантовых свойств света для визуализации его волновых свойств. История возникновенияБольшой период развития оптики как науки связан с противоборством двух взглядов на природу света. Так в XVII веке имелось две теории света. Корпускулярная теория, ее сторонником был И. Ньютон, обладавший неоспоримым авторитетом. Ньютон считал свет потоком частиц, которые перемещаются от источника света во все стороны. Ньютон, используя свои представления, объяснил прямолинейность распространения света, но не смог объяснить законы отражения и преломления. Ярким представителем противоположного направления, представлявшего свет как совокупность волн, был Х. Гюйгенс. Гюйгенс считал свет волной, которая распространяется в эфире, все заполняющей и везде проникающей среде. Теория, предложенная Гюйгенсом, объяснила дифракцию и интерференцию, но не смогла дать объяснение прямолинейному распространению света. Примечание 1 В течение долго времени не было единого представления о природе света. Корпускулярные теории менялись на волновые. Ни одна теория не могла стать единственной, принятой всеми. В семидесятых годах XIX века Максвелл изложил свою электромагнитную теорию. Показал, что свет является электромагнитной волной, что было подтверждено опытами. Свет стали считать электромагнитной волной. Волновая теория стала считаться доказанной окончательно.

Однако волновая теория света в ее электромагнитной форме стала недостаточной для толкования всех оптических явлений. Впервые это проявилось при исследовании проблем равновесного (абсолютно черного) излучения. Формулу, которая согласовывается с опытом для всего диапазона волн, предложил М. Планк на основе новых, квантовых представлений. Изначально они касались только природы света, но позднее проникли во все разделы физики. Оказалось, что представления классической физики, которые базируются на основе понятий, связанных с макроскопическими объектами, не применимы или используются с существенными ограничениями в области атомных масштабов. Идеи Планка легли в основу новой физики, квантовой физики. Так Планк предположил, что излучение и поглощение света веществом происходит конечными порциями -- квантами. Согласовывая свою гипотезу с законами термодинамики и электродинамики, Планк принял энергию кванта равной:где h=Джс6,63⋅10−34Дж⋅с -- постояннаяПланка. СамПланкполагал, чтоквантовыесвойствасветпроявляеттольковактахизлученияипоглощениясвета. Всеостальноепроисходитврамкахтеории Максвелла. Определение 2 Эйнштейн развил квантовую теорию. Он заключил, что и при распространении в пространстве свет ведет себя как совокупность частиц (фотонов), имеющих энергию, которая определяется выражением (1). Это было не простым возвратом к Ньютоновской теории корпускул, так как фотоны принципиально отличаются от частиц в механике. Фотоны имеют волновые свойства. Эта особенность фотонов и называется корпускулярно -- волновым дуализмом.
Корпускулярно-волновой дуа­лизм

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ, фундаментальное свойство природы, являющееся физической основой квантовой механики и заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные, и волновые свойства. Любая волна обладает дискретными значениями энергии и импульса, кратными элементарным порциям (квантам) энергии ξ и импульса р, равными

ξ = ħω, р = ħk,(*)

где ħ - универсальная величина размерности действия, названная Планка постоянной, ω - циклическая частота волны, k - её волновой вектор. Движение любой частицы с энергией ξ и импульсом р связано с волной, частота и волновой вектор которой определяются соотношением (*).

Впервые корпускулярно-волновой дуализм был установлен для света. Выполненные к концу 19 века опыты по интерференции, дифракции и поляризации света, казалось, однозначно свидетельствовали о его волновой природе и доказывали, что свет, в согласии с теорией Максвелла, представляет собой электромагнитные волны. Однако в 1900 году М. Планк показал, что для объяснения законов равновесного теплового излучения необходимо принять гипотезу о дискретном характере излучения квантами с энергией, определяемой соотношением (*). Планк использовал для кванта энергии соотношение ξ = hν, но впоследствии выяснилось, что вместо частоты ν и постоянной h удобнее пользоваться циклической частотой ω = 2πν и постоянной h = h/2π. В 1905 году А. Эйнштейн, исходя из Вина закона излучения, показал, что в области больших частот излучение ведёт себя так, как если бы оно состояло из независимых квантов энергии, и объяснил на этой основе законы фотоэффекта. В 1909 Й. Штарк указал, что квант энергии излучения, движущийся со скоростью света с, должен обладать импульсом р = (ħω/с)n, т. е. должен вести себя как частица (здесь n - единичный вектор вдоль направления движения частицы). Этот факт подтвердился после открытия Комптона эффекта (1922) и таким образом была окончательно установлена двойственная природа света.

В наиболее отчётливой форме наличие корпускулярно-волнового дуализма для света было выявлено в 1909 году А. Эйнштейном, показавшим, что закон излучения Планка приводит к тому, что флуктуация энергии излучения содержит два члена, один из которых описывает флуктуации для совокупности классических световых волн, а второй - флуктуации энергии газа, состоящего из независимых частиц.

Для установления всеобщего характера корпускулярно-волнового дуализма решающее значение имело изучение законов движения электронов в атоме. В 1913 году Н. Бор использовал постоянную Планка для определения стационарных состояний в атоме водорода. При этом ему удалось объяснить наблюдаемые на опыте спектральные закономерности и выразить через заряд электрона, его массу и постоянную Планка радиус атома и Ридберга постоянную, оказавшиеся в хорошем согласии с экспериментальными данными. Способ определения стационарных состояний электронов в атомах был усовершенствован А. Зоммерфельдом, показавшим, что для стационарных орбит классическое действие является целым, кратным 2πh.

Успех теории Бора, объяснившей атомные явления на основе квантовых представлений и постоянной Планка (которая до этого, казалось, связывала лишь корпускулярные и волновые характеристики электромагнитного излучения), навёл на мысль о существовании корпускулярно-волнового дуализма и для электронов. В связи с этим Л. де Бройль в 1923 году высказал гипотезу о всеобщем характере корпускулярно-волнового дуализма. Согласно этой гипотезе, не только электромагнитным волнам соответствуют частицы, но и частицам (например, электронам) должны соответствовать волны. Де Бройль отметил релятивистскую инвариантность соотношения (*), связывающего четырёхмерный вектор энергии-импульса частицы (ξ/с, р) с четырёхмерным волновым вектором (ω/с, k), и высказал предположение о том, что волновая механика частиц должна находиться в таком же соотношении с классической механикой, как волновая оптика с геометрической оптикой. Невозможность описать волновые явления (например, интерференцию) с помощью частиц, движущихся по определённым траекториям, была преодолена в квантовой механике на основе суперпозиции состояний принципа и его статистической интерпретации.

Прямое доказательство существования волновых свойств электронов впервые получили в 1927 году американские физики К. Дэвиссон и Л. Джермер, которые наблюдали интерференционные максимумы при отражении электронов от монокристаллов никеля. Позднее интерференционные эффекты были обнаружены для пучков атомов гелия, молекул водорода и других частиц, то есть универсальность корпускулярно-волнового дуализма была подтверждена экспериментально.

В явном виде корпускулярно-волновой дуализм присутствует в квантовой теории поля, где частицы (и квазичастицы) представляют собой возбуждённые состояния полей.

В результате изучения данной главы студент должен: знать

  • понятия волновой и геометрической оптики;
  • понятие корпускулярно-волнового дуализма;
  • четыре закона геометрической оптики;
  • понятие интерференции света, когерентности, цуга;
  • принцип Гюйгенса - Френеля;
  • расчет интерференционной картины двух источников;
  • расчет интерференции в тонких пленках;
  • принципы просветления оптики; уметь
  • решать типовые прикладные физические задачи на законы геометрической оптики и интерференцию света;

владеть

  • навыками использования стандартных методов и моделей математики применительно к законам геометрической оптики и интерференции света;
  • навыками использования методов аналитической геометрии и векторной алгебры применительно к законам геометрической оптики и интерференции света;
  • навыками проведения физического эксперимента, а также обработки результатов эксперимента но законам геометрической оптики и интерференции света.

Волновая и геометрическая оптика. Законы геометрической оптики

Волновая оптика - раздел оптики, который описывает распространение света с учетом его волновой электромагнитной природы. В рамках волновой оптики теория Максвелла позволила достаточно просто объяснить такие оптические явления, как интерференция, дифракция, поляризация и т.п.

В конце XVII в. оформились две теории света: волновая (продвигалась Р. Гуком и X. Гюйгенсом) и корпускулярная (ее продвигал И. Ньютон). Волновая теория воспринимает свет как волновой процесс, подобный упругим механическим волнам. Согласно корпускулярной (квантовой) теории свет представляет собой поток частиц (корпускул), описываемых законами механики. Так, отражение света можно рассматривать аналогично отражению упругого шарика от плоскости. Долгое время две теории света считались альтернативными. Однако многочисленные опыты показали, что свет в одних опытах обнаруживает волновые свойства, а в других - корпускулярные. Поэтому в начале XX в. было признано, что свет принципиально имеет двойственную природу - обладает корпускулярно-волновым дуализмом.

Но прежде чем излагать основные положения и результаты волновой оптики, сформулируем элементарные законы геометрической оптики.

Геометрическая оптика - раздел оптики, изучающий законы распространения света в прозрачных средах и правила построения изображений при прохождении света в оптических системах без учета его волновых свойств. В геометрической оптике вводится понятие светового луча, определяющего направление потока лучистой энергии. При этом полагается, что распространение света не зависит от поперечных размеров пучка света. В соответствии с законами волновой оптики это справедливо, если поперечный размер пучка много больше длины волны света. Геометрическую оптику можно рассматривать как предельный случай волновой оптики при стремящейся к нулю длине волны света. Точнее границы применимости геометрической оптики будут определены при изучении дифракции света.

Основные законы геометрической оптики были открыты опытным путем задолго до выявления физической природы света. Сформулируем четыре закона геометрической оптики.

  • 1. Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Подтверждением этого закона служит резкая тень, отбрасываемая телом при освещении точечным источником света. Другой пример - при прохождении света далекого источника через небольшое отверстие получается узкий прямой световой луч. При этом необходимо, чтобы размер отверстия был много больше длины волны.
  • 2. Закон независимости световых пучков: производимый отдельным пучком света эффект не зависит от других пучков. Так, освещенность поверхности, на которую надает несколько пучков, равна сумме освещенностей, создаваемых отдельными пучками. Исключением являются нелинейные оптические эффекты, которые могут иметь место при больших интенсивностях света.

Рис. 26.1

3. Закон отражения света: падающий и отраженный лучи (а также перпендикуляр к границе раздела двух сред , (плоскости падения) по разные стороны от перпендикуляра. Угол отражения у равен углу падения а (рис. 26.1):

4. Закон преломления света: падающий и преломленный лучи (а также перпендикуляр к границе раздела двух сред , восстановленный в точке падения луча) лежат в одной плоскости (плоскости падения) по разные стороны от перпендикуляра.

Отношение синуса угла падения а к синусу угла преломления р есть величина , постоянная для двух данных сред (рис. 26.1):

Здесь п - показатель преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления имеют объяснение в волновой физике. Преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - отношение скорости распространения волны в первой среде v { к скорости распространения во второй среде v 2:

Абсолютный показатель преломления равен отношению скорости света с в вакууме к скорости света v в среде:

Среду с большим абсолютным показателем преломления называют оптически более плотной средой. При переходе света из оптически более плотной среды в оптически менее плотную, например из стекла в воздух (п 2 может иметь место явление полного отражения , т.е. исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол а пр, который называется предельным углом полного внутреннего отражения. Для угла падения а = а пр условием исчезновения преломленного луча является

Если второй средой является воздух (п 2 ~ 1), то с помощью формул (26.2) и (26.3) формулу для вычисления предельного угла полного внутреннего отражения удобно записать в виде

где п = п х > 1 - абсолютный показатель преломления первой среды. Для границы раздела «стекло - воздух» (п = 1,5) критический угол а пр = 42°, для границы «вода - воздух» (п = 1,33) а пр = 49°.

Наиболее интересным применением полного внутреннего отражения является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до нескольких миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц, пластик). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Световод нельзя изгибать сильно, поскольку при сильном изгибе условие полного внутреннего отражения (26.7) нарушается и свет частично выходит из волокна через боковую поверхность.

Отметим, что первый, третий и четвертый законы геометрической оптики можно вывести из принципа Ферма (принципа наименьшего времени): траектория распространения светового луча соответствует наименьшему времени распространения. И это несложно показать.

В заключение рассмотрим одну из забавных задач геометрической оптики - создание шапки-невидимки. С точки зрения оптики шапка-невидимка могла бы представлять собой систему огибания объекта лучами света.

Сделать такую систему, воспользовавшись законом преломления света, в принципе несложно, основная проблема - в борьбе с сильным затуханием света в преломляющей системе. Поэтому лучшим вариантом может оказаться система из видеорегистратора изображения за объектом и телепередатчика этого изображения перед объектом.

Определение 1

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Определение 1

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Подтверждением этому служат резкие тени, которые отбрасываются непрозрачными телами при освещении с помощью источника света сравнительно малых размеров, то есть так называемым «точечным источником».

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Определение 2

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Определение 3

Закон отражения света , основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Определение 4

Закон преломления света , базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

sin α sin β = n .

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Определение 5

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Определение 6

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления .

Определение 7

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Определение 8

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2:

Определение 9

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Определение 10

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной .

Определение 11

В условиях перехода света из одной среды, уступающей в оптической плотности другой (n 2 < n 1) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р. Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 < 1 .

При условии, что второй средой будет воздух (n 2 ≈ 1) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

В условиях границы раздела «стекло–воздух», где n = 1 , 5 , критический угол равен α п р = 42 ° , в то время как для границы «вода–воздух» n = 1 , 33 , а α п р = 48 , 7 ° .

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3).

Определение 12

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

Рисунок 3 . 1 . 4 . Модель отражения и преломления света.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter