Физика магнитное поле сила ампера. Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B . I . ℓ . sin α - закон Ампера.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Если вектор v частицы перпендикуляренвектору В , то частица описывает траекторию в виде окружности:

Роль центростремительной силы играет сила Лоренца:

При этом радиус окружности: ,

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

44. Теорема о циркуляции вектора магнитной индукции. Применение теоремы о циркуляции вектора магнитной индукции для расчета поля прямого тока. Циркуляция вектора магнитной индукции через замкнутый контур=произведению магнитной постоянной на алгебраическую сумму токов, охватываемых контуром.

∫BdL=μ 0 I; I=ΣI i

Теорема говорит о том, что магнитное поле не является потенциальным, а является вихревым.

Применение в тетради

45. Закон электромагнитной индукции. Правило Ленца

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея .

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца .

Правило Ленца отражает тот экспериментальный факт, что ε инд ивсегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

ε i =-N, гдеN- кол-во витков

Способ возникновения ЭДС:

1.рамка неподвижна, но изменяется магнитный поток за счёт движения ккатушки или за счет изменения силы тока в ней.

2.рамка перемещается в поле непожвижной катушки.

46. Явление самоиндукции.

Возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока называется явлением самоиндукции.

Магнитный поток, обусловленный собственным током контура (сцепленный с контуром), пропорционален магнитной индукции, которая, в свою очередь, по закону Био-Савара-Лапласа, пропорциональна току.

Где L –коэффициент самоиндукции или индуктивность, «геометрическая» характеристика проводника, так как зависит от его формы и размеров, а также от магнитных свойств среды.

47. Уравнения Максвелла в интегральной форме. Свойства уравнений Максвелла.

Закон Гаусса Поток электрической индукции через замкнутую поверхность s пропорционален величине свободного заряда, находящегося в объёме v, который окружает поверхность s.

Закон Гаусса для магнитного поля Поток магнитной индукции через замкнутую поверхность равен нулю (магнитные заряды не существуют).

Закон индукции Фарадея Изменение потока магнитной индукции, проходящего через незамкнутую поверхность, взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре, который является границей поверхности.

Теорема о циркуляции магнитного поля

Полный электрический ток свободных зарядов и изменение потока электрической индукции через незамкнутую поверхность , пропорциональны циркуляции магнитного поля на замкнутом контуре, который является границей поверхности.

Свойства уравнений Максвелла.

А. Уравнения Максвелла линейны . Они содержат только первые производные полейEиBпо времени и пространственным координатам, а так же первые степени плотности электрических зарядов ρ и токов γ. Свойство линейности уравнений непосредственно связано с принципом суперпозиции.

Б. Уравнения Максвелла содержат уравнение непрерывности , выражающее закон сохранения электрического заряда:

В. Уравнения Максвелла выполняются во всех инерциальных системах отсчёта . Они являются релятивистски-инвариантными, что подтверждается опытными данными.

Г. О симметрии уравнений Максвелла .

Уравнения не симметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе существуют электрические заряды, но нет магнитных зарядов. Вместе с тем в нейтральной однородной среде, где ρ = 0 и j=0 ,уравнения Максвелла приобретают симметричный вид, т.е.Eтак связано с(dB/dt) , какBсdE/dt.

Д. Об электромагнитных волнах .

Из уравнений Максвелла следует важный вывод о существовании принципиально нового физического явления: электромагнитное поле способно существовать самостоятельно без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение электрического поля, в свою очередь, возбуждает магнитное поле. За счёт непрерывного взаимопревращения они и должны сохранятся. Поля такого рода называются электромагнитными волнами . Выяснилось также, что ток смещения(dD/dt) играет в этом явлении первостепенную роль.

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В - физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция - векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a - угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S - величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) - магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L - коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция - явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция - частный случай электромагнитной индукции.

Индуктивность - величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I - начальное значение тока, t - промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

Магнитная индукция. Сила Лоренца. Магнитное поле - одна из двух составляющих электромагнитного поля (см. разд. 3.2). Магнитное поле действует на движущиеся частицы, токи и магнитные моменты. Источниками магнитного поля являются движущиеся частицы, токи, магнитные моменты и переменные электрические поля. Характеристикой магнитного поля является вектор магнитной индукции В Для определения В можно использовать выражение для силы, действующей на заряженную частицу в электромагнитном поле:

где с см/с - электродинамическая постоянная, равная скорости света в вакууме. Силу действующую на частицу со стороны магнитного поля, называют силой Лоренца.

Для определения магнитной индукции В с помощью формулы (51) надо:

1) измерить силу, действующую на неподвижную частицу, чтобы отделить действие электрического поля;

2) найти направление скорости для которого при постоянной величина магнитной силы максимальна;

3) по величине силы найти модуль магнитной индукции:

4) по направлению Ртлх и найти направление Й с помощью правила буравчика.

Магнитную индукцию удобно также определять по вращательному моменту, с которым магнитное поле действует на маленький виток с током. На виток с током действует только магнитное поле.

В СИ магнитная индукция измеряется в тесла в СГС - в гауссах

Пример 1. Рассмотрим движение нерелятивистской частицы массой с зарядом в однородном магнитном поле с индукцией Пусть в некоторый момент времени скорость частицы направлена под углом а к Сила Лоренца перпендикулярна как к (т.е. так и к В (т.е. сохраняются проекции скорости и на направление вектора индукции и на перпендикулярную к нему плоскость). В проекции на перпендикулярную плоскость частица движется по окружности, радиус которой можно найти из второго закона Ньютона: Период вращения не зависит от скорости. Результирующее движение происходит по спирали радиусом Я с шагом

Закон Ампера. Сила, действующая на элемент тока в магнитном поле, равна сумме сил Лоренца, действующих на движущиеся свободные заряды:

При выводе силы Ампера, действующей на элемент объема с плотностью тока и на линейный элемент с током использовалась

связь тока со средней скоростью свободных зарядов (40). Для вычисления полной силы, действующей на объем с распределенным током или на протяженный участок провода с током, надо произвести интегрирование. Например, на прямой участок провдда длиной с током I в однородном магнитном поле с индукцией В действует сила Сила, действующая в однородном поле на любой замкнутый контур с током, равна нулю:

Магнитный момент контура с током. Магнитным моментом контура с током называется векторная величина равная

где интегрирование ведется по любой поверхности, натянутой на контур, а направление нормали определяется направлением движения буравчика при вращении его по току. В случае плоского контура

Магнитный момент контура, так же как и дипольный момент электрического диполя (см. разд. 3.1 и 3.3), определяет магнитное поле контура на больших расстояниях вдали от него и описывает поведение маленького витка с током в магнитном поле.

Пример 2. Рассмотрим прямоугольный контур, длины сторон которого равны а и подвешенный за сторону а в однородном вертикальном магнитном поле с индукцией В (рис. 36). При включении тока силой I контур отклонится на угол (3, при котором момент силы тяжести уравновешивается моментом сил Ампера или Обратите внимание, что вращательный момент, действующий на контур со стороны магнитного поля, равен Аналогичное выражение было получено для вращательного момента, действующего на электрический диполь в электрическом поле (см. разд. 3.3).

Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

Согласно классической теории электромагнетизма заряженная частица так возмущает окружающее пространство, что любая другая заряженная частица, помещенная в эту область испытывает действие силы . Говорят, что на частицу действует электромагнитное поле . Электрическая составляющая такого поля связана с самим фактом присутствия заряженной частицы (источника поля) в рассматриваемой области пространства, магнитная ¾ с ее движением.

Источником макроскопического магнитного поля являются проводники с током, намагниченные тела и движущиеся электрически заряженные тела. Однако, природа магнитного поля едина, оно возникает в результате движения заряженных микрочастиц.

Переменное магнитное поле появляется также при изменении во времени электрического поля , и наоборот, при изменении во времени магнитного поля возникает электрическое поле (см. теорию Дж. Максвелла).

Количественной характеристикой силового действия электрического поля на заряженные объекты служит векторная величина ¾напряженность электрического поля . Магнитное поле характеризуется вектором индукции который определяет силу, действующую в данной точке поля на движущийся электрический заряд . Эту силу называют силой Лоренца (X. Лоренц ¾нидерландский физик-теоретик). Экспериментально для модуля этой силы установлена следующая зависимость (в СИ):

F л = В |q |v sina, (8.1)

где |q | ¾ модуль заряда, который двигается в магнитном поле со скоростью v под углом a к направлению магнитного поля.

Таким образом, магнитная индукция численно равна силе F л действующей на единичный заряд, движущийся с единичной скоростью в направлении, перпендикулярном полю .

Сила Лоренца перпендикулярна векторам (направление поля) и при этом направление этой силы совпадает с направлением, которое определяется по правилу левой руки . Согласно этому правилу, если левую руку расположить так, что четыре вытянутых пальца совпадают по направлению с вектором скорости положительного заряда (если q <0, то пальцы левой руки направляют в противоположную сторону или пользуются правой рукой), а составляющая вектора магнитной индукции перпендикулярная скорости заряда, входит в ладонь перпендикулярно к ней, то отогнутый на 90° большой палец покажет направление силы Лоренца, рис. 8.1.

Рис. 8.1

В целом, выражение для вектора силы Лоренца записывается через векторное произведение векторов и :

При движении заряженной частицы перпендикулярно к направлению магнитного поля сила Лоренца играет роль центростремительной силы, при этом траекторией движения частицы является окружность.

Если векторы и направлены одинаково, то В общем случае, когда 0

При наличии электромагнитного поля формула Лоренца имеет вид

(8.3)

Если магнитное поле создают несколько источников (n ), то его магнитная индукция согласно принципу суперпозиции рассчитывается как

Если в магнитное поле поместить проводник с током, то на каждый носитель тока, движущийся по проводнику со скоростью будет действовать сила Лоренца. Действие этой силы от отдельных носителей передается всему проводнику. В результате, на каждый прямолинейный участок проводника длиной Dl (малый элемент длиной Dl ), по которому течет ток I , в магнитном поле будет действовать так называемая сила Ампера (закон Ампера , в честь известного французского ученого, открывшего этот закон, Андре Ампера):

(8.5)

где ¾вектор, направление которого совпадает с направлением тока в проводнике, а модуль этого вектора равен длине участка Dl .

Направление этой силы определяется по правилу левой руки : если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции входила в ладонь перпендикулярно к ней, а направление средних пальцев совпадало с направлением тока, то отогнутый на 90° большой палец покажет направление действующей на проводник силы Ампера рис. 8.2.

Рис. 8.2

Таким образом, величина магнитной индукции магнитного поля определяется как

где a ¾ угол между направлением тока и вектора магнитной индукции (магнитного поля).

Однородным постоянным магнитным полем называется магнитное поле, вектор у которого одинаков во всех точках пространства и не меняется со временем.

В соответствии с законом Ампера (8.6) магнитная индукция ¾это величина, численно равная силе, действующей на прямолинейный проводник единичной длины, по которому течет ток единичной силы и который расположен перпендикулярно направлению магнитного поля . Единица магнитной индукции получила название тесла (Тл): (в честь сербского ученого Никола Тесла). Индукция магнитного поля Земли около ее поверхности составляет примерно 5 ×10 - 5 Тл.

Следствием существования силы Ампера является появление момента сил , действующего на рамку с током, помещенную в однородное магнитное поле, и приводящего к ее возможному вращению.

В данном случае модуль вектора магнитной индукции равен отношению максимального момента сил М m ах, действующего со стороны магнитного поля на контур с током, к произведению силы тока I в контуре на его площадь S :

При этом, величина, модуль которой P m = I × S , называется магнитным моментом контура .

Ампер экспериментально обнаружил, что два параллельных проводника взаимодействуют друг с другом. При этом, если токи в проводниках направлены в одну сторону, то взаимодействие имеет характер притяжения, если в противоположные ¾ отталкивания (рис. 8.3).

Давно известно, что кусочки магнитного железняка способны притягивать к себе металлические предметы: гвозди, гайки, металлические опилки, иголки и др. Такой способностью их наделила природа. Это естественные магниты .

Подвергнем воздействию естественного магнита брусок из железа. Через некоторое время он сам намагнитится и начнёт притягивать другие металлические предметы. Брусок стал искусственным магнитом . Уберём магнит. Если намагничивание при этом исчезнет, то говорят о временном намагничивании . Если же оно останется, то перед нами постоянный магнит.

Концы магнита, притягивающие металлические предметы наиболее сильно, называют полюсами магнита. Слабее всего притяжение в его средней зоне. Её называют нейтральной зоной .

Если к средней части магнита прикрепить нить и позволить ему свободно вращаться, подвесив его к штативу, то он развернётся таким образом, что один из его полюсов будет ориентирован строго на север, а другой строго на юг. Конец магнита, обращённый на север, называют северным полюсом (N ), а противоположный – южным (S ).

Взаимодействие магнитов

Магнит притягивает другие магниты, не соприкасаясь с ними. Одноимённые полюсы разных магнитов отталкиваются, а разноимённые притягиваются. Не правда ли, это напоминает взаимодействие электрических зарядов?

Электрические заряды оказывают действие друг на друга с помощью электрического поля , образующегося вокруг них. Постоянные магниты взаимодействуют на расстоянии, потому что вокруг них существует магнитное поле .

Физики XIX века пытались представить магнитное поле как аналог электростатического. Они рассматривали полюсы магнита как положительный и отрицательный магнитные заряды (северный и южный полюсы соответственно). Но вскоре поняли, что изолированных магнитных зарядов не существует.

Два одинаковых по величине, но разных по знаку электрических заряда называют электрическим диполем . Магнит имеет два полюса и является магнитным диполем .

Заряды в электрическом диполе можно легко отделить друг от друга, разрезав на две части проводник, в разных частях которого они находятся. Но с магнитом так не получится. Разделив таким же способом постоянный магнит, мы получим два новых магнита, каждый из которых тоже будет иметь два магнитных полюса.

Тела, имеющие собственное магнитное поле, называются магнитами . Различные материалы по-разному притягиваются к ним. Это зависит от структуры материала. Свойство материалов создавать магнитное поле под воздействием внешнего магнитного поля, называется магнетизмом .

Наиболее сильно притягиваются к магнитам ферромагнетики . Причём их собственное магнитное поле, создаваемое молекулами, атомами или ионами, в сотни раз превосходит вызвавшее его внешнее магнитное поле. Ферромагнетиками являются такие химические элементы, как железо, кобальт, никель, а также некоторые сплавы.

Парамагнетики – вещества, намагничивающиеся во внешнем поле в его направлении. Притягиваются к магнитам слабо. Химические элементы алюминий, натрий, магний, соли железа, кобальта, никеля и др. – примеры парамагнетиков.

Но есть материалы, которые не притягиваются, а отталкиваются от магнитов. Их называют диамагнетиками . Они намагничиваются против направления внешнего магнитного поля, но отталкиваются от магнитов довольно слабо. Это медь, серебро, цинк, золото, ртуть и др.

Опыт Эрстеда

Однако магнитное поле создают не только постоянные магниты.

В 1820 г. датский физик Ханс Кристиан Э́рстед на одной из своих лекций в университете демонстрировал студентам опыт по нагреванию проволоки от «вольтова столба». Один из проводов электрической цепи оказался на стеклянной крышке морского компаса, лежащего на столе. Когда учёный замкнул электрическую цепь и по проводу пошёл ток, магнитная стрелка компаса вдруг отклонилась в сторону. Конечно, Эрстед поначалу подумал, что это просто случайность. Но, повторив опыт в тех же условиях, он получил тот же результат. Тогда он начал менять расстояние от провода до стрелки. Чем бόльшим оно было, тем слабее отклонялась стрелка. Но и это ещё не всё. Пропуская ток через провода, сделанные из разных металлов, он обнаружил, что даже те из них, которые не обладали магнитными свойствами, вдруг становились магнитами, когда через них проходил электрический ток. Стрелка отклонялась, даже когда её отделяли от провода с током экранами из материалов, не проводящих ток: дерева, стекла, камней. Даже когда её поместили в резервуар с водой, она всё равно продолжала отклоняться. При разрыве электрической цепи магнитная стрелка компаса возвращалась в исходное состояние. Это означало, что проводник, по которому идёт электрический ток, создаёт магнитное поле , заставляющее стрелку устанавливаться в определённом направлении.

Ханс Кристиан Эрстед

Магнитная индукция

Силовой характеристикой магнитного поля является магнитная индукция . Это векторная величина, определяющая его действие на движущиеся заряды в данной точке поля.

Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки, находящейся в магнитном поле. Единица измерения магнитной индукции в системе СИ – тесла (Тл) . Измеряют магнитную индукции приборами, которые называются тесламетрами .

Если векторы магнитной индукции поля одинаковы по величине и направлению во всех точках поля, то такое поле называется однородным.

Нельзя путать понятие индукции магнитного поля и явление электромагнитной индукции .

Графически магнитное поле изображают с помощью силовых линий.

Силовыми линиями , или линиями магнитной индукции , называют линии, касательные к которым в данной точке совпадают с направлением вектора магнитной индукции. Густота этих линий отображает величину вектора магнитной индукции.

Картину расположения этих линий можно получить с помощью простого опыта. Рассыпав на куске гладкого картона или стекла железные опилки и положив его на магнит, можно увидеть, как опилки располагаются по определённым линиям. Эти линии имеют форму силовых линий магнитного поля.

Линии магнитной индукции всегда замкнуты . Они не имеют ни начала, ни конца. Выходя из северного полюса, они входят в южный и замыкаются внутри магнита.

Поля с замкнутыми векторными линиями называются вихревыми . Следовательно, магнитное поле является вихревым. В каждой его точке вектор магнитной индукции имеет своё направление. Его определяют по направлению магнитной стрелки в этой точке или по правилу буравчика (для магнитного поля вокруг проводника с током).

Правило буравчика (винта) и правило правой руки

Эти правила дают возможность просто и довольно точно определить направление линий магнитной индукции, не используя никаких физических приборов.

Чтобы понять, как работает правило буравчика , представим себе, что правой рукой мы вкручиваем бур или штопор.

Если направление поступательного движения буравчика совпадает с направлением движения тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

Разновидностью данного правила является правило правой руки .

Если мысленно обхватить правой рукой проводник с током таким образом, чтобы отогнутый на 90° большой палец показывал направление тока, то остальные пальцы покажут направление линий магнитной индукции поля, создаваемого этим током, и направление вектора магнитной индукции, направленного по касательной к этим линиям.

Магнитный поток

Поместим в однородное магнитное поле плоский замкнутый контур. Величина, равная количеству силовых линий, проходящих через поверхность контура, называется магнитным потоком .

Ф = В· cosα ,

где Ф – величина магнитного потока;

В – модуль вектора индукции;

S – площадь контура;

α – угол между направлением вектора магнитной индукции и нормалью (перпендикуляром) к плоскости контура.

С изменением угла наклона меняется величина магнитного потока.

Если плоскость контура перпендикулярна магнитному полю (α = 0), то магнитный поток, проходящий через неё будет максимальным.

Ф max = В·S

Если же контур расположен параллельно магнитному полю (α =90 0), то поток в этом случае будет равен нулю.

Сила Лоренца

Мы знаем, что электрическое поле действует на любые заряды, независимо от того находятся ли они в состоянии покоя или движутся. Магнитное поле способно оказывать воздействие только на движущиеся заряды.

Выражение для силы, действующей со стороны магнитного поля на движущийся в нём единичный электрический заряд, установил нидерландский физик-теоретик Хендрик Антон Ло́ренц .Силу эту назвали силой Лоренца .

Хендрик Антон Лоренц

Модуль силы Лоренца определяют по формуле:

F = sinα ,

где q – величина заряда;

v – скорость движения заряда в магнитном поле;

B - модуль вектора индукции магнитного поля;

α - угол между вектором индукции и вектором скорости.

Куда же направлена сила Лоренца? Это легко определить с помощью правила левой руки : «Если расположить ладонь левой руки таким образом, чтобы четыре вытянутых пальца показывали направление движения положительного электрического заряда, а силовые линии магнитного поля входили в ладонь, то отогнутый на 90 0 большой палец покажет направление силы Лоренца ».

Закон Ампера

В 1820 г. после того как Эрстед установил, что электрический ток создаёт магнитное поле, известный французский физик Андре Мари Ампер продолжил исследования по взаимодействию между электрическим током и магнитом.

Андре Мари Ампер

В результате проведенных опытов учёный выяснил, что на прямой проводник с током, находящийся в магнитном поле с индукцией В , со стороны поля действует сила F , пропорциональная силе тока и индукции магнитного поля . Этот закон получил название закона Ампера , а силу назвали силой Ампера .

F = sinα ,

где I – сила тока в проводнике;

L - длина проводника в магнитном поле;

B - модуль вектора индукции магнитного поля;

α - угол между вектором магнитного поля и направлением тока в проводнике.

Сила Ампера имеет максимальное значение, если угол α равен 90 0 .

Направление силы Ампера, как и силы Лоренца, также удобно определять по правилу левой руки.

Располагаем левую руку таким образом, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Наблюдая взаимодействие двух тонких проводников с током, учёный выяснил, что параллельные проводники с током, притягиваются, если токи в них текут в одном направлении, и отталкиваются, если направления токов противоположны .

Магнитное поле Земли

Наша планета представляет собой гигантский постоянный магнит, вокруг которого существует магнитное поле. Этот магнит имеет северный и южный полюсы. Вблизи них магнитное поле Земли проявляется наиболее сильно. Стрелка компаса устанавливается вдоль магнитных линий. Один конец её направлен к северному полюсу, другой к южному.

Магнитные полюсы Земли время от времени меняются местами. Правда, случается это не часто. За последний миллион лет это происходило 7 раз.

Магнитное поле защищает Землю от космического излучения, которое разрушительно действует на всё живое.

На магнитное поле Земли влияет солнечный ветер , представляющий собой поток ионизированных частиц, вырывающихся из солнечной короны с огромной скоростью. Особенно он усиливается во время вспышек на Солнце. Пролетающие мимо нашей планеты частицы создают дополнительные магнитные поля, в результате чего изменяются характеристики магнитного поля Земли. Возникают магнитные бури . Правда, длятся они недолго. И спустя некоторое время магнитное поле восстанавливается. Но проблем они могут создать немало, так как влияют на работу линий электропередач, радиосвязи, вызывают сбои в работе различных приборов, ухудшают работу сердечно-сосудистой, дыхательной и нервной систем человека. Особенно чувствительны к ним метеозависимые люди.