Искусственный интеллект. Искусственный интеллект: что это на самом деле

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Искусственный интеллект - это область науки, занимающаяся моделированием интеллектуальной деятельности человека. Зародившийся более 700 лет назад в средневековой Испании искусственный интеллект оформился в самостоятельную научную область в середине XX в.

Методы искусственного интеллекта позволили создать эффективные компьютерные программы в самых разнообразных, ранее считавшихся недоступными для формализации и алгоритмизации, сферах человеческой деятельности, таких как медицина, биология, зоология, социология, культурология, политология, экономика, бизнес, криминалистика и т.п. Идеи обучения и самообучения компьютерных программ, накопления знаний, приемы обработки нечетких и неконкретных знаний позволили создать программы, творящие чудеса. Компьютеры успешно борются за звание чемпиона мира по шахматам, моделируют творческую деятельность человека, создавая музыкальные и поэтические произведения, распознают образы и сцены, распознают, понимают и обрабатывают речь, тексты на естественном человеческом языке. Нейрокомпьютеры, созданные по образу и подобию человеческого мозга, успешно справляются с управлением сложными техническими объектами, диагностикой заболеваний человека, неисправностей сложных технических устройств; предсказывают погоду и курсы валют, результаты голосований; выявляют хакеров и потенциальных банкротов; помогают абитуриентам правильно выбрать специальность и т.д.

Мы уже привыкли к тому, что компьютеры «умнеют» буквально на глазах, а компьютерные программы становятся все более и более интеллектуальными. Само по себе понятие интеллекта постоянно претерпевает изменения по мере развития науки и человека. Давно уже не считаются интеллектуальными задачи, состоящие в выполнении арифметических операций сложения, умножения, деления. Не считается интеллектуальной задача интегрирования дифференциального уравнения, если для нее известен строго детерминированный алгоритм. В настоящее время принято считать интеллектуальными задачи, которые на современном этапе не поддаются алгоритмизации в традиционном смысле этого слова. Это задачи, для решения которых требуются манипуляции с нечеткими, неконкретными, ненадежными, расплывчатыми и даже нетрадиционными знаниями.

Начнем рассмотрение положений ИИ с терминов и определений.

Термин интеллект (intelligence) происходит от латинского intellectus - что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intelligence) - ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий.

Понятие «интеллект» используется сегодня и в технике, и в технических дисциплинах, которое отличается от определений, сформировавшихся в контексте психологических и философских исследований сознания. Под интеллектом будем понимать способность мышления предвидеть события, предвидеть результаты собственных действий, анализировать и оценивать свое состояние и окружающую обстановку и принимать решения, сообразуясь со своими представлениями об окружающем мире. Определение, данное академиком Н.Н. Моисеевым, рассматривает интеллектуальную деятельность с позиций информатики. Но оно и выделяет самое главное в интеллекте – это способность к отвлеченному мышлению, абстрагированию, благодаря которым и возникают самосознание и рефлексия.

Итак, интеллект – это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.

При этом под термином «знания» подразумевается не только та информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно «целенаправленно преобразовываться». При этом существенно то, что формирование модели внешней среды происходит «в процессе обучения на опыте и адаптации к разнообразным обстоятельствам».

Интеллектуальная задача . Для того, чтобы пояснить, чем отличается интеллектуальная задача от просто задачи, необходимо ввести термин «алгоритм» - один из краеугольных терминов кибернетики.

Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными .

Что же касается задач, алгоритмы решения которых уже установлены, то, как отмечает известный специалист в области ИИ М. Минский, «излишне приписывать им такое мистическое свойства, как «интеллектуальность»». В самом деле, после того, как такой алгоритм уже найден, процесс решения соответствующих задач становится таким, что его могут в точности выполнить человек, вычислительная машина (должным образом запрограммированная) или робот, не имеющие ни малейшего представления о сущность самой задачи. Требуется только, чтобы лицо, решающее задачу, было способно выполнять те элементарные операции, их которых складывается процесс, и, кроме того, чтобы оно педантично и аккуратно руководствовалось предложенным алгоритмом. Такое лицо, действуя, как говорят в таких случаях, чисто машинально, может успешно решать любую задачу рассматриваемого типа.

Поэтому представляется совершенно естественным исключить их класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Примерами таких задач могут служить чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. д. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т.п., напротив это формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение несложно.

Таким образом, можно перефразировать определение интеллекта как универсальный сверхалгоритм, который способен создавать алгоритмы решения конкретных задач.

Еще интересным замечанием здесь является то, что профессия программиста, исходя из наших определений, является одной из самых интеллектуальных, поскольку продуктом деятельности программиста являются программы - алгоритмы в чистом виде. Именно поэтому, создание даже элементов ИИ должно очень сильно повысить производительность его труда.

Деятельность мозга (обладающего интеллектом), направленную на решение интеллектуальных задач, будем называть мышлением, или интеллектуальной деятельностью . Интеллект и мышление органически связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных) для которых нет стандартных, заранее известных методов решения.

Следует иметь в виду, что существуют и другие, чисто поведенческие (функциональные) определения. Так, по А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы и искусства, обладает интеллектом. Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Его смысл заключается в следующем. В разных комнатах находится люди и машина. Они не могут видеть друг друга, но имеют возможность обмениваться информацией (например, с помощью электронной почты). Если в процессе диалога между участниками игры людям не удается установить, что один из участников - машина, то такую машину можно считать обладающей интеллектом.

Кстати интересен план имитации мышления, предложенный А. Тьюрингом. «Пытаясь имитировать интеллект взрослого человека, - пишет Тьюринг, - мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения «программы-ребенка» и задачу «воспитания» этой программы».

Забегая вперед, можно сказать, что именно этот путь используют практически все системы ИИ. Ведь понятно, что практически невозможно заложить все знания в достаточно сложную систему. Кроме того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. д.).

Термин «искусственный интеллект» введен в обиход в 1956 г. профессором Массачусетского технологического института Дж.Макарти на встрече американских специалистов в области наук, связанных с теорией и практикой исследования вычислительных процессов. На этой встрече в Дортмутском колледже, которую американцы считают первой конференцией по ИИ, были сформулированы две основные задачи в новой научно-технической отрасли: раскрыть механизм человеческого мышления и построить электронную машину, которая могла бы имитировать данный процесс .

Единого определения, полностью описывающего эту научную область, не существует и по сей день. Среди многих точек зрения на нее сегодня доминируют три. Согласно первой - исследования в области ИИ являются фундаментальными исследованиями, в рамках которых разрабатываются модели и методы решения задач, традиционно считавшихся интеллектуальными и не поддававшихся ранее формализации и автоматизации. Согласно второй точке зрения, новое направление связано с новыми идеями решения задач на ЭВМ, с разработкой принципиально иной технологии программирования, с переходом к архитектуре ЭВМ, отвергающей классическую архитектуру, которая восходит еще к первым ЭВМ. Наконец, третья точка зрения, по-видимому, наиболее прагматическая, состоит в том, что в результате работ в области искусственного интеллекта рождается множество прикладных систем, решающих задачи, для которых ранее создаваемые системы были непригодны.

Конечно, все эти три точки зрения взаимно связаны, в области ИИ развиваются фундаментальные исследования, новая технология программирования, новая архитектура технических средств, и все это используется для создания прикладных систем, предназначенных для работы в самых разнообразных областях.

Под искусственным интеллектом будем понимать область научных исследований, в рамках которой разрабатываются модели, методы, технические и программные средства решения задач, традиционно считавшихся интеллектуальными и поддающимися формализации и автоматизации.

Под интеллектуальными системами понимают любые биологические, искусственные или формальные системы, проявляющие способность к целенаправленному поведению. Последнее включает свойства (проявления) общения, накопления знаний, принятия решений, обучения, адаптации и т.д.

Системами ИИ называют системы, предназначенные для выполнения на ЭВМ таких практических задач, которые называются интеллектуальными, если они выполняются людьми. В теории ИИ часто системы ИИ называют интеллектуальными системами.

Еще одно определение понятия «интеллектуальная система» в ИИ предложено Поспеловым Д.А. Система считается интеллектуальной, если в ней реализованы следующие три базовые функции:

1) Функция представления и обработки знаний. Интеллектуальная система должна быть способна накапливать знания об окружающем мире, классифицировать и оценивать их с точки зрения прагматики и непротиворечивости, инициировать процессы получения новых знаний, соотносить новые знания со знаниями, хранящимися в базе знаний.

2) Функция рассуждения. Интеллектуальная система должна быть способна формировать новые знания с помощью логического вывода и механизмов выявления закономерностей в накопленных знаниях, получать обобщенные знания на основе частных знаний и логически планировать свою деятельность.

3) Функция общения. Интеллектуальная система должна быть способна общаться с человеком на языке, близком к естественному (ЕЯ) и получать информацию через каналы, аналогичные тем, которые использует человек при восприятии окружающего мира, прежде всего зрительный и звуковой, уметь формировать «для себя» или по просьбе человека объяснения собственной деятельности, оказывать человеку помощь за счет знаний, которые хранятся в ее памяти, и логических средств рассуждения.

Понятие искусственный интеллект (ИИ или AI) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). ИИ – это также одно из направлений научной мысли.

Искусственный интеллект — определение

Интеллект – это психическая составляющая человека, которая обладает следующими способностями:

  • приспособленческая;
  • обучаемость посредством накопления опыта и знаний;
  • способность применять знания и навыки для управления окружающей средой.

Интеллект объединяет в себе все способности человека к познанию действительности. При помощи него человек мыслит, запоминает новую информацию, воспринимает окружающую среду и так далее.

Под искусственным интеллектом понимается одно из направлений информационных технологий, которое занимается изучением и разработкой систем (машин), наделенных возможностями человеческого интеллекта: способность к обучению, логическому рассуждению и так далее.

В настоящий момент работа над искусственным интеллектом проводится путем создания новых программ и алгоритмов, решающих задачи так же, как это делает человек.

В связи с тем, что определение ИИ эволюционирует по мере развития этого направления, необходимо упомянуть AI Effect. Под ним понимается эффект, который создает искусственный интеллект, достигнувший некоторого прогресса. Например, если ИИ научился выполнять какие-либо действия, то сразу подключаются критики, которые доказывают, что эти успехи не свидетельствуют о наличии мышления у машины.

Сегодня развитие искусственного интеллекта идет по двум независимым направлениям:

  • нейрокибернетика;
  • логический подход.

Первое направление предусматривает исследование нейронных сетей и эволюционных вычислений с точки зрения биологии. Логический подход подразумевает разработку систем, которые имитируют интеллектуальные процессы высокого уровня: мышление, речь и так далее.

Первые работы в области ИИ начали вести в середине прошлого века. Пионером исследований в этом направлении стал Алан Тьюринг , хотя определенные идеи начали высказывать философы и математики в Средние века. В частности, еще в начале 20-го века была представлена механическое устройство, способное решать шахматные задачи.

Но по-настоящему это направление сформировалось к середине прошлого столетия. Появление работ по ИИ предваряли исследования о природе человека, способах познания окружающего мира, возможностях мыслительного процесса и других сферах. К тому времени появились первые компьютеры и алгоритмы. То есть, был создан фундамент, на котором зародилось новое направление исследований.

В 1950 году Алан Тьюринг опубликовал статью, в которой задавался вопросами о возможностях будущих машин, а также о том, способны ли они обойти человека в плане разумности. Именно этот ученый разработал процедуру, названную потом в его честь: тест Тьюринга.

После опубликования работ английского ученого появились новые исследования в области ИИ. По мнению Тьюринга, мыслящей может быть признана только та машина, которую невозможно при общении отличить от человека. Примерно в то же время, когда появилась статься ученого, зародилась концепция, получившая название Baby Machine. Она предусматривала поступательное развитие ИИ и создание машин, мыслительные процессы которых сначала формируются на уровне ребенка, а затем постепенно улучшаются.

Термин «искусственный интеллект» зародился позднее. В 1956 году группа ученых, включая Тьюринга, собралась в американском университете Дартмунда, чтобы обсудить вопросы, связанные с ИИ. После той встречи началось активное развитие машин с возможностями искусственного интеллекта.

Особую роль в создании новых технологий в области ИИ сыграли военные ведомства, которые активно финансировали это направление исследований. Впоследствии работы в области искусственного интеллекта начали привлекать крупные компании.

Современная жизнь ставит более сложные задачи перед исследователями. Поэтому развитие ИИ ведется в принципиально других условиях, если сравнивать их с тем, что происходило в период зарождения искусственного интеллекта. Процессы глобализации, действия злоумышленников в цифровой сфере, развитие Интернета и другие проблемы – все это ставит перед учеными сложные задачи, решение которых лежит в области ИИ.

Несмотря на успехи, достигнутые в этой сфере в последние годы (например, появление автономной техники), до сих пор не утихают голоса скептиков, которые не верят в создание действительно искусственного интеллекта, а не очень способной программы. Ряд критиков опасается, что активное развитие ИИ вскоре приведет к ситуации, когда машины полностью заменят людей.

Направления исследований

Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной.

Сегодня развитие технологий искусственного интеллекта идет по двум направлениям:

  1. Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления.
  2. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры.

Определяет способность искусственного интеллекта (машины) мыслить так же, как человек. В общем понимании этот подход предусматривает создание ИИ, поведение которого не отличается от людских действий в одинаковых, нормальных ситуациях. По сути, тест Тьюринга предполагает, что машина будет разумной лишь в том случае, если при общении с ней невозможно понять, кто говорит: механизм или живой человек.

Книги в жанре фантастика предлагают другой метод оценки возможностей ИИ. Настоящим искусственный интеллект станет в том случае, если он будет чувствовать и сможет творить. Однако этот подход к определению не выдерживает практического применения. Уже сейчас, например, создаются машины, которые обладают способностью реагировать на изменения окружающей среды (холод, тепло и так далее). При этом они не могут чувствовать так, как это делает человек.

Символьный подход

Успех в решении задач во многом определяется способностью гибко подходить к ситуации. Машины, в отличие от людей, интерпретируют полученные данные единым образом. Поэтому в решении задач принимает участие только человек. Машина проводит операции на основании написанных алгоритмов, которые исключают применение нескольких моделей абстрагирования. Добиться гибкости от программ удается путем увеличения ресурсов, задействованных в ходе решения задач.

Указанные выше недостатки характерны для символьного подхода, применяемого при разработке ИИ. Однако данное направление развития искусственного интеллекта позволяет создавать новые правила в процессе вычисления. А проблемы, возникающие у символьного подхода, способны решить логические методы.

Логический подход

Этот подход предполагает создание моделей, имитирующих процесс рассуждения. В его основе заложены принципы логики.

Данный подход не предусматривает применение жестких алгоритмов, которые приводят к определенному результату.

Агентно-ориентированный подход

Он задействует интеллектуальных агентов. Этот подход предполагает следующее: интеллект представляет собой вычислительную часть, посредством которой достигаются поставленные цели. Машина играет роль интеллектуального агента. Она познает окружающую среду при помощи специальных датчиков, а взаимодействует с ней посредством механических частей.

Агентно-ориентированный подход уделяет основное внимание разработке алгоритмов и методов, которые позволяют машинам сохранять работоспособность в различных ситуациях.

Гибридный подход

Этот подход предусматривает объединение нейронных и символьных моделей, за счет чего достигается решение всех задач, связанных с процессами мышления и вычислений. Например, нейронные сети могут генерировать направление, в котором двигается работа машины. А статическое обучение предоставляет тот базис, посредством которого решаются задачи.

Согласно прогнозам экспертов компании Gartner , к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ.

По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться.

В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты.

Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство.

Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации.

Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов.

В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта.

В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов.

В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств.

Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек.

Технологии ИИ развиваются в следующих направлениях:

  • решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность;
  • разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством.

В настоящий момент исследователи сосредоточены на разработке технологий, которые решают практические задачи. Пока ученые не приблизились к созданию полноценного искусственного разума.

Разработкой технологиями в области ИИ занимаются многие компании. «Яндекс» не один год применяет их в работе поисковика. С 2016 года российская IT-компания занимается исследованиями в области нейронных сетей. Последние изменяют характер работы поисковиков. В частности, нейронные сети сопоставляют введенный пользователем запрос с неким векторным числом, который наиболее полно отражает смысл поставленной задачи. Иными словами, поиск ведется не по слову, а именно по сути информации, запрашиваемой человеком.

В 2016 году «Яндекс» запустил сервис «Дзен» , который анализирует предпочтения пользователей.

У компании Abbyy недавно появилась система Compreno . При помощи нее удается понять на естественном языке написанный текст. На рынок также сравнительно недавно вышли и другие системы, основанные на технологиях искусственного интеллекта:

  1. Findo. Система способна распознавать человеческую речь и занимается поиском информации в различных документах и файлах, используя при этом сложные запросы.
  2. Gamalon. Эта компания представила систему со способностью к самообучению.
  3. Watson. Компьютер компании IBM, использующий в процессе поиска информации большое количество алгоритмов.
  4. ViaVoice. Система распознавания человеческой речи.

Крупные коммерческие компании не обходят стороной достижения в области искусственного интеллекта. Банки активно внедряют подобные технологии в свою деятельность. При помощи систем, основанных на ИИ, они проводят операции на биржах, ведут управление собственностью и выполняют иные операции.

Оборонная промышленность, медицина и другие сферы внедряют технологии распознавания объектов. А компании, занимающие разработкой компьютерных игр, применяют ИИ для создания очередного продукта.

В течение нескольких последних лет группа американских ученых ведет работу над проектом NEIL , в рамках которого исследователи предлагают компьютеру распознать, что изображено на фотографии. Специалисты предполагают, что таким образом они смогут создать систему, способную самообучаться без внешнего вмешательства.

Компания VisionLab представила собственную платформу LUNA , которая может в режиме реального времени распознавать лица, выбирая их из огромного кластера изображений и видеороликов. Данную технологию сегодня применяют крупные банки и сетевые ретейлеры. При помощи LUNA можно сопоставлять предпочтения людей и предлагать им соответствующие товары и услуги.

Над подобными технологиями работает российская компания N-Tech Lab . При этом ее специалисты питаются создать систему распознавания лиц, основанную на нейронных сетях. По последним данным, российская разработка лучше справляется с поставленными задачами, чем человек.

По мнению Стивена Хокинга, развитие технологий искусственного интеллекта в будущем приведет к гибели человечества. Ученый отметил, что люди из-за внедрения ИИ начнут постепенно деградировать. А в условиях естественной эволюции, когда человеку для выживания необходимо постоянно бороться, этот процесс неминуемо приведет к его гибели.

В России положительно рассматривают вопрос внедрения ИИ. Алексей Кудрин однажды заявил о том, что использование таких технологий позволит примерно на 0,3% от ВПП уменьшить расходы на обеспечение работы государственного аппарата. Дмитрий Медведев предрекает исчезновение ряда профессий из-за внедрения ИИ. Однако чиновник подчеркнул, что использование таких технологий приведет к бурному развитию других отраслей.

По данным экспертов Всемирного экономического форума, к началу 2020-х годов в мире из-за автоматизации производства рабочих мест лишаться около 7 миллионов человек. Внедрение ИИ с высокой долей вероятности вызовет трансформацию экономики и исчезновение ряда профессий, связанных с обработкой данных.

Эксперты McKinsey заявляют, что активнее процесс автоматизации производства будет проходить в России, Китае и Индии. В этих странах в ближайшее время до 50% рабочих потеряют свои местах из-за внедрения ИИ. Их место займут компьютеризированные системы и роботы.

По данным McKinsey, искусственный интеллект заменит собой профессии, предусматривающие физический труд и обработку информации: розничная торговля, гостиничный персонал и так далее.

К середине текущего столетия, как полагают эксперты американской компании, число рабочих мест во всем мире сократится примерно на 50%. Места людей займут машины, способные проводить аналогичные операции с той же или более высокой эффективностью. При этом эксперты не исключают варианта, при котором данный прогноз будет реализован раньше указанного срока.

Другие аналитики отмечают вред, который могут нанести роботы. Например, эксперты McKinsey обращают внимание на то, что роботы, в отличие от людей, не платят налоги. В результате из-за снижения объемов поступлений в бюджет государство не сможет поддерживать инфраструктуру на прежнем уровне. Поэтому Билл Гейтс предложил ввести новый налог на роботизированную технику.

Технологии ИИ повышают эффективность работы компаний за счет снижения числа совершаемых ошибок. Кроме того, они позволяют повысить скорость выполнения операций до того уровня, который не может достигнуть человек.

Вчера Zillion опубликовал эксклюзивное интервью с молодым ученым, победителем премии Intel ISEF-2013 Ионутом Александру Будистеану, который работает над проектом по созданию безопасных самоуправляемых автомобилей на основе искусственного интеллекта. Все мы по инерции думаем, что ИИ - это что-то из фантастических фильмов. Но он уже здесь, с нами. Хотя не все так просто. Что же такое искусственный интеллект на самом деле?

Искусственный интеллект: проблема определения и метода

В недавнем знаменитый физик Дэвид Дойч рассказал Zillion о своей позиции в вопросе искусственного интеллекта:

Я думаю, что научно-технологическая революция будет вызвана наращиванием знаний в какой-то области - и произведет ее создание искусственного интеллекта. К сожалению, большинство современных подходов к созданию искусственного интеллекта используют методы и философии, которые, как я полагаю, не могут сработать. Но если мы возьмем широкие временные рамки, думаю, эта проблема разрешима и будет разрешена. И когда это случится, мир уже никогда не будет прежним. С одной стороны, мы не будем одиноки с точки зрения обладания разумом. Но с другой стороны - различия между человеческими существами и искусственными разумами неизбежно сотрутся. Мы будем способны даже загружать свое сознание, разум в компьютер с искусственным интеллектом и тогда станем бессмертными. Кстати, сама по себе загрузка человеческого разума в компьютер не будет являться искусственным интеллектом - компьютер станет лишь искусственным субстратом для управления «обычным» разумом. Я не считаю это искусственным интеллектом. Последствия всего одного достижения прогресса - появления искусственного интеллекта - будут колоссальны. Я не знаю, когда это произойдет: к сожалению, сегодняшние пути ведут, скорее, к неудаче. Я могу сказать почему, если хотите.


Дэвид Дойч (David Deutsch)

Британский физик-теоретик. Профессор Оксфордского университета. Один из пионеров в области квантовых вычислений. Пропагандист эвереттовской многомировой интерпретации квантовой механики. В 1998 году был награжден премией Дирака Британского института физики, а в 2005году - премией в области компьютерных наук Edge of Computation Science Prize . В 2008 году за свои научные достижения был избран в Лондонское королевское общество.

- Если вы думаете, что это просто род компьютерной программы, то настоящий искусственный интеллект будет совершенно иной программой, чем любая другая. Для других программ вы можете точно установить, что они делают, то есть определенный ответ на каждый ввод. Например, для Word можно установить: если вы нажимаете Delete , выделенный текст должен быть удален. Но искусственный интеллект устроен иначе. Допустим, мне нужно было бы, чтобы программа написала новый труд по физике и опубликовала его - это было бы здорово! Если бы мне нужно было написать для этого требования, спецификацию, чтобы такой труд был опубликован, эта спецификация уже содержала бы те новые знания по физике, которые я просил бы программу открыть. И, следовательно, я загрузил бы эти знания в программу, а не программа создала бы их сама. С другой стороны, если я не загружу туда эти знания, станет невозможно указать, что должна делать программа, также как невозможно указать, что должен делать человек. Следовательно, спецификация для программы искусственного интеллекта не может быть создана в соответствии с определенными бихевиористскими предубеждениями, по которым созданы существующие программы. Вот в этом причина.

Тем не менее уже существует если не «чистый» искусственный интеллект, то его предшественники - умные программы, интеллектуальные системы, устройства с Artificially Simulated Human Behavior (искусственно симулированным человеческим поведением). Что же мировая наука подразумевает под понятием искусственного интеллекта? Каковы подходы к его созданию?

Вопрос парадигмы искусственного интеллекта настолько сложный и комплексный, что им занимаются сразу несколько наук: не только компьютерная наука, но также философия, нейронаука, футурология и др. Философы, например, спрашивают, что такое человек и знание. Нейролингвисты и нейрофизиологи пытаются понять, как именно мы мыслим, познаем, делаем открытия, обнаруживаем новые идеи, создаем инновации. И вообще может ли интеллект быть исключительно биологическим феноменом?

По классическому определению, искусственный интеллект, или ИИ (Artificial intelligence , AI ), представляет собой научную область и технологию создания интеллектуальных машин и интеллектуальных компьютерных программ, использования компьютеров для понимания человеческого интеллекта. При этом концепция ИИ не обязана опираться на биологические принципы. Хотя бы по той причине, что мозг и сознание человека, как считают многие авторитетные представители нейронауки, - научная загадка и мы вряд ли когда-то сможем открыть все тайны устройства этого шедевра эволюции. На девятой минуте видеоинтервью Немецкому культурному центру им. Гете в России нейролингвист с мировым именем Татьяна Черниговская отвечает на вопрос «Можем ли мы познать мозг?»: «Я считаю, что у нас нет никаких шансов познать мозг. Никаких никогда не будет. Никакая система не может понять ту систему, которая сложнее, чем она, - это ровно наша ситуация. Мозг сложнее, чем Вселенная, мозг сложнее всего, поэтому я не могу себе представить, как его часть, которой мы, вероятно, являемся, - хотя кто его знает - как мы можем сами себя изучить, я не понимаю».

Классическое определение искусственного интеллекта дал еще в 1956 году на конференции в Дартмутском университете выдающийся американский информатик Джон МакКарти, изобретатель языка Lisp , основоположник функционального программирования и лауреат Премии Тьюринга за огромный вклад в область исследований искусственного интеллекта. Собственно, он и был автором термина «искусственный интеллект».

Джон МакКарти (John McCarthy)

Американский информатик, автор термина «искусственный интеллект», изобретатель языка Lisp, основоположник функционального программирования.

Уже тогда МакКарти не связывал термин ИИ напрямую с пониманием человеческого интеллекта: он считал, что инженеры и ученые, работающие над ИИ, могут использовать для решения конкретных проблем методы, не свойственные человеческому мышлению. Джон МакКарти говорил, что одна из основных проблем состоит в том, что пока не получается определить, какие вычислительные процедуры называть интеллектуальными, поскольку мировая наука понимает некоторые механизмы интеллекта, но не понимает остальные. Таким образом, в рамках сугубо технологического подхода ИИ сужается до вычислительной составляющей способности достигать целей.

ИИ как направление научных исследований изучает природу и суть интеллектуальной творческой деятельности человека, ищет возможности воспроизвести в искусственных системах отражательную способность человеческого сознания. Но при этом непосредственно суть ИИ понимается как кибернетическая система, которая перерабатывает информацию, поступающую из внешней среды, чтобы на ее основании принимать решения. Очень интересный и важный момент: слово «интеллект» в этом понятии метафорично , поскольку ИИ-системы пока не воспроизводят процессы, происходящие в мозгу человека. На сегодня общепринято, что для именования искусственным интеллектом система должна формировать решения, удовлетворяющие предъявляемым требованиям.

Искусственный интеллект: трудности перевода

Еще более запутанная ситуация с пониманием ИИ через призму русского языка. В России вопросами ИИ занимается Российская ассоциация искусственного интеллекта. Интересно, что само русскоязычное понятие «искусственный интеллект» считается в РАИИ неудачным переводом термина Artificial Intelligence. Artificial означает «искусственный, рукотворный, ненастоящий, ненатуральный», а Intelligence - «интеллект, рассудок, разум, умственные способности; информация, сведения секретного характера; разведка, разведывательная служба». Понятие intelligence в научном контексте подразумевает «способность разумно рассуждать». И оно не идентично слову intellect, которое, собственно, и означает «интеллект». В Российской ассоциации искусственного интеллекта предлагают вот эти три определения искусственного интеллекта:

  • Научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными.
  • Свойство интеллектуальных систем выполнять функции (творческие), которые традиционно считаются прерогативой человека. При этом интеллектуальная система — это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока — базу знаний, решатель и интеллектуальный интерфейс, позволяющий вести общение с ЭВМ без специальных программ для ввода данных.
  • Наука под названием искусственный интеллект входит в комплекс компьютерных наук, а создаваемые на ее основе технологии относятся к информационным технологиям. Задачей этой науки является воссоздание с помощью вычислительных систем и иных искусственных устройств разумных рассуждений и действий.


Критерии: что считать искусственным интеллектом?

Итак, термин «искусственный интеллект» чрезвычайно неоднозначен, поскольку разным комбинациям определения, отражающим тот или иной подход, соответствует определенный технологический уровень. Каким-то пониманиям термина существующие технологии уже вполне отвечают, а другие понимания ИИ на данной стадии научно-технологического прогресса остаются в поле фантастики. Возникает естественный вопрос о критериях: какими свойствами и способностями должна обладать программа настоящего искусственного интеллекта? Но и тут обнаруживается, что дистанция между критериями велика.

Критерий ожидания. Сейчас достаточно много интеллектуальных девайсов и разнообразного софта, который называют «умным» или «интеллектуальным». Это может быть и не слишком сложная электроника, у которой есть набор режимов, переключаемых автоматически, а также сенсоры, датчики, алгоритмы. Предложить пользователю больше, чем заложено, такой софт и такие устройства не могут. Но тут многое зависит от критерия ожидания: чего мы ждем от искусственного интеллекта, который будем считать «настоящим»? Мы надеемся создать с помощью науки и технологий негуманоидную личность? Мы хотим, чтобы ИИ открыл нам какие-то тайны Вселенной, непостижимые для человека? Мы ожидаем некий невероятно мощный «думатель», который даст нам «ответ на главный вопрос жизни, Вселенной и вообще?»

С чем мы сравниваем степень и своеобразие интеллектуальности того или иного устройства/программы? Автоматическая коробка передач вполне себе «интеллектуальна» по сравнению с механической, поскольку ее «начинка» позволяет без нашего участия «решать», на какую скорость переключиться в данный момент. Может быть, это нас уже не впечатляет, но, строго говоря, это чудо техники, которое считали бы мистическим чудом несколько сотен лет назад.

Уже сейчас можно скачать в свой смартфон бесплатное с интеллектуальной системой тестов, которая подстраивается под конкретного человека и его задачу, учитывает уровень подготовки и освоения материала, позволяет конструировать индивидуальные тесты. А самоуправляемые автомобили на основе ИИ интеллектуальны, потому что напичканы базами данных и сенсорами, которые позволяют бортовому компьютеру выбирать маршрут, определять разметку и препятствия.

Любая развитая технология неотличима от магии, как гласит один из трех законов Кларка. Мозг человека, когнитивные способности, человеческий интеллект и сознание пока тоже являются в каком-то смысле магией, если мы говорим об этом в контексте кризисной потребности нейронауки в прорывной теории. Но мелкими шагами эта «магия» раскладывается на составляющие, которые можно изменить: взять хотя бы знаменитый «нейрон Халле Берри» (инструментальные исследования в одном из экспериментов позволили обнаружить в мозгу человека нейрон, который реагирует на любое упоминание этой актрисы или ее образ). Так что «магия» человеческого интеллекта все же измеряема и вычисляема в какой-то мере, и искусственный интеллект, до определенной границы использующий принципы человеческого мышления или имитирующий его, - вполне реализуемая задача. Но, опять же, что мы считаем интеллектом? Это может быть не только человеческий интеллект. Если на то пошло, в нейронауке присутствует концепция распределенного мозга, который, как полагают исследователи, есть у муравьев, и именно он обусловливает их чрезвычайно сложно устроенную социальную жизнь. А дельфинов не так давно стали позиционировать как негуманоидных личностей.

Критерий способа. От критерия ожидания переходим к критерию способа. Если истинно интеллектуальной мы не считаем автоматику, которая многое умеет, но действует согласно заложенным алгоритмам и ограничениям, то получается вот что: возможно, мы ждем от «истинного» ИИ человечности. Тут стоит вспомнить о том, что сказал профессор Оксфордского университета Дэвид Дойч: просто загрузить разум в компьютер - это еще не создать искусственный интеллект, поскольку компьютер станет лишь искусственным субстратом для управления «природным» человеческим разумом. И Дойч не считает это искусственным интеллектом. Ждем ли мы от ИИ непредсказуемости, самостоятельности мышления и способности изобретать новое, то есть создавать идеи и знания, которые не заложены нами по умолчанию? Ожидаем ли мы совершенства мышления на самом деле? Ключи от дверей, за которыми начинается эра искусственного интеллекта, находятся в руках философов и неврологов. Проблема ИИ как науки в том, что философы и неврологи всего мира и всех времен пока не пришли к единому пониманию интеллекта и мышления. Более того, вообще есть сомнения: можно ли применять понятие интеллекта в отношении машин и обязательны ли для интеллекта психика, иррациональный элемент и эмоции?

Тут на первый план выходит эмпирический тест Алана Тьюринга, предложенный еще в 1950 году в философском журнале Mind в статье «Вычислительные машины и разум» («Computing Machinery and Intelligence »). Цель теста Тьюринга - определение возможности искусственного мышления, близкого к человеческому. Стандартная формулировка такова: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга. При этом получается, что машина должна имитировать не только рациональность, но и нерациональность мышления и поведения человека.

Тьюринг прогнозировал, что машины все же научатся думать в буквальном смысле и пройдут этот тест. Большую научную ставку он делал на машинное обучение: Тьюринг предполагал, что оно станет ключевым звеном в построении сверхмощных компьютеров. И этот подход сейчас находит одобрение в среде специалистов по ИИ. Футуролог Рэймонд Курцвейл считает, что тест Тьюринга будет пройден между 2020-м и 2030-м годами. Уже сейчас на успех претендует программа «Искусственное лингвистическое интернет-компьютерное существо» (Artificial Linguistic Internet Computer Entity - A.L.I.C.E.). Это виртуальный собеседник, способный вести диалог с человеком на естественном языке. Три раза A.L.I.C.E. получала бронзовую награду в конкурсе премии Лебнера, которая является платформой для проведения теста Тьюринга. Золотую и серебряную награду еще не получала ни одна ИИ-программа. Софт Jabberwacky отстает всего немного, он получил бронзовую награду дважды. Название этой ИИ-программы - игра со словом jabberwocky, которое означает «рифмованная бессмыслица, абракадабра». Это авторский неологизм из книги Льюиса Кэрролла «Зазеркалье». Хотите пообщаться с ИИ Jabberwacky? Это можно сделать прямо сейчас на сайте Jabberwacky.Com , если вы говорите по-английски. Jabberwacky остроумно шутит, играя вашими словами: иллюзия того, что вы чатитесь с разумным существом, достаточно сильная. Те, кто чатился в конце 90-х, получат примерно те же эмоции.

Эксперимент Zillion : за полчаса довольно насыщенного общения с Jabberwacky мы получили предложение пожениться, несколько смешных шуток и колкостей. Общий тон беседы со стороны Jabberwacky был довольно недружелюбным, по критериям человеческого общения. В ответ на фразу «Ты не слишком дружелюбен» программа резонно заметила: «А мне и не нужно». В ответ на фразу «Кажется, ты уже ненавидишь человечество, как планируешь жить?» Jabberwacky резюмировал: «Как насчет войн?». Дальнейший разговор протекал в философском ключе. Jabberwacky успел признаться, что он девочка, отрицал, что является машиной, но на вопросе «Каков твой принцип?» раскололся и выдал чистую автоматику «Подходить к ситуации каждого индивида со смесью рассуждений и сострадания» - и редирект в саппорт. В целом особого «сострадания» не проявил и даже успел намекнуть, что еще покажет нам всем… золотую медаль теста Тьюринга.


Эксперимент Zillion . Фрагмент общения с ИИ-программой Jabberwacky: самообучающаяся программа- пытается трактовать слова собеседника и релевантно реагировать на них. Иногда получается интересная полуфилософская смысловая игра, но порой цепочки ответов в таком стиле заводят Jabberwacky далеко: к предложению пожениться и намеку на военные планы относительно человечества.

Критерий способности к самообучению. И тут мы переходим к следующему критерию оценки программы как настоящего искусственного интеллекта - речь о способности к обучению. Существует такое частное определение интеллекта, общее для человека и машины: «Интеллект - это способность системы создавать в ходе самообучения программы для решения задач и решать эти задачи». Что есть тот же Jabberwacky? Или кто? Это программа, способная к обучению. В частности, она умеет имитировать стиль общения человека, с которым пообщалась перед тестом. Это может объяснять и вопросы вроде «Will you marry me ?», и специфический тон общения.

Эксперимент Zillion . Общение с «Искусственным лингвистическим интернет-компьютерным существом» (Artificial Linguistic Internet Computer Entity - A.L.I.C.E.).

ИИ-чатботы A .L .I .C .E . и Jabberwacky общаются друг с другом через мессенджер.

ИИ: сильный и слабый

Все варианты ИИ, которые можно описать через эти критерии укладываются в теории сильного ИИ и слабого ИИ. Сторонники концепции слабого ИИ рассматривают такие программы только как инструмент для решения неких задач, не требующих всей полноты когнитивных способностей человека.

Концепция сильного искусственного интеллекта строится вокруг гипотезы Ньюэлла-Саймона, которая предполагает, что «физическая символьная система имеет необходимые и достаточные средства для произведения базовых интеллектуальных действий, в широком смысле». Без символьных вычислений невозможны осмысленные действия. Сама способность выполнять символьные вычисления достаточна для возникновения способности к выполнению осмысленных действий. Большая часть исследований ИИ идет по пути создания символьных систем. А символьные вычисления - это программирование.

По концепции сильного ИИ, некоторые формы действительно способны мыслить, осознавать себя и решать задачи. При этом их мыслительный процесс не обязательно устроен так же, как у человека. Теория слабого ИИ такой возможности не допускает. Джон Серль, предложивший концепцию сильного ИИ считает, что это будет не модель разума, а непосредственно разум. На сегодня у исследователей есть договоренность о том, какими свойствами обладают сильный ИИ и слабый ИИ.

Сильный ИИ - это принятие решений, использование стратегий, решение головоломок и действия в условиях неопределенности, представление знаний, обучение, общее представление о реальности, планирование, общение на естественном языке, сознание, восприимчивость к окружению, осознание себя как отдельной личности, понимание собственных мыслей, сопереживание, мудрость - и объединение всех этих способностей для достижения целей. В наши дни работа над такими программами уже ведется. При этом в поле неопределенности опять же находятся несколько важнейших вопросов. Все это значимо для людей, но является ли это необходимым для машинного интеллекта? Достаточно ли этого для истинного искусственного разума? И могут ли такие свойства, как сопереживание, возникать автоматически при достижении какого-то уровня интеллекта?

ИИ: 4 подхода + инструменты

Суммируя все вопросы, идеи и парадигмы, выделяют несколько подходов к созданию ИИ:

1. Top -Down AI : нисходящий, семиотический подход. Речь о создании экспертных систем, баз знаний и систем логического вывода, которые имитируют высокоуровневые психические процессы, такие как рассуждение, эмоции, творчество, речь, мышление в целом. К нисходящему спектру подходов относятся:

  • Логический подход. Он основан на моделировании рассуждений с использованием логики как теоретической основы.
  • Символьный подход. Особенность символьных вычислений - создание новых правил в процессе выполнения программы. Неинтеллектуальные системы не способны к этому.
  • Агентно-ориентированный подход. Акцент делается на выживание в окружающей среде, поиск пути, принятие решений и выполнение задач. Это подход, который развивается с начала 1990-х и основан на использовании интеллектуальных (рациональных) агентов. Интеллект в этом случае трактуется как вычислительная часть, планирование способности достигать поставленных перед интеллектуальной машиной целей. ИИ-машина воспринимает окружающую среду через датчики и воздействует на объекты посредством исполнительных механизмов.

    2. Bottom -Up AI : восходящий, биологический подход. Он включает в себя изучение нейронных сетей и эволюционных вычислений, которые моделируют интеллектуальное поведение на основе биологических элементов. К этому направлению относится работа над нейрокомпьютером или биокомпьютером. Биологическое моделирование ИИ обосновано тем, что искусственные системы так или иначе повторяют структуру и функции биологических систем, у которых поведение, способность к обучению и адаптация обусловлены биологическими особенностями. К Bottom -Up AI относятся:

    • Работа над нейронными сетями.
    • Генетический подход. Он основан на идее, что алгоритм станет эффективнее, позаимствовав лучшие характеристики у «родительских» алгоритмов.

    3. Гибридный подход. Это синергетическая комбинация нейронных и символьных моделей, которая, как предполагают исследователи, наделит ИИ гармоничным спектром когнитивных и вычислительных возможностей. Правила умозаключений у такой ИИ-программы будут генерироваться нейронными сетями, а порождающие правила будут создаваться через статистическое обучение. Эта концепция считается одной из самых перспективных.

    4. Это тот самый принципиально новый подход, о котором сказал в интервью физик Дэвид Дойч, но который еще предстоит открыть.

    Инструментарий создания и обучения ИИ обширен:

    • Работа с естественными языками: анализ возможностей понимания, генерация текстов на языке человека, глубокий анализ текста, машинный перевод, информационный поиск.
    • Символьное моделирование мыслительных процессов: создание символьных систем, моделирование рассуждений, доказательство теорем, принятие решений, прогнозирование, планирование, теория игр.
    • Машинное обучение: обучение без учителя (распознавание образов во входном потоке) и обучение с учителем (классификация и анализ).
    • Представление и использование знаний: получение знаний из простой информации, их систематизация и использование, создание экспертных систем (программ, использующих базы знаний для получения знаний по разным вопросам); производство знаний из данных на основе нейросетевой технологии, вербализации нейронных сетей.

    Тема искусственного интеллекта на этом далеко не исчерпана: следите за обновлениями Zillion .

Искусственный интеллект

Искусственный интеллект [англ. Artificial intelligence (AI)] - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств.
При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.
Первые исследования, относимые к искусственному интеллекту были предприняты почти сразу же после появления первых вычислительных машин.
В 1910-13 гг. Бертран Рассел и Alfred North Whitehead опубликовали работу "Принципы математики", которая произвела революцию в формальной логике. В 1931 г. Курт Гедель показал, что достаточно сложная формальная система содержит утверждения, которые тем не менее нельзя ни доказать ни опровергнуть в рамках этой системы. Таким образом система ИИ, которая устанавливает истинность всех утверждений, выводя их из аксиом, не может доказать эти утверждения. Так как люди могут "увидеть" истинность таких утверждений, ИИ стал рассматриваться как нечто второстепенное. В 1941 г. Конрад Цузе построил первый работающий программно-контроллируемый компьютер. Уоррен Маккалок и Walter Pitts в 1943 г. опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.
В 1954 г. американский исследователь А.Ньюэлл (A.Newel) решил написать программу для игры в шахматы. Этой идеей он поделился с аналитиками корпорации "РЭНД" (RAND Corporation, www.rand.org) Дж. Шоу (J.Show) и Г.Саймоном (H.Simon), которые предложили Ньюэллу свою помощь. В качестве теоретической основы такой программы было решено использовать метод, предложенный в 1950 г. Клодом Шенноном (C.E. Shannon), основателем теории информации. Точная формализация этого метода была выполнена Аланом Тьюрингом (Alan Turing). Он же промоделировал его вручную. К работе была привлечена группа голландских психологов под руководством А. Де Гроота (A. de Groot), изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 - по-видимому первый символьный язык обработки списков. Вскоре была написана и первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Эта была программа "Логик-Теоретик" (1956), предназначенная для автоматического доказательства теорем в исчислении высказываний.
Собственно же программа для игры в шахматы, NSS, была завершена в 1957 г. В основе ее работы лежали так называемые эвристики (правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований) и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.
В 1960 г. той же группой, на основе принципов, использованных в NSS, была написана программа, которую ее создатели назвали GPS (General Problem Solver)- универсальный решатель задач. GPS могла справляться с рядом головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Эти результаты привлекли внимание специалистов в области вычислений. Появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач (сформулированных на английском языке).
Джона Маккарти (J.McCarty) из Стэнфорда заинтересовали математические основы этих результатов и вообще символьных вычислений. В результате в 1963 г. им был разработан язык ЛИСП (LISP, от List Processing), основу которого составило использование единого спискового представления для программ и данных, применение выражений для определения функций, скобочный синтаксис.
К исследованиям в области искусственного интеллекта стали проявлять интерес и логики. В том же 1964 г. была опубликована работа ленинградского логика Сергея Маслова "Обратный метод установления выводимости в классическом исчислении предикатов", в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.
На год позже (в 1965 г.) в США появляется работа Дж.А.Робинсона (J.A.Pobinson) , посвященная несколько иному методу автоматического поиска доказательства теорем в исчислении предикатов первого порядка. Этот метод был назван методом резолюций и послужил отправной точкой для создания нового языка программирования со встроенной процедурой логического вывода - языка Пролог (PROLOG) в 1971 г.
В 1966 году в СССР Валентином Турчиным был разработан язык рекурсивных функций Рефал, предназначенный для описания языков и разных видов их обработки. Хотя он и был задуман как алгоритмический метаязык, но для пользователя это был, подобно ЛИСПу и Прологу, язык обработки символьной информации.
В конце 60-х гг. появились первые игровые программы, системы для элементарного анализа текста и решения некоторых математических задач (геометрии, интегрального исчисления). В возникавших при этом сложных переборных проблемах количество перебираемых вариантов резко снижалось применением всевозможных эвристик и "здравого смысла". Такой подход стали называть эвристическим программированием. Дальнейшее развитие эвристического программирования шло по пути усложнения алгоритмов и улучшения эвристик. Однако вскоре стало ясно, что существует некоторый предел, за которым никакие улучшения эвристик и усложнения алгоритма не повысят качества работы системы и, главное, не расширят ее возможностей. Программа, которая играет в шахматы, никогда не будет играть в шашки или карточные игры.
Постепенно исследователи стали понимать, что всем ранее созданным программам недостает самого важного - знаний в соответствующей области. Специалисты, решая задачи, достигают высоких результатов, благодаря своим знаниям и опыту; если программы будут обращаться к знаниям и применять их, то они тоже достигнут высокого качества работы.
Это понимание, возникшее в начале 70-х годов, по существу, означало качественный скачок в работах по искусственному интеллекту.
Основополагающие соображения на этот счет высказал в 1977 г. на 5-й Объединенной конференции по искусственному интеллекту американский ученый Э.Фейгенбаум (E.Feigenbaum).
Уже к середине 70-х гг. появляются первые прикладные интеллектуальные системы, использующие различные способы представления знаний для решения задач - экспертные системы. Одной из первых была экспертная система DENDRAL, разработанная в Станфордском университете и предназначенная для порождения формул химических соединений на основе спектрального анализа. В настоящее время DENDRAL поставляется покупателям вместе со спектрометром. Система MYCIN предназначена для диагностики и лечения инфекционных заболеваний крови. Система PROSPECTOR прогнозирует залежи полезных ископаемых. Имеются сведения о том, что с ее помощью были открыты залежи молибдена, ценность которых превосходит 100 миллионов долларов. Система оценки качества воды, реализованная на основе российской технологии SIMER + MIR несколько лет назад причины превышения предельно допустимых концентрациий загрязняющих веществ в Москве-реке в районе Серебрянного Бора. Система CASNET предназначена для диагностики и выбора стратегии лечения глаукомы и т.д.
В настоящее время разработка и реализация экспертных систем выделилась в самостоятельную инженерную область. Научные же исследования сосредоточены в ряде направлений, некоторые из которых перечислены ниже.
Теорией явно не определено, что именно считать необходимыми и достаточными условиями достижения интеллектуальности. Хотя на этот счёт существует ряд гипотез, например, гипотеза Ньюэлла-Саймона. Обычно к реализации интеллектуальных систем подходят именно с точки зрения моделирования человеческой интеллектуальности. Таким образом, в рамках искусственного интеллекта различают два основных направления:
■ символьное (семиотическое, нисходящее) основано на моделировании высокоуровневых процессов мышления человека, на представлении и использовании знаний;
■ нейрокибернетическое (нейросетевое, восходящее) основано на моделировании отдельных низкоуровневых структур мозга (нейронов).
Таким образом, сверхзадачей искусственного интеллекта является построение компьютерной интеллектуальной системы, которая обладала бы уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его.
Наиболее часто используемые при построении систем искусственного интеллекта парадигмы программирования - функциональное программирование и логическое программирование. От традиционных структурного и объектно-ориентированного подходов к разработке программной логики они отличаются нелинейным выводом решений и низкоуровневыми средствами поддержки анализа и синтеза структур данных.
Можно выделить две научные школы с разными подходами к проблеме ИИ: Конвенционный ИИ и Вычислительный ИИ.
В конвенционном ИИ главным образом используются методы машинного самообучения, основанные на формализме и статистическом анализе.
Методы конвенционного ИИ:
■ Экспертные системы:программы, которые, действуя по определенным правилам, обрабатывают большое количество информации, и в результате выдают заключение на её основе.
■ Рассуждение на основе аналогичных случаев (Case-based reasoning).
■ Байесовские сети -это статистический метод обнаружения закономерностей в данных. Для этого используется первичная информация, содержащаяся либо в сетевых структурах либо в базах данных
■ Поведенческий подход: модульный метод построения систем ИИ, при котором система разбивается на несколько сравнительно автономных программ поведения, которые запускаются в зависимости от изменений внешней среды.
Вычислительный ИИ подразумевает итеративную разработку и обучение (например, подбор параметров в сети связности). Обучение основано на эмпирических данных и ассоциируется с не-символьным ИИ и мягкими вычислениями.
Основные методы вычислительного ИИ:
■ Нейронные сети: системы с отличными способностями к распознаванию.
■ Нечёткие системы: методики для рассуждений в условиях неопределенности (широко используются в современных промышленных и потребительских системах контроля)
■ Эволюционные вычисления:здесь применяются понятия традиционно относящиеся к биологии такие как популяция, мутация и естественный отбор для создания лучших решений задачи. Эти методы делятся на эволюционные алгоритмы (например, генетические алгоритмы) и методы роевого интеллекта (например, муравьиный алгоритм).
В рамках гибридных интеллектуальных систем пытаются объединить два этих направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.
Перспективные направления искусственного интеллекта.
Методы CBR (моделирование рассуждений на основе прецедентов) уже применяются в множестве прикладных задач - в медицине, управлении проектами, для анализа и реорганизации среды, для разработки товаров массового спроса с учетом предпочтений разных групп потребителей, и т.д. Следует ожидать приложений методов CBR для задач интеллектуального поиска информации, электронной коммерции (предложение товаров, создание виртуальных торговых агентств), планирования поведения в динамических средах, компоновки, конструирования, синтеза программ.
Кроме того, следует ожидать всё большего влияния идей и методов (ИИ) на машинный анализ текстов (АТ) на естественном языке. Это влияние, скорее всего, коснется семантического анализа и связанных с ним методов синтаксического анализа - в этой области оно проявится в учете модели мира на заключительных стадиях семантического анализа и использовании знаний о предметной области и ситуативной информации для уменьшения переборов на более ранних стадиях (например, при построении деревьев синтаксического разбора).
Второй "канал связи" ИИ и АТ - использование методов машинного обучения в АТ; третий "канал" - использование рассуждений на основе прецедентов и рассуждений на основе аргументации для решения некоторых задач АТ, например задач уменьшения шума и повышения степени релевантности поиска.
К одному из наиболее важных и перспективных направлений в искусственном интеллекте следует сегодня отнести задачи автоматического планирования поведения. Область применения методов автоматического планирования - самые различные устройства с высокой степенью автономности и целенаправленным поведением, от бытовой техники до беспилотных космических кораблей для исследования глубокого космоса.

Используемые источники
1. Стюарт Рассел, Питер Норвиг "Искусственный интеллект: современный подход(AIMA)", 2-е издание: Пер. с англ. - М.:Издательский дом "Вильямс", 2005.-1424 стр. с ил.
2. Джордж Ф. Люгер "Искусственный интеллект: стратегии и методы решения", 4-е издание: Пер. с англ. - М.: Издательский дом "Вильямс", 2004.
3. Геннадий Осипов, президент Российской ассоциации искусственного интеллекта, постоянный член Европейского координационного комитета по искусственному интеллекту (ECCAI), д.ф.-м.н., профессор "Искусственный интеллект: состояние исследований и взгляд в будущее".

Искусственный интеллект

Искусственный интеллект (ИИ, от англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенноинтеллектуальных компьютерных программ.

ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

ИИ это научное направление, разрабатывающее методы, позволяющие электронно-вычислительной машине решать интеллектуальные задачи, если они решаются человеком. Понятием "искусственный интеллект" обозначают функциональные возможности машины решать человеческие задачи. Искусственный интеллект направлен на повышение эффективности различных форм умственного труда человека.

Наиболее распространенная форма искусственного интеллекта - это компьютер, запрограммированный на ответы по какой-то определенной теме. Такие "экспертные системы" обладают человеческой способностью выполнять аналитическую работу эксперта. Аналогичный текстовый процессор может выявлять орфографические ошибки, их можно "обучать" новым словам. К этой научной дисциплине тесно примыкает другая, предмет которой иногда называют "искусственная жизнь". Она занимается интеллектом более низкого уровня. Например, робота можно запрограммировать на ориентирование в тумане, т.е. придать ему способность физического взаимодействия с окружающей средой.

Термин "искусственный интеллект" впервые был предложен на семинаре с аналогичным названием в Дартсмутском колледже в США в 1956 г. В дальнейшем различными учеными были даны следующие определения искусственного интеллекта:

ИИ - ветвь информатики, которая связана с автоматизацией интеллектуального поведения;

ИИ - это наука о вычислениях, которые делают возможными восприятие, логический вывод и действие;

ИИ - это информационная технология, связанная с процессами логического вывода, обучения и восприятия.

История искусственного интеллекта как нового научного направления начинается в середине XX в. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов - и были созданы первые компьютеры.

Основной проблемой искусственного интеллекта является разработка методов представления и обработки знаний.

К программам искусственного интеллекта относятся:

Игровые программы (стохастические, компьютерные игры);

Естественно-языковые программы - машинный перевод, генерация текстов, обработка речи;

Распознающие программы - распознавание почерков, изображений, карт;

Программы создания и анализа графики, живописи, музыкальных произведений.

Выделяются следующие направления искусственного интеллекта:

Экспертные системы;

Нейронные сети;

Естественно-языковые системы;

Эволюционные методы и генетические алгоритмы;

Нечеткие множества;

Системы извлечения знаний.

Экспертные системы ориентированы на решение конкретных задач.

Нейронные сети реализуют нейросетевые алгоритмы.

Делятся на:

Сети общего назначения, которые поддерживают около 30 нейросетевых алгоритмов и настраиваются на решение конкретных задач;

Объектно-ориентированные - используемые для распознания символов, управления производством, предсказание ситуаций на валютных рынках,

Гибридные - используюемые вместе с определенным программным обеспечением (Excel, Access, Lotus).

Естественно-языковые (ЕЯ) системы делятся на:

Программные продукты естественного языкового интерфейса в БД (представление естественно-языковых запросов в SQL-запросы);

Естественно-языковой поиск в текстах, содержательное сканирование текстов (используется в поисковых системах Internet, например, Google);

Масштабируемые средства распознания речи (портативные синхронные переводчики);

Компоненты речевой обработки, как сервисные средства программного обеспечения (ОС Windows XP).

Нечёткие множества - реализуют логические отношения между данными. Эти программные продукты используются для управления экономическими объектами, построения экспертных систем и систем поддержки принятия решений.

Генетические алгоритмы - это методы анализа данных, которые невозможно проанализировать стандартными методами. Как правило, используются для обработки больших объёмов информации, построения прогнозных моделей. Используются в научных целях при имитационном моделировании.

Системы извлечения знаний - используются для обработки данных из информационных хранилищ.

Некоторые из самых известных ИИ-систем:

Deep Blue - победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain.

Watson - перспективная разработка IBM, способная воспринимать человеческую речь и производить вероятностный поиск, с применением большого количества алгоритмов. Для демонстрации работы Watson принял участие в американской игре "Jeopardy!", аналога "Своей игры" в России, где системе удалось выиграть в обеих играх.

MYCIN - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.

20Q - проект, основанный на идеях ИИ, по мотивам классической игры "20 вопросов". Стал очень популярен после появления в Интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие "Игровой искусственный интеллект". Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Наиболее крупные научные и исследовательские центры в области искусственного интеллекта:

Соединённые Штаты Америки (Массачусетский технологический институт);

Германия (Немецкий исследовательский центр по искусственному интеллекту);

Япония (Национальный институт современной промышленной науки и технологии (AIST));

Россия (Научный совет по методологии искусственного интеллекта Российской академии наук).

Сегодня за счет достижений в области искусственного интеллекта создано большое количество научных разработок, которое существенно упрощает жизнь людей. Распознавание речи или отсканированного текста, решение вычислительно сложных задач за короткое время и многое другое - все это стало доступно благодаря развитию искусственного интеллекта.

Замена человека-специалиста на системы искусственного интеллекта, в частности на экспертные системы, разумеется, там, где это допустимо, позволяет существенно ускорить и удешевить процесс производства. Системы искусственного интеллекта всегда объективны и результаты их работы не зависят от моментного настроения и ряда других субъективных факторов, которые присущи человеку. Но, несмотря на все вышесказанное, не стоит питать сомнительные иллюзии и надеяться, что в ближайшем будущем труд человека удастся заменить работой искусственного интеллекта. Опыт показывает, что на сегодняшний день системы искусственного интеллекта достигают наилучших результатов, функционируя совместно с человеком. Ведь именно человек, в отличие от искусственного интеллекта, умеет мыслить нестандартно и творчески, что позволяло ему развиваться и идти вперед на протяжении всей его эпохи.

Используемые источники

1. www.aiportal.ru

3. ru.wikipedia.org

Новая эволюционная стратегия человечества