Как начертить наклонное сечение. Построение сечений и разрезов на чертежах

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Дмитриев Антон, Киреев Александр

В данной презентации доходчиво, пошагово показаны примеры построения сечений от простых задач к более сложным. Анимация позволяет увидеть этапы построения сечений

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Построение сечений многогранников на примере пр измы ® Создатели: Антон Дмитриев, Киреев Александр. При содействии: Гудковой Ольги Викторовны

План урока Алгоритмы построения сечений Самопроверка Демонстрационные задачи Задачи для закрепления материала

Алгоритмы построения сечений следов параллельных прямых параллельного переноса секущей плоскости внутреннего проектирования комбинированный метод дополнения n -угольной призмы до треугольной призмы Построение сечения методом:

Построение сечения методом следов Основные понятия и умения Построение следа прямой на плоскости Построение следа секущей плоскости Построение сечения

Алгоритм построения сечения методом следов Выяснить имеются ли в одной грани две точки сечения (если да, то через них можно провести сторону сечения). Построить след сечения на плоскости основания многогранника. Найти дополнительную точку сечения на ребре многогранника (продолжить сторону основания той грани, в которой есть точка сечения, до пересечения со следом). Через полученную дополнительную точку на следе и точку сечения в выбранной грани провести прямую, отметить точки пересечения её с рёбрами грани. Выполнить п.1.

Построение сечения призмы Двух точек принадлежащих одной грани нет. Точка R лежит в плоскости основания. Найдем след прямой KQ на плоскости основания: - KQ ∩K1Q1=T1, T1R- след сечения. 3. T1R ∩CD=E. 4. Проведем EQ. EQ∩DD1=N. 5. Проведем NK. NK ∩AA1=M. 6. Соединяем M и R . Построить сечение плоскостью α , проходящей через точки K,Q,R; K є ADD1, Q є CDD1, R є AB.

Метод параллельных прямых В основу метода положено свойство параллельных плоскостей: «Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Основные умения и понятия Построение плоскости параллельной данной Построение линии пересечения плоскостей Построение сечения

Алгоритм построения сечения методом параллельных прямых. Строим проекции точек, определяющих сечение. Через две данные точки (например P и Q) и их проекции проводим плоскость. Через третью точку (например R) строим параллельную ей плоскость α . Находим линии пересечения (например m и n) плоскости α с гранями многогранника содержащими точки P и Q . Через точку R проводим прямую а параллельную PQ . Находим точки пересечения прямой а с прямыми m и n. Находим точки пересечения с ребрами соответствующей грани.

(ПРИЗМА) Строим проекции точек P и Q на плоскости верхнего и нижнего оснований. Проводим плоскость P1Q1Q2P2. Через ребро, содержащее точку R, проводим плоскость α параллельную P1Q1Q2. Находим линии пересечения плоскостей ABB1 и CDD1 с плоскость α . Через точку R проводим прямую a||PQ . a∩n=X, a∩m=Y. XP∩AA1=K, XP∩BB1=L; YQ∩CC1=M, YQ∩DD1=N. KLMNR – искомое сечение. Построить сечение плоскостью α , проходящей через точки P,Q,R; P є ABB1, Q є CDD1, R є EE1.

Метод параллельного переноса секущей плоскости Строим вспомогательное сечение данного многогранника, которое удовлетворяет следующим требованиям: оно параллельно секущей плоскости; в пересечении с поверхностью данного многогранника образует треугольник. Соединяем проекцию вершины треугольника с вершинами той грани многогранника, которую пересекает вспомогательное сечение, и находим точки пересечения со стороной треугольника, лежащей в этой грани. Соединяем вершину треугольника с этими точками. Через точку искомого сечения проводим прямые параллельные построенным отрезкам в предыдущем пункте и находим точки пересечения с ребрами многогранника.

ПРИЗМА R є AA1, P є EDD1, Q є CDD1. Построим вспомогательное сечение AMQ1 ||RPQ. Проведем AM||RP, MQ1||PQ, AMQ1∩ABC=AQ1. P1- проекция точек Р и М на АВС. Проведем Р1В и Р1С. Р1В∩ AQ1=O1, P1C ∩ AQ1=O2. Через точку Р проведем прямые m и n соответственно параллельные МО1 и МО2. m∩BB1=K, n∩CC1=L. LQ∩DD1=T, TP∩EE1=S. RKLTS – искомое сечение Построить сечение призмы плоскостью α , проходящей через точки P,Q,R; P є EDD1, Q є CDD1, R є AA1 .

Алгоритм построения сечения методом внутреннего проектирования. Построить вспомогательные сечения и найти линию их пересечения. Построить след сечения на ребре многогранника. Если точек сечения не хватает для построения самого сечения повторить пп.1-2.

Построение вспомогательных сечений. ПРИЗМА Параллельное проектирование.

Построение следа сечения на ребре

Комбинированный метод. Через вторую прямую q и какую-нибудь точку W первой прямой р провести плоскость β . В плоскости β через точку W провести прямую q‘ параллельную q . Пересекающимися прямыми p и q‘ определяется плоскость α . Непосредственное построение сечения многогранника плоскостью α Суть метода состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом. Применяется для построения сечения многогранника с условием параллельности. 1. Построение сечения многогранника плоскостью α , проходящей через заданную прямую p параллельно другой заданной прямой q .

ПРИЗМА Построить сечение призмы плоскостью α , проходящей через прямую PQ параллельно AE1; P є BE, Q є E1C1. 1. Проведем плоскость через прямую AE1 и точку P. 2. В плоскости AE1P через точку P проведем прямую q" параллельную AE1. q"∩E1S’=K. 3. Пересекающимися прямыми PQ и PK определяется искомая плоскость α. 4. P1 и K1- проекции точек Р и К на А1В1С1. P1K1∩PK=S”. S”Q∩E1D1=N, S”Q∩B1C1=M, NK∩EE1=L; MN∩A1E1=S”’, S”’L∩AE=T, TP∩BC=V. TVMNL-искомое сечение.

Метод дополнения n -угольной призмы(пирамиды) до треугольной призмы(пирамиды). Данная призма(пирамида) достраивается до треугольной призмы(пирамиды) из тех граней на боковых ребрах или гранях которой лежат точки, определяющие искомое сечение. Строится сечение полученной треугольной призмы(пирамиды). Искомое сечение получается как часть сечения треугольной призмы(пирамиды).

Основные понятия и умения Построение вспомогатель- ных сечений Построение следа сечения на ребре Построение сечения Центральное проектирование Параллельное проектирование

ПРИЗМА Q є BB1C1C, P є AA1, R є EDD1E1. Достраиваем призму до треугольной. Для этого продлим стороны нижнего основания: AE, BC, ED и верхнего основания: A 1 E 1 , B 1 C 1 , E 1 D 1. AE ∩BC=K, ED∩BC=L, A1E1∩B1C1=K1, E1D1∩B1C1=L1. Строим сечение полученной призмы KLEK1L1E1 плоскостью PQR , используя метод внутреннего проектирования. Это сечение является частью искомого. Строим искомое сечение.

Правило для самоконтроля Если многогранник выпуклый, то сечение выпуклый многоугольник. Вершины многоугольника всегда лежат на ребрах многогранника. Если точки сечения лежат на ребрах многогранника, то они являются вершинами многоугольника, который получится в сечении. Если точки сечения лежат на гранях многогранника, то они лежат на сторонах многоугольника, который получится в сечении. Две стороны многоугольника, который получится в сечении, не могут принадлежать одной грани многогранника. Если сечение пересекает две параллельные грани, то и отрезки (стороны многоугольника, который получится в сечении) будут параллельны.

Базовые задачи на построение сечений многогранников Если две плоскости имеют две общие точки, то прямая, проведенная через эти точки, является линией пересечения этих плоскостей. M є AD, N є DCC1, D1 ; ABCDA1B1C1D1- куб M є ADD1, D1 є ADD1, MD1. D1 є D1DC, N є D1DC, D1N ∩ DC=Q. M є ABC, Q є ABC, MQ. II. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. M є CC1, AD1; ABCDA1B1C1D1- куб. MK||AD1, K є BC. M є DCC1, D1 є DCC1, MD1. A є ABC, K є ABC, AK.

III. Общая точка трех плоскостей (вершина трехгранного угла) является общей точкой линий их парного пересечения (ребер трехгранного угла). M є AB, N є AA1, K є A1D1; ABCDA1B1C1D1- куб. NK∩AD=F1 - вершина трехгранного угла образованного плоскостями α , ABC, ADD1. F1M∩CD=F2 - вершина трехгранного угла образованного плоскостями α , ABC, CDD1. F1M ∩BC=P. NK∩DD1=F3 - вершина трехгранного угла образованного плоскостями α , D1DC, ADD1. F3F2∩D1C1=Q, F3F2∩CC1=L. IV. Если плоскость проходит через прямую, параллельную другой плоскости и пересекает ее, то линия пересечения параллельна данной прямой. A1, C, α ||BC1; ABCA1B1C1- призма. α∩ BCC1=n, n||BC1, n∩BB1=S. SA1∩AB=P. Соединяем A1,P и C.

V. Если прямая лежит в плоскости сечения, то точка ее пересечения с плоскостью грани многогранника является вершиной трехгранного угла, образованного сечением, гранью и вспомогательной плоскостью, содержащей данную прямую. M є A1B1C1, K є BCC1, N є ABC; ABCDA1B1C1- параллелепипед. 1 . Вспомогательная плоскость MKK1: MKK1∩ABC=M1K1, MK∩M1K1=S, MK∩ABC=S, S- вершина трехгранного угла образованного плоскостями: α , ABC, MKK1. 2. SN∩BC=P, SN∩AD=Q, PK∩B1C1=R, RM∩A1D1=L.

Задачи. На каком рисунке изображено сечение куба плоскостью ABC ? Сколько плоскостей можно провести через выделенные элементы? Какие аксиомы и теоремы вы применяли? Сделайте вывод, как построить сечение в кубе? Давайте вспомним этапы построения сечений тетраэдра (параллелепипеда, куба). Какие многоугольники могут при этом получиться?

Разрез, служащий для выяснения устройства предмета лишь в от-

дельном, ограниченном месте, называется местным (рис. 24, 25).

Часть вида и часть соответствующего

разреза допускается соединять, разделяя их

сплошной волнистой линией или сплошной

тонкой линией с изломом (рис. 24).Если при

этом соединяются половина вида и полови-

на разреза, каждый из которых является

симметричной фигурой, то разделяющей

линией служит ось симметрии. При этом

ниже оси симметрии (рис. 2, рис. 25).

Если с осью симметрии изображения

совпадает какая – либо линия, например,

проекция ребра (рис. 26), то вид от разреза

отделяют сплошной волнистой линией, проводимой правее, если ребро изо-

бражается на виде (рис. 26, а), или левее, если ребро изображается на разрезе

(рис. 26, б).

Построение сечений

Сечение - изображение фигуры, получающейся при мысленном рассечении предмета плоскостью. На сечении показывается только то, что находится непосредственно в секущей плоскости.

Сечения, не входящие в состав разреза, разделяют на: вынесенные (рис. 27) иналоженные (рис. 28).

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида (рис. 29).

Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями, а контур наложенного сечения – сплошными тонкими линиями, причем контур изображения в месте расположения наложенного сечения не прерывают (рис. 28).

Ось симметрии вынесенного или наложенного сечения (рис. 28) указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками

и линию сечения не проводят.

В случаях, подобных указанному на рис. 29, при симметричной фигуре сечения, линию сечения не проводят.

Во всех остальных случаях для линии сечения применяют разомкнутую линию с указанием стрелками направления взгляда и обозначают ее одинаковыми прописными буквами русского алфавита. Сечение сопровождают надписью по типу «А – А » (рис. 27).

Для несимметричных сечений, расположенных в разрыве или наложенных (рис. 30), линию сечения проводят со стрелками, но буквами не обозначают. Если секущая плоскость проходит через ось поверхности вращения, ограничивающей отверстие или углубление, то контур отверстия или углубления в сечении показывают полностью (рис. 31).

Выносные элементы

Выносной элемент - дополнительное отдельное изображение (обычно увеличенное) какой-либо части предмета, требующей графического и других пояснений в отношении формы, размеров и иных данных.

Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и может отличаться от него по содержанию (например, изображение может быть видом, а выносной элемент – разрезом).

При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией – окружностью, овалом и т.п. с обозначением выносного элемента прописной буквой русского алфавита на полке линии-выноски. Над изображением выносного элемента указывают обозначение и масштаб, в котором он выполнен

Выносной элемент располагают на чертеже возможно ближе к соответствующему месту на изображении предмета.

Построение аксонометрической проекции

В аксонометрии обычно выполняют вырез¼ части детали, при этом вырез не всегда повторяет разрез, выполненный на ортогональном изображении. Угол, образованный секущими плоскостями, должен быть раскрыт.

На рис. 34 – 37 показано поэтапное выполнение изометрии детали с

вырезом ¼ части. Для удобства построений будем считать, что нижняя плоскость детали совпадает с горизонтальной плоскостью проекций, а осьz – с осью конической и цилиндрической поверхностей.

Рис. 34 Рис. 35

Рис. 36 Рис. 37

Выполнение задания начинаем с построения аксонометрических осей и очертания плоских фигур, полученных при сечении детали вертикальными плоскостями, проведенными по осям симметрии детали (рис. 34).

Отмечаем центры окружностей усеченного конуса и цилиндров – точки О1 , О2 , О3 , О4 и строим изометрические проекции тех частей окружностей, которые остались после выполнения выреза (рис. 35). Заканчиваем построение прямоугольных очертаний детали (рис. 36). Выполнив штриховку плоских фигур, образовавшихся при сечении детали вертикальными плоскостями (проводя линии штриховки параллельно направлениям, показанным на рисунке), обводим контур детали (рис. 37).

Построение наклонного сечения

Наклонное сечение получается от пересечения предмета плоскостью, составляющей с горизонтальной плоскостью проекций угол, отличный от прямого.

На чертеже наклонные сечения выполняют по типу вынесенных сечений и в соответствии с направлением, указанным стрелками на линии сечения. При построении сечения не является обязательным строгое соблюдение проекционной связи между изображением, где задан след секущей плоскости, и фигурой сечения. Фигуру сечения можно расположить в любом удобном месте поля чертежа, рис. 38, б, в. При этом, если ориентация сечения на чертеже не соответствует направлению взгляда, указанному стрелками на штрихах линии сечения, то обозначение сечения должно сопровождаться знаком повернуто, рис. 38, в.

Цель работы:
Развитие пространственных представлений.
Задачи:
1. Познакомить с правилами построения сечений.
2. Выработать навыки построения сечений
тетраэдра и параллелепипеда при различных
случаях задания секущей плоскости.
3. Сформировать умение применять правила
построения сечений при решении задач по
темам «Многогранники».

Для решения многих
геометрических
задач необходимо
строить сечения
многогранников
различными
плоскостями.

Понятие секущей плоскости

Секущей
плоскостью
параллелепипеда
(тетраэдра)
называется любая
плоскость, по обе
стороны от
которой имеются
точки данного
параллелепипеда
(тетраэдра).

Понятие сечения многогранника

Секущая плоскость
пересекает грани
тетраэдра
(параллелепипеда) по
отрезкам.
Многоугольник, сторонами
которого являются данные
отрезки, называется
сечением тетраэдра
(параллелепипеда).

Работа по рисункам

Сколько плоскостей можно провести
через выделенные элементы?
Какие аксиомы и теоремы вы применяли?

Для построения сечения
нужно построить точки
пересечения секущей
плоскости с ребрами и
соединить их отрезками.

Правила построения сечений

1. Соединять можно только две
точки, лежащие в плоскости одной
грани.
2. Секущая плоскость пересекает
параллельные грани по
параллельным отрезкам.

Правила построения сечений

3. Если в плоскости грани отмечена
только одна точка, принадлежащая
плоскости сечения, то надо
построить дополнительную точку.
Для этого необходимо найти точки
пересечения уже построенных
прямых с другими прямыми,
лежащими в тех же гранях.

10. Построение сечений тетраэдра

11.

Тетраэдр имеет 4 грани
В сечениях могут получиться
Треугольники
Четырехугольники

12.

Построить сечение тетраэдра
DABC плоскостью, проходящей
через точки M,N,K
1. Проведем прямую через
точки М и К, т.к. они лежат
в одной грани (АDC).
D
M
AA
N
K
BB
CC
2. Проведем прямую через
точки К и N, т.к. они
лежат в одной грани
(СDB).
3. Аналогично рассуждая,
проводим прямую MN.
4. Треугольник MNK –
искомое сечение.

13. проходящей через точку М параллельно АВС.

D
1. Проведем через точку М
прямую параллельную
ребру AB
2.
М
Р
А
К
С
В
Проведем через точку М
прямую параллельную
ребру AC
3. Проведем прямую через
точки K и P, т.к. они лежат в
одной грани (DBC)
4. Треугольник MPK –
искомое сечение.

14.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.
D
1. Проводим КF.
2. Проводим FE.
3. Продолжим
EF, продолжим AC.
F
4. EF AC =М
5. Проводим
MK.
E
M
AB=L
6.
MK
C
A
7. Проводим EL
L
EFKL – искомое сечение
K
B

15.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K
СКакие
какойпрямые
точкой,
лежащей в
можно
Соедините
получившиеся
Какие
точки
можно
сразу
той
же
грани
можно
продолжить,
чтобы
получить
точки,
лежащие
в
одной
соединить?
соединить
полученную
дополнительную
точку?
грани,
назовите
сечение.
дополнительную точку?
D
АС
ЕLFK
FСЕК
иточкой
K,и Е
и FК
F
L
C
M
A
E
K
B

16.

Построить сечение
тетраэдра плоскостью,
проходящей через точки
E, F, K.
D
F
L
C
A
E
K
B
О

17.

Вывод: независимо от способа
построения сечения одинаковые

18. Построение сечений параллелепипеда

19.

Тетраэдр имеет 6 граней
Треугольники
Пятиугольники
В его сечениях могут получиться
Четырехугольники
Шестиугольники

20. Построить сечение параллелепипеда плоскостью проходящей через точку Х параллельно плоскости (ОСВ)

В1
А1
Y
Х
D1
S
В
А
D
Z
1. Проведем через
С1
точку X прямую
параллельную ребру
D1C1
2. Через точку X
прямую
параллельную ребру
D1D
3. Через точку Z прямую
параллельную ребру
С
DC
4. Проведем прямую через
точки S и Y, т.к. они лежат в
одной грани (BB1C1)
XYSZ – искомое сечение

21.

Построить сечение параллелепипеда
плоскостью, проходящей через точки
M,A,D
В1
D1
E
A1
С1
В
А
1. AD
2. MD
3. ME//AD, т.к. (ABC)//(A1B1C1)
4. AE
5. AEMD – искомое сечение
М
D
С

22. Построить сечение параллелепипеда плоскостью, проходящей через точки М, К, Т

N
М
К
R
S
Х
Т

23. Выполните задания самостоятельно

м
т
к
м
Д
к
т
Постройте сечение: а) параллелепипеда;
б) тетраэдра
плоскостью, проходящей через точки М, Т, К.

24. Использованные ресурсы

Соболева Л. И. Построение сечений
Ткачева В. В. Построение сечений
тетраэдра и параллелепипеда
Гобозова Л. В. Задачи на построение
сечений
DVD-диск. Уроки геометрии Кирилла и
Мефодия. 10 класс, 2005
Обучающие и проверочные задания.
Геометрия. 10 класс (Тетрадь)/Алешина
Т.Н. – М.: Интеллект-Центр, 1998

ПОСТРОЕНИЕ СЕЧЕНИЙ И РАЗРЕЗОВ НА ЧЕРТЕЖАХ

Формирование чертежа детали производится путем последовательного добавления необходимых проекций, разрезов и сечений. Первоначально создается произвольный вид с указанной пользователем модели, при этом задается ориентация модели, наиболее подходящая для главного вида. Далее по этому и следующим видам создаются необходимые разрезы и сечения.

Главный вид (вид спереди) выбирается таким образом, чтобы он давал наиболее полное представление о формах и размерах детали.

Разрезы на чертежах

В зависимости от положения секущей плоскости различают следующие виды разрезов:

А) горизонтальные, если секущая плоскость располагается параллельно горизонтальной плоскости проекций;

Б) вертикальные, если секущая плоскость перпендикулярна горизонтальной плоскости проекций;

В) наклонные - секущая плоскость наклонена к плоскостям проекций.

Вертикальные разрезы подразделяются на:

· фронтальные - секущая плоскость параллельна фронтальной плоскости проекций;

· профильные - секущая плоскость параллельна профильной плоскости проекций.
В зависимости от числа секущих плоскостей разрезы бывают:

· простые - при одной секущей плоскости (рис.107);

· сложные - при двух и более секущих плоскостях (рис.108)
Стандартом предусмотрены следующие виды Сложных разрезов:

· ступенчатые, когда секущие плоскости располагаются параллельно (рис.108 а) и ломаные - секущие плоскости пересекаются (рис.108 б)

Рис.107 Простой разрез

А) б)

Рис.108 Сложные разрезы

Обозначение разрезов

В случае, когда в простом разрезе секущая плоскость совпадает с плоскостью симметрии предмета, разрез не обозначается (рис.107). Во всех остальных случаях разрезы обозначаются прописными буквами русского алфавита, начиная с буквы А, например А-А.

Положение секущей плоскости на чертеже указывают линией сечения – утолщенной разомкнутой линией. При сложном разрезе штрихи проводят также у перегибов линии сечения. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны находиться на расстоянии 2-3 мм от наружных концов штрихов. С наружной стороны каждой стрелки, указывающей направление взгляда, наносят одну и ту же прописную букву.

Для обозначения разрезов и сечений в системе КОМПАС используется одна и та же кнопка Линия разреза, расположенная на странице Обозначения (рис.109).

Рис.109 Кнопка Линия разреза

Соединение половины вида с половиной разреза

Если вид и разрез представляют собой симметричные фигуры (рис.110), то можно соединять половину вида и половину разреза, разделяя их штрихпунктирой тонкой линией, являющейся осью симметрии. Часть разреза обычно располагают справа от оси симметрии, разделяющей часть вида с частью разреза, или снизу от оси симметрии. Линии невидимого контура на соединяемых частях вида и разреза обычно не показываются. Если с осевой линией, разделяющий вид и разрез, совпадает проекция какой-либо линии, например, ребра гранной фигуры, то вид и разрез разделяются сплошной волнистой линией, проводимой левее оси симметрии, если ребро лежит на внутренней поверхности, или правее, если ребро наружное.

Рис. 110 Соединение части вида и разреза

Построение разрезов

Построение разрезов в системе КОМПАС изучим на примере построения чертежа призмы, задание для которого изображено на рис.111.

Последовательность построения чертежа следующая:

1. По заданным размерам построим твердотельную модель призмы (рис.109 б). Сохраним модель в памяти компьютера в файле с именем «Призма».

Рис.112 Панель Линии

3. Для построения профильного разреза (рис.113) начертим линию разреза А-А на главном виде с помощью кнопки Линия разреза.


Рис.113 Построение профильного разреза

Направление взгляда и текст обозначения можно выбрать на панели управления командой внизу экрана (рис.114). Завершается построение линии разреза нажатием на кнопку Создать объект.

Рис.114 Панель управления командой построения разрезов и сечений

4. На панели Ассоциативные виды (рис.115) выберем кнопку Линия разреза, затем появившейся на экране ловушкой укажем линию разреза. Если все сделано верно (линия разреза должна быть обязательно построена в активном виде), то линия разреза окрасится в красный цвет. После указания линии разреза А-А на экране появится фантом изображения в виде габаритного прямоугольника.

Рис.115 Панель Ассоциативные виды

С помощью переключателя Разрез/сечение на Панели свойств выбирается тип изображения – Разрез (рис.116) и масштаб отображаемого разреза.

Рис.116 Панель управления командой построения разрезов и сечений

Профильный разрез построится автоматически в проекционной связи и со стандартным обозначением. При необходимости проекционную связь можно отключать переключателем Проекционная связь (рис.116). Для настройки параметров штриховки, которая будет использована в создаваемом разрезе (сечении) используется элементы управления на вкладке Штриховка.

Рис.117 Построение горизонтального разреза Б-Б и сечения В-В

Если выбранная секущая плоскость при построении разреза совпадает с плоскостью симметрии детали, то в соответствии со стандартом такой разрез не обозначается. Но если просто стереть обозначение разреза, то из-за того, что вид и разрез в памяти компьютера связаны между собой, то сотрется и весь разрез. Поэтому для того, чтобы удалить обозначение, вначале следует разрушить связь вида и разреза. Для этого щелчком левой кнопки мыши выделяется разрез, а затем щелчком правой кнопки мыши вызывается контекстное меню, из которого выбирается пункт Разрушить вид (рис.97). Теперь обозначение разреза можно удалить.

5. Для построения горизонтального разреза проведем через нижнюю плоскость отверстия на виде спереди линию разреза Б-Б. Предварительно обязательно двумя щелчками левой кнопки мыши вид спереди следует сделать текущим. Затем строится горизонтальный разрез (рис.117).

6. При построении фронтального разреза совместим часть вида и часть разреза, т.к. это симметричные фигуры. На линию разделяющую вид и разрез проецируется наружное ребро призмы, поэтому разграничим вид и разрез сплошной тонкой волнистой линией, проводимой правее оси симметрии, т.к. ребро наружное. Для построения волнистой линии используется кнопка Кривая Безье, расположенной на панели Геометрия, вычерчиваемая стилем Для линии обрыва (рис.118). Последовательно указывайте точки, через которые должна пройти кривая Безье. Закончить выполнение команды следует нажатием на кнопку Создать объект.

Рис.118 Выбор стиля линии для обрыва

Построение сечений

Сечением называется изображения предмета, которые получаются при мысленном рассечении предмета плоскостью. На сечении показывают только то, что расположено в секущей плоскости.

Положение секущей плоскости, с помощью которой образуется сечение, на чертеже указывают линией сечения, так же как для разрезов.

Сечения в зависимости от расположения их на чертежах разделяются на вынесенные и наложенные. Вынесенные сечения располагаются чаще всего на свободном поле чертежа и обводятся основной линией. Наложенные сечения располагают непосредственно на изображении предмета и обводят тонкими линиями (рис.119).

Рис.119 Построение сечений

Рассмотрим последовательность построения чертежа призмы с вынесенным наклонным сечением Б-Б (рис.117).

1. Сделаем вид спереди активным двойным щелчком левой кнопкой мыши по виду и начертим линию разреза с помощью кнопки Линия разреза. Выберем текст надписи В-В.

2. С помощью кнопки Линия разреза, расположенной на панели Ассоциативные виды (рис.115), появившейся ловушкой укажем линию секущей плоскости В-В. С помощью переключателя Разрез/сечение на Панели свойств следует выбрать тип изображения – Сечение (рис.116), масштаб отображаемого сечения выбирается из окна Масштаб.

Построенное сечение располагается в проекционной связи, что ограничивает его перемещение по чертежу, но проекционную связь можно отключать с помощью кнопки Проекционная связь.

На готовом чертеже следует прочертить осевые линии, при необходимости проставить размеры.