Математические методы прогнозирования в системе управления предприятием. Экономико-математические и статистические методы прогнозирования. Выводы и предложения

23 апреля 2013 в 11:08

Классификация методов и моделей прогнозирования

  • Математика
  • Tutorial

Я занимаюсь прогнозированием временных рядов уже более 5 лет. В прошлом году мною была защищена диссертация по теме «Модель прогнозирования временных рядов по выборке максимального подобия », однако вопросов после защиты осталось порядочно. Вот один из них — общая классификация методов и моделей прогнозирования .


Обычно в работах как отечественных, так и англоязычных авторы не задаются вопросом классификации методов и моделей прогнозирования, а просто их перечисляют. Но мне кажется, что на сегодняшний день данная область так разрослась и расширилась, что пусть самая общая, но классификация необходима. Ниже представлен мой собственный вариант общей классификации.

В чем разница между методом и моделью прогнозирования?

Метод прогнозирования представляет собой последовательность действий, которые нужно совершить для получения модели прогнозирования. По аналогии с кулинарией метод есть последовательность действий, согласно которой готовится блюдо — то есть сделается прогноз.


Модель прогнозирования есть функциональное представление, адекватно описывающее исследуемый процесс и являющееся основой для получения его будущих значений. В той же кулинарной аналогии модель есть список ингредиентов и их соотношение, необходимый для нашего блюда — прогноза.


Совокупность метода и модели образуют полный рецепт!



В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов. Например, существует знаменитая модель прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression integrated moving average extended, ARIMAX). Эту модель и соответствующий ей метод обычно называют ARIMAX, а иногда моделью (методом) Бокса-Дженкинса по имени авторов.

Сначала классифицируем методы

Если посмотреть внимательно, то быстро выясняется, что понятие «метод прогнозирования » гораздо шире понятия «модель прогнозирования ». В связи с этим на первом этапе классификации обычно делят методы на две группы: интуитивные и формализованные .



Если мы вспомним нашу кулинарную аналогию, то и там можно разделить все рецепты на формализованные, то есть записанные по количеству ингредиентов и способу приготовления, и интуитивные, то есть нигде не записанные и получаемые из опыта кулинара. Когда мы не пользуемся рецептом? Когда блюдо очень просто: пожарить картошку или сварить пельмени — тут рецепт не нужен. Когда еще мы не пользуемся рецептом? Когда желаем изобрести что-то новенькое!


Интуитивные методы прогнозирования имеют дело с суждениями и оценками экспертов. На сегодняшний день они часто применяются в маркетинге, экономике, политике, так как система, поведение которой необходимо спрогнозировать, или очень сложна и не поддается математическому описанию, или очень проста и в таком описании не нуждается. Подробности о такого рода методах можно глянуть в .


Формализованные методы — описанные в литературе методы прогнозирования, в результате которых строят модели прогнозирования, то есть определяют такую математическую зависимость, которая позволяет вычислить будущее значение процесса, то есть сделать прогноз.


На этом общая классификация методов прогнозирования на мой взгляд может быть закончена.

Далее сделаем общую классификация моделей

Здесь необходимо переходить к классификации моделей прогнозирования. На первом этапе модели следует разделить на две группы: модели предметной области и модели временных рядов.




Модели предметной области — такие математические модели прогнозирования, для построения которых используют законы предметной области. Например, модель, на которой делают прогноз погоды, содержит уравнения динамики жидкостей и термодинамики. Прогноз развития популяции делается на модели, построенной на дифференциальном уравнении. Прогноз уровня сахара крови человека, больного диабетом, делается на основании системы дифференциальных уравнений. Словом, в таких моделях используются зависимости, свойственные конкретной предметной области. Такого рода моделям свойственен индивидуальный подход в разработке.


Модели временных рядов — математические модели прогнозирования, которые стремятся найти зависимость будущего значения от прошлого внутри самого процесса и на этой зависимости вычислить прогноз. Эти модели универсальны для различных предметных областей, то есть их общий вид не меняется в зависимости от природы временного ряда. Мы можем использовать нейронные сети для прогнозирования температуры воздуха, а после аналогичную модель на нейронных сетях применить для прогноза биржевых индексов. Это обобщенные модели, как кипяток, в которые если бросить продукт, то он сварится вне зависимости от его природы.

Классифицируем модели временных рядов

Мне кажется, что составить общую классификацию моделей предметной области не представляется возможным: сколько областей, столько и моделей! Однако модели временных рядов легко поддаются простому делению . Модели временных рядов можно разделить на две группы: статистические и структурные.




В статистических моделях зависимость будущего значения от прошлого задается в виде некоторого уравнения. К ним относятся:

  1. регрессионные модели (линейная регрессия, нелинейная регрессия);
  2. авторегрессионные модели (ARIMAX, GARCH, ARDLM);
  3. модель экспоненциального сглаживания;
  4. модель по выборке максимального подобия;
  5. и т.д.

В структурных моделях зависимость будущего значения от прошлого задается в виде некоторой структуры и правил перехода по ней. К ним относятся:

  1. нейросетевые модели;
  2. модели на базе цепей Маркова;
  3. модели на базе классификационно-регрессионных деревьев;
  4. и т.д.

Для обоих групп я указала основные, то есть наиболее распространенные и подробно описанные модели прогнозирования. Однако на сегодняшний день моделей прогнозирования временных рядов имеется уже громадное количество и для построения прогнозов, например, стали использовать SVM (support vector machine) модели, GA (genetic algorithm) модели и многие другие.

Общая классификация

Таким образом мы получили следующую классификацию моделей и методов прогнозирования .




  1. Тихонов Э.Е. Прогнозирование в условиях рынка. Невинномысск, 2006. 221 с.
  2. Armstrong J.S. Forecasting for Marketing // Quantitative Methods in Marketing. London: International Thompson Business Press, 1999. P. 92 – 119.
  3. Jingfei Yang M. Sc. Power System Short-term Load Forecasting: Thesis for Ph.d degree. Germany, Darmstadt, Elektrotechnik und Informationstechnik der Technischen Universitat, 2006. 139 p.
UPD. 15.11.2016.
Господа, дошло до маразма! Недавно мне прислали на рецензию статью для ВАКовского издания со ссылкой на эту запись. Обращаю внимание, что ни в дипломах, ни в статьях, ни тем более в диссертациях ссылаться на блог нельзя ! Если хотите ссылку, то используйте эту: Чучуева И.А. МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ ПО ВЫБОРКЕ МАКСИМАЛЬНОГО ПОДОБИЯ, диссертация… канд. тех. наук / Московский государственный технический университет им. Н.Э. Баумана. Москва, 2012.
Опубликованы более подробные и корректные материалы по .

В марте 2011 года была опубликована заметка «Пять способов повысить точность прогнозирования» . Автор Алексей Скрипчан весьма дельно, просто и достаточно подробно рассмотрел в ней прогнозирование, которое необходимо выполнять в рамках маркетинга и планирования. Интересно звучит его эпитет в подразделе «Выгоды более точного прогнозирования» :

Прогнозирование становится рулем, помогающим компании держать курс, менять направление движения или уверенно плыть в незнакомых водах…

Мне бы хотелось добавить несколько слов к уже сказанному. Главным образом, необходимо отметить, что в упомянутой статье речь идет об экспертном прогнозировании. Нужно различать два вида прогнозирования: экспертное и формализованное .

Экспертное прогнозирование

Экспертное прогнозирование подразумевает формирование будущих значений экспертом, т.е. человеком, обладающим глубокими знаниями в определенной области. Эксперт при этом часто использует математический аппарат , однако в данном виде прогнозирования математический аппарат является лишь вспомогательным вычислительным инструментом. Основой же являются знания и интуиция эксперта, а потому иногда эти методы называют интуитивными .

Экспертное прогнозирование применяется тогда, когда объект прогнозирования либо слишком прост, либо, напротив, настолько сложен, что аналитически учесть влияние внешних факторов невозможно . Экспертные методы прогнозирования не предполагают разработку моделей прогнозирования и отражают индивидуальные суждения специалистов (экспертов) относительно перспектив развития процесса. К таким методам относятся следующие методы.

  • Метод экспертных оценок
  • Метод исторических аналогий
  • Метод предвидения по образцу
  • Нечеткая логика
  • Сценарное моделирование «что – если»

Формализованное прогнозирование - это прогнозирование на основании математической модели, которая, улавливая закономерности процесса , на своем выходе имеет будущие значения исследуемого процесса. довольно много, например, согласно ряду обзоров в настоящее время насчитывается свыше 100 классов моделей прогнозирования. Число общих классов моделей, которые в тех или иных вариациях повторяются в других, конечно, гораздо меньше и сводится легко к дюжине.

  • Регрессионные модели (regression model)
  • Авторегрессионные модели ( , AR)
  • Нейросетевые модели (artificial neural network , ANN)
  • Модели экспоненциального сглаживания ( , ES)
  • Модели на базе цепей Маркова (Markov chain)
  • Классификационно-регрессионные деревья (classification and regression trees , CART)
  • Метод опорных векторов (support vector machine , SVM)
  • Генетический алгоритм (genetic algorithm , GA)
  • Модель на основе передаточных функций (transfer function , TF)
  • Формализованная нечеткая логика (fuzzy logic , FL)
  • Фундаментальные модели

Автор статьи о прогнозировании в маркетинге совершенно верно отметил, что «как и любой инструмент, математика может быть опасной в руках дилетанта. Чтобы проверить собственные выкладки, можно привлечь кого-то с сильными статистическими навыками для анализа вашей информации ». Математические модели прогнозирования требуют развитых компетенций не только в математике, но и программировании, владении сложными статистическими пакетами для создания не только точной и быстрой модели.

Повышение точности прогнозирования

Безусловно, оба рассмотренных вида прогнозирования часто работают в совокупности, например, на основании сложного алгоритма вычисляются будущие значения временного ряда, а далее, эксперт проверяет эти цифры на адекватность. На этом этапе эксперт может внести ручные корректировки, которые при его высокой квалификации, способны положительно повлиять на качество прогноза.

Итого, если вам нужно повысить точность экспертного прогнозирования в задачах маркетинга, то вам нужно прямиком следовать данным в статье рекомендациям. Если же перед вами стоит задача повышения точности прогнозирования за счет сложных, быстрых, программно реализованных математических моделей, то стоит взглянуть в сторону , то есть прогноза, составленного на основании набора независимых прогнозов. В ближайшее время я буду говорить о консенсус-прогнозе в этом блоге подробнее.

Экономико-математические методы. При использовании эконо­мико-математических методов структура моделей устанавливается и проверяется экспериментально, в условиях, допускающих объек­тивное наблюдение и измерение.

Определение системы факторов и причинно-следственной струк­туры исследуемого явления - начальный этап математического мо­делирования.

Статистические методы занимают особое место в прогнозиро­вании. Методы математической и прикладной статистики исполь­зуются при планировании любых работ по прогнозированию, при обработке данных, полученных как интуитивными, методами, так и при использовании собственно экономико-математических ме­тодов. В частности, с их помощью определяют численность групп экспертов, опрашиваемых граждан, периодичность сбора данных, оценивают параметры теоретических экономико-математических моделей.

Каждый из указанных методов обладает достоинствами и недо­статками. Все методы прогнозирования дополняют друг друга и могут использоваться совместно.

Метод сценариев - эффективное средство для организации про­гнозирования, объединяющего качественный и количественный подходы.

Сценарий - это модель будущего, в которой описывается воз­можный ход событий с указанием вероятностей их реализации. В сценарии определяются основные факторы, которые должны быть приняты во внимание, и указывается, каким образом эти факторы могут повлиять на предполагаемые события. Как правило, составляется несколько альтернативных вариан­тов сценариев. Сценарий, таким образом, - это характеристика будущего в изыскательском прогнозе, а не определение одного воз­можного или желательного состояния будущего. Обычно наиболее вероятный вариант сценария рассматривается в качестве базового, на основе которого принимаются решения. Другие варианты сценария, рассматриваемые в качестве альтерна­тивных, планируются в том случае, если реальность в большей мере начинает приближаться к их содержанию, а не к базовому вариан­ту сценария. Сценарии обычно представляют собой описание событий и оцен­ки показателей и характеристик во времени. Метод подготовки сце­нариев вначале использовался для выявления возможных результа­тов военных действий. Позже сценарное прогнозирование стали применять в экономи­ческой политике, а затем и в стратегическом корпоративном плани­ровании. Теперь это наиболее известный интеграционный механизм прогнозирования экономических процессов в условиях рынка. Сценарии являются эффективным средством преодолений тра­диционного мышления. Сценарий - это анализ быстро меняюще­гося настоящего и будущего, его подготовка заставляет заниматься деталями и процессами, которые могут быть упущены при изоли­рованном использовании частных методов прогнозирования. По­этому сценарий отличается от простого прогноза. Он является ин­струментом, который используется для определения видов прогно­зов, которые должны быть разработаны, чтобы описать будущее с достаточной полнотой, с учетом всех главных факторов.


Использование сценарного прогнозирования в условиях рынке обеспечивает:

лучшее понимание ситуации, ее эволюции;

оценку потенциальных угроз;

выявление благоприятных возможностей;

выявление возможных и целесообразных направлений деятель­ности;

повышение уровня адаптации к изменениям внешней среды.

Сценарное прогнозирование является эффективным средство подготовки плановых решений как на предприятии, так и в государств.

Планирование тесно связано с прогнозированием, разделена этих процессов в известной мере условно, поэтому в планировании и прогнозировании могут использоваться одни и те же методы или тесно взаимосвязанные методы.

Решения об утверждении планов. Планы являются результатом управленческих решений, которые принимаются на основе возмож­ных плановых альтернатив. Принятие управленческого решения осу­ществляется по некоторым критериям. Используя эти критерии, альтернативы оценивают с точки зрения достижения одной или нескольких целей. Критерии отражают цели, которые ставят лица, принимающие управленческие решения.

Решение, принимаемое по единственному критерию, считают простым, а по нескольким критериям - сложным. Критерии, в которых сформулированы количественные или порядковые шкалы оценок, позволяют использовать математические методы исследо­вания операций для подготовки решений.

Решения об утверждении планов, как правило, являются не толь­ко сложными из-за множественности критериев, но и просто труд­ными по причинам неопределенности, ограниченности информации и высокой ответственности. Поэтому окончательные решения об утверждении планов принимаются путем эвристического, инту­итивного выбора из ограниченного числа предварительно подго­товленных альтернатив.

Методы планирования, таким образом, - это методы подго­товки плановых альтернатив или, по меньшей мере, одного вари­анта плана для утверждения лицом или органом, принимающим решение.

Методы подготовки одного или нескольких вариантов планов различают по используемым методам составления этих планов, ме­тодам и срокам возможной реализации планов, объектам планиро­вания.

Подобно прогнозированию, планирование может основываться на эвристических и математических методах. Среди математических методов исследования операций особое место занимают методы оптимального планирования.

Методы оптимального планирования. В решении задач подготов­ки оптимальных, то есть наилучших по определенным критериям, планов могут использоваться методы математического программи­рования.

Задачи математического программирования состоят в отыска­нии максимума или минимума некоторой функции при наличии ограничений на переменные - элементы решения. Известно боль­шое количество типовых задач математического программирова­ния, для решения которых разработаны эффективные методы, ал­горитмы и программы для компьютеров, например:

Задачи о составе смеси, которые состоят в определении рацио­на, обладающего минимальной стоимостью и состоящего из раз­ных продуктов с разным содержанием питательных веществ, по условию обеспечения в рационе содержания их не ниже опреде­ленного уровня;

Задачи об оптимальном плане производства, которые состоят в определении наилучшего по объему реализации или прибыли пла­на производства товаров при ограниченных ресурсах или производ­ственных мощностях;

Транспортные задачи, суть которых - выбор плана перевозок, обеспечивающего минимум транспортных расходов при выполне­нии заданных объемов поставок потребителям в разных пунктах, при разных возможных маршрутах, из разных пунктов, в которых запасы или производственные мощности ограничены.

Методы теории игр могут использоваться для планирования условиях неопределенности погодных условий, ожидаемых сроков природных катаклизмов. Это "игры" с пассивным "игроком", который действует независимо от ваших планов.

Разработаны и методы решения задач теории игр с активным "игроками", которые действуют в ответ на действия противной стороны. Кроме того, развиты методы решения задач, в которых действия сторон характеризуются определенными стратегиями -наборами правил действий. Эти решения могут быть полезны при составлении планов в условиях возможного противодействия конкурентов, разнообразия в действиях партнеров.

Решения задач теории игр могут зависеть от уровня риска, который готовы допустить, или основываться просто на получении максимальной гарантированной выгоды. Решение определенных типов простых задач теории игр сводится к решению задач линейного программирования.

Существуют различные методы прогнозирования показателей технического уровня, среди которых можно выделить эвристическое и математическое прогнозирование. Общим в этих методах является наличие неопределенности, связанной с будущей ситуацией.

Эвристические методы основаны на использовании мнений специалистов в данной области техники и обычно применяются для прогнозирования развития процессов и объектов при невозможности формализации в данный момент.

Математические методы в зависимости от вида математического описания объектов прогнозирования и способов определения неизвестных параметров условно подразделяются на методы моделирования процессов, описываемых дифференциальными уравнениями, и методы экстраполяции, или статистические. Ко второй группе относятся методы, определяющие прогнозируемые параметры объекта на основании статистических данных. В качестве математического аппарата при статистическом прогнозировании наиболее часто применяется метод максимального правдоподобия и, в частности, его разновидность — метод наименьших квадратов. Математические зависимости, построенные методом наименьших квадратов, могут быть линейными, квадратичными или по-линомными.

Завершающим этапом эвристических и математических прогнозных исследований является логический анализ, который предусматривает изучение тенденций развития прогнозируемого объекта, анализ результатов прогнозирования подобных объектов и оценка полученных результатов.

Эвристическое прогнозирование

Эвристическое прогнозирование относится к наиболее давним и распространенным не только в технике, но и повседневной жизни методам. Его достоинством считается возможность избегать грубых ошибок, особенно в области скачкообразных изменений прогнозируемой характеристики, при условии, что к исследованию привлекаются высококвалифицированные специалисты в данной области. Однако этот метод является субъективным и трудоемким.

Главный результат эвристического прогнозирования заключается в определении новых направлений развития и их возможностей. При этом необходимо иметь в виду, что восприятию нового и определению перспективных направлений могут препятствовать психологические аспекты. Это, в первую очередь, профессиональная ограниченность специалистов узкого профиля, которые «знают все ни о чем», или, наоборот, широкого профиля — «ничего обо всем». Также может стать помехой концентрация внимания на известных явлениях, влияние господствующего направления общественной мысли, трудность восприятия отрицательных выводов, склонность к преувеличению плохого и т. д. Не случайно многие открытия, опередившие свое время, не были восприняты современниками.

Основными этапами практического применения эвристического прогнозирования являются подбор экспертов, организация опросов и обработка полученных результатов. Эвристическое прогнозирование основано на усредненной оценке мнений группы экспертов. Поэтому главным условием такого исследования можно считать именно подбор экспертов, от компетентности которых зависит качество результата. Практически не существует методов оценки компетентности экспертов. Поэтому обычно эксперты сами оценивают свою компетентность и компетентность своих коллег.

С развитием и совершенствованием электронно-вычислительной техники роль эвристических методов заметно снижается.

Математическое прогнозирование

Математическое прогнозирование заключается в использовании имеющихся характеристик прогнозируемого объекта, обработке этих данных математическими методами, получении их математической зависимости от времени и других известных независимых переменных и вычислении с помощью найденной зависимости характеристик объекта в заданный момент времени при заданных значениях других независимых переменных.

Метод математического прогнозирования характеризуется объективностью и высокой точностью получаемых результатов при правильном выборе математической модели. К числу основных этапов математического прогнозирования относятся:

1) сбор и подготовка исходных данных (статистика);

2) выбор и обоснование математической модели прогнозируемого объекта;

3) обработка статистических данных для определения неизвестных параметров модели;

4) выполнение расчетов и анализ полученных результатов.

Оценка прогнозируемого параметра может быть точечной или интервальной, т. е. состоящей в определении доверительного вероятностного интервала значений параметра. Интервальная оценка достаточно хорошо отражает точность прогнозирования.

также к определению траектории развития после скачка.

В соответствии с законом эволюционного и скачкообразного развития техники, прогнозирование скачков неотделимо от прогнозирования эволюционного развития до скачка и после него. Системный подход к прогнозированию технического уровня машин на основе сопоставления циклов развития и потребностей позволяет определить не только достижения того или иного параметра, но и рассчитать время появления нового поколения техники, период его возможного существования. На рисунке 1 показаны характерные взаимосвязи и чередование поколений техники. Здесь отмечены участки, соответствующие стадиям жизненного цикла поколения техники: 1 — перспективная; 2 — прогрессивная; 3 — новая; 4 — модернизируемая; 5 — морально устаревшая.

При помощи корреляционной функции случайных процессов появления информации об объекте, содержащейся в патентных материалах, и появления техники с новыми значениями показателей технического уровня можно определить время т начала освоения нового поколения техники, которое для каждого конкретного образца складывается из времени, затрачиваемого на научно-исследовательские, опытно-конструкторские работы, и времени на освоение в производстве.

Смена поколений

Смена поколений техники происходит согласно объективному закону прогрессивной эволюции техники при наличии необходимого научно-технического уровня и социально-экономической целесообразности. Так, огромный прорыв в развитии техники, в том числе фасовочно-упа-ковочной, произошел после появления современных микропроцессоров, сопоставимых по своим возможностям с человеческим мозгом. Это позволило специалистам в конце XX века сделать прогноз развития техники, согласно которому, по степени автоматизации в мире будет создано всего шесть поколений машин.

Программируемые машины-автоматы четвертого поколения уже нашли широкое распространение в технике, в том числе фасовочно-упаковочной. На очереди — создание самообучающихся и самонастраивающихся машин-автоматов пятого поколения, отдельные элементы которых уже появляются в автоматах четвертого поколения. Уже создано несколько машин-автоматов с признаками пятого поколения. Например, машины с автоматической настройкой на режимы розлива жидкостей различной вязкости, упаковки штучных предметов разных размеров, самодиагностикой и т. д. Машины-автоматы шестого поколения — это машины искусственного интеллекта, которые по техническим характеристикам могут существенно отличаться от автоматов предыдущих поколений. По всей видимости, умные и многофункциональные машины в мгновение ока подстроятся под грядущие перемены. Высокоскоростные комплексные линии, которые еще недавно соответствовали нормам, заменяются менее скоростными, дающими большую маневренность действий. Тенденция к уменьшению объема партий сведет время перемен практически к нулю. Должны быть разработаны такие производственные системы, для которых изменения в бизнес-процессе являются нормой. Нужны системы, основанные на принципах искусственного интеллекта, распространяющегося по всей самоорганизующейся сети. Таким образом, искусственный интеллект должен присутствовать в упаковочном оборудовании, а само оборудование должно быть многофункциональным.

Определение технического уровня

Прогнозирование непосредственно связано с определением технического уровня упаковочной техники. Статистические прогнозные исследования позволяют установить достигнутый мировой технический уровень и опре делить параметры перспективного базового образца. Согласно закону корреляции параметров, любой объект техники характеризуется набором параметров, находящихся в корреляционной зависимости от главного параметра. Таким главным параметром для большинства существующих фасовочно-упаковочных машин служит их производительность. В машинах пятого и шестого поколения главным параметром могут быть другие показатели, например, универсальность и многофункциональность, быстрота переналадки и т. д.

От поколения к поколению техника становится сложнее в силу действия объективного закона возрастания сложности технических объектов. Трудность определения научно-технического уровня упаковочной техники заключается в выборе перспективного образца для сравнения показателей. Конкуренция среди производителей упаковочной техники и, как следствие, постоянные усовершенствования существующих моделей, применение сервоприводов и дозаторов, управляемых микропроцессорами, способствовали появлению поколения универсальных и многофункциональных машин-автоматов, использующих конструктивные элементы машин предыдущих поколений. В результате стало практически невозможно выбрать для определения достигнутого уровня некоторых объектов упаковочный техники соответствующий аналог для сравнения показателей.

Существуют различные подходы к решению этой проблемы. Так, оценивать технический уровень воротниковых упаковочных машин предлагается с помощью наглядного и весьма значимого показателя — теоретической производительности их упаковочной части, исходя из того, что ее рост лучшим образом отражает развитие этого вида оборудования. При этом рекомендуется классифицировать любое фасовочно-упаковочное оборудование по производительности, разделив, в частности, воротниковое оборудование на пять классов, и сравнивать между собой машины одного класса.

Однако деление на классы представляется довольно условным и не устраняет отмеченные выше затруднения, возникающие при выборе аналогов для сравнения. Кроме того, уже в недалекой перспективе в одном по производительности классе могут оказаться фасовочно-упаковочные машины четвертого и шестого поколений разного назначения, сравнивать которые менее корректно, чем автомобили разной грузоподъемности.

Профессор В. Панишев рекомендует для оценки мирового уровня упаковочной техники включать в сравнительную таблицу как можно больше реально существующих и функционирующих единиц оборудования и проводить ранжирование общих, классификационных и отраслевых показателей путем сопоставления каждого из них с существующими показателями технического уровня изделий по данным технических характеристик машин, техническим условиям и другим документам («Тара и упаковка», № 3/1995).

Мы предлагаем для оценки технического уровня реально существующих фасовочно-упаковочных машин, для которых невозможно выбрать подходящий аналог, использовать закон корреляции параметров. В качестве примера были приведены отдельные показатели вертикальных воротниковых фасовочно-упаковочных автоматов, представляемые отечественными и зарубежными производителями, и по этим данным построены статистические зависимости этих показателей от производительности (PG, № 1—2/2004).

Аппроксимация этих статистических данных прямыми линиями методом наименьших квадратов (рисунок 2) показывает весьма высокую степень корреляции рассматривае мых параметров от производительности машин и, несмотря на приблизительность некоторых данных, хорошую плотность укладки точек на аппроксимирующих прямых. В этом примере не ставилась задача определения технического уровня конкретных объектов. Для решения такой задачи требуется значительно больше уточненных исходных данных.

Построенные зависимости подтверждают принципиальную возможность выполнить оценку мирового технического уровня конкретного объекта по отдельным показателям, отражающим этот уровень. Технический уровень по оцениваемому показателю может соответствовать среднему отечественному или мировому уровню при совпадении этого показателя с показателями на соответствующей аппроксимирующей прямой линии. На этих графиках, построенных по данным 3—4-летней давности, имеет место заметное расхождение уровня по отдельным показателям отечественных и зарубежных машин. Аналогичные показатели новых вертикальных воротниковых фасовочно- упаковочных автоматов по материалам международных выставок 2004 г. приведены в таблице 1.

Если дополнить соответствующие корреляционные зависимости новыми данными, очевидной становится тенденция к сближению отдельных показателей технического уровня отечественных и зарубежных автоматов.

На рисунке 3 отмечены показатели таблицы 1 и представлены построенные ранее на рисунке 2 аппроксимирующие прямые зависимости установленной мощности и массы машин от производительности для зарубежных автоматов (прямые 2).

Представленные на рисунке 3 зависимости подтверждают наличие корреляции и свидетельствуют о достаточно заметном сближении рассматриваемых параметров отечественных и зарубежных фасовочно-упаковочных автоматов последних моделей, что, несомненно, указывает на определенную тенденцию повышения технического уровня отечественной фасовоч-но-упаковочной техники.

Введение


Современные условия рыночного хозяйствования предъявляют к методам прогнозирования очень высокие требования, ввиду всё возрастающей важности правильного прогноза для судьбы предприятия, да и экономики страны в целом.

Именно прогнозирования функционирования экономики регионов или даже страны нужно уделять пристальное внимание на данный момент, потому что за пеленой сиюминутных собственных проблем все почему-то забыли о том, что экономика страны тоже должна управляться, а следовательно и прогнозирование показателей ее развития должно быть поставлено на твердую научную основу.

Под экономико-математическими методами подразумевается большая группа научных дисциплин, предметом изучения которых является количественные характеристики экономических процессов, рассматриваемые в неразрывной связи с их качественными характеристиками. Также экономико-математические исследования объединяют в комплексе математических методов планирования и управления общественным производствам для достижения наилучших результатов.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделирование понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Правильное определение сбалансированного развития отраслей в каждом сельскохозяйственном предприятии является важной научной и практической проблемой экономики сельского хозяйства. Соотношение отраслей в каждом сельскохозяйственном предприятии должно соответствовать, с одной стороны требованиям государства по продаже определенного объема и ассортимента сельхозпродукции, а с другой - создавать возможность наиболее полного и эффективного использования ресурсов хозяйства.

В сложившихся экономических условиях, когда цены на сельскохозяйственную продукцию значительно ниже цен на продукцию промышленности, когда заработная плата работников сельского хозяйства в несколько раз ниже, чем в других отраслях народного хозяйства, когда износ основных средств в сельскохозяйственных предприятиях достиг 60-70% проблема сбалансированного сочетания отраслей сельхозпредприятия встала на первый план, так как от правильной специализации производства и сочетания отраслей зависят такие важнейшие экономические показатели хозяйства, как уровень рентабельности, выход продукции на единицу земельной площади, производительность труда.

Нужно отметить, что моделирование сельскохозяйственных предприятий имеет ряд особенностей. Так, оптимальное решение, полученное при использовании методов математического программирования, может не всегда соответствовать оптимуму с экономических позиций. Это несоответствие тем больше, чем меньше учтено в модели количественных связей между отдельными факторами, влияющими друг на друга и на конечные результаты. Иначе говоря, в модели должны найти отражение все условия, определяющие данную экономическую проблему. В перечне этих условий наряду с экономическими должны быть агротехнические, зоотехнические, биологические, технические и другие. Для этого необходимы прочные знания в области технологии, техники, экономики, планирования и организации сельскохозяйственного производства. Большое, можно сказать, решающее значение для грамотного построения экономико-математической модели и получения приемлемых оптимальных решений имеет достоверная информация о конкретном моделируемом объекте. Полнота и правильность информации позволяют достаточно точно описать на языке математики все зависимости, связи между изучаемыми экономическими явлениями.

Целью данного курсового проекта является изучить методику математического моделирования программы развития сельскохозяйственного предприятия; составление экономико-математической модели на примере СПК "Курманово" Мстиславского района Могилёвской области; расчет сбалансированной программы развития этого хозяйства и анализ полученного решения.

При написании курсового проекта использовались разработки многих отечественных ученых, методический материал кафедры, а для расчета исходной информации были использованы данные годового отчета СПК "Курманово" Мстиславского района Могилёвской области за 2008г.

Для достижения поставленной цели необходимо решить следующий круг задач:

Дать определение понятия экономико-математических методов и охарактеризовать их классификацию;

Раскрыть содержание этапов построения экономико-математических методов;

Рассмотреть подробнее некоторые экономико-математические методы;

Обосновать программу развития СПК «Курманово» Мстиславского района Могилевской области;

Провести анализ результатов решения развернутой экономико-математической задачи;

Сделать необходимые выводы по результатам решения экономико-математической задачи.


Глава 1. Особенности и методики моделирования программы развития сельскохозяйственного предприятия

1.1 Сущность и классификация экономико-математических моделей

Процесс производства товаров и услуг связан с взаимодействием средств производства, предметов труда и рабочей силы. Состав перечисленных элементов производства, характер их взаимодействия определяют различные результаты предприятий, коллективов и отдельных работников. Ориентация производителя на лучшие результаты хозяйствования требует глубокого анализа процесса производства в целом и его отдельных составляющих, в частности, с целью выработки эффективных решений. Важно выявить элементы, воздействуя на которые обеспечиваются лучшие результаты, более эффективное функционирование объекта или явления. Решение этой проблемы требует рассмотрения любого объекта как сложной производственной или социально-экономической системы, элементы которой взаимосвязаны, динамичны, влияют друг на друга во времени и пространстве. Социальный характер многих сложных объектов определяется тем, что функционирование многих из них предопределено потребностями общества, коллективов и отдельных людей.

Степень сложности объектов или систем зависит от содержания составляющих элементов. Чем проще составляющие, чем меньше их, тем легче предвидеть поведение объекта.

Предвидение возможных изменений в состоянии изучаемых объектов или явлений требует знания последствий от взаимодействия части или всех элементов. Поскольку последствия и характер взаимодействия зависят от количественного и качественного состояния составляющих объектов, возникает необходимость проследить за изменениями изучаемых объектов.

Возможность проследить за изменениями изучаемых объектов зависит от характеристик объектов или явлений. Так, в случае, если изучаемый объект является физическим, т.е. имеет три измерения, особенности взаимодействия его составляющих можем проследить на самом объекте. Однако и в этом случае, если объект отличается большими размерами, возможности отработки лучших вариантов взаимосвязи его составляющих могут быть крайне затруднены. В этом случае, если объект не является физическим, т.е. не имеет привычных нам измерений – длины, высоты и ширины, отработка механизма взаимодействия составляющих его элементов должна быть иной. В этом случае способами поиска лучших решений могут быть или эксперимент, или аналогий.

При изучении объектов или явлений исследователю важно выявить их наиболее существенные черты, а это означает, что отсутствует необходимость в том, чтобы модель отражала все свойства изучаемого объекта. Важно, чтобы модель или аналог изучаемого объекта сохранял подобие на оригинал лишь в самом важном или существенном. Такие модели или аналоги называются гомофонными.

Процесс описания посредством экономико-математической модели существенных черт оригинала, называется имитацией. При создании модели важно иметь ввиду, что понимание существенных и несущественных сторон объекта есть категория относительная и зависит она в значительной степени от уровня познания. По этой причине создаваемые нами аналоги объектов могут иногда отражать несущественные стороны и, наоборот, существенные особенности объектов в моделях могут отсутствовать.

В экономике при изучении производственных систем, состоящие из множества взаимосвязанных элементов производства, чаще всего используются абстрактные модели, которые описывают функционирование объекта числовыми выражениями, графиками и др.. Числовые или математические выражения, описывающие наиболее существенные стороны функционирование объекта, называются экономико-математическими моделями. Под экономико-математической моделью понимается концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме.

Экономико-математическая модель, учитывая важнейшие особенности функционирования объектов, описывает их возможные варианты и состояние. По этой причине реализация экономико-математической модели позволяет выяснить поведение объекта в зависимости от изменения условий его функционирования. Естественно, что выводы по результатам экономико-математической модели о состоянии объекта в значительной мере зависят от совершенства модели, степени учета важнейших сторон его развития. [Линьков]

В последние годы в научных исследованиях аграрной экономики используют комплекс разнообразных моделей. Рассмотрим их классификацию.

1. В зависимости от времени или периода моделирования различают:

· Долгосрочные (5 – 15 лет)

· Среднесрочные (3 – 5 лет)

· Краткосрочные (1 – 2 года)

· Оперативные (месяц, квартал, т.е на текущий период)

2. В зависимости от уровня управления системами агропромышленного комплекса:

· Межотраслевые – позволяют обосновать наилучшие варианты развития взаимосвязанных отраслей и предприятий трех сфер АПК;

· Отраслевые – описывают развитие предприятий определенной сферы: сельского хозяйства, потребительской кооперации и т.д.;

· Региональные – обосновывают программу развития объектов, расположенных на определенной территории, т.е. области, района;

· Внутрихозяйственные – позволяют найти лучшие варианты развития отраслей и производств внутри определенного предприятия АПК.

3. В зависимости от степени определенности информации, используемой в моделях:

· Детерминированные – входные параметры задаются однозначно, выходные показатели определяются соответственно;

· Стохастические – параметры модели, условия функционирования и характеристики объекта выражены случайными величинами.

4. По возможности учета временных изменений модели бывают:

· Статические – все зависимости отнесены к одному моменту времени и они разрабатываются лишь для отдельно взятых периодов;

· Динамические – показатели данной модели меняются во времени.

5. По используемому математическому аппарату различают следующие классы методов и моделей:

· Аналитические – они представляют собой определенную функцию, выражающую взаимосвязь между несколькими показателями, имеют вид формул и отражают функциональные зависимости;

· Оптимизационные – основаны на методах математического программирования, позволяют находить max и min значения целевой функции при заданной системе математических неравенств и уравнений

· Имитационные.[Колеснев]


При постановке различных экономических задач в АПК широко применяются методы математического программирования, суть которого состоит в использовании алгоритма последовательных приближений: вначале идет поиск произвольного допустимого плана, а затем его улучшение до наилучшего (оптимального) варианта. Поэтапно выполняются приведенные ниже операции. [колеснев]

1. постановка экономико-математической модели;

2. качественный анализ взаимосвязи элементов моделируемого объекта;

3.количественный анализ элементов моделируемого объекта;

4. построение структурной экономико-математической модели;

5. методика обоснования исходной информации;

6. составление задачи, решение, анализ результатов.

Постановка экономико-математической модели предполагает решение следующих вопросов.

1) Определение объекта исследования.

2) Выбор года, по данным которого производим расчеты.

3) Выбор критерия оптимальности и на его основе определение целевой функции.

Качественный анализ взаимосвязи элементов. Базой качественного анализа являются данные конкретных экономических, технических и технологических дисциплин, знания, опыт об особенностях функционирования объекта. На основе этой информации выделяем главные факторы, определяющие функционирование объекта, т.е. словесно выделяем основные возможные ограничения базовой задачи.

Например, ставим цель: решить задачу по сочетанию отраслей предприятия на следующий год. Наши знания подсказывают, что решение зависит от использования ресурсов: земельных, трудовых, производства кормов и т.д.

Выводы данного этапа определяют общие для всех предприятий повторяющиеся ограничения и содержание базовой экономико-математической модели. Поэтому нужно провести количественный анализ элементов и выявить как общие, так и специфические особенности функционирования объекта.

Существенное дополнение к базовой модели составят выводы, выясняющие специфические особенности производства. Эти особенности связаны с технологией производства, формой хозяйствования, особенностями реализации продукции, каналами реализации, ценами и др.

В целом данные количественного анализа позволяют дополнить базовую модель часто весьма важными ограничениями.

После этого с учетом выводов, получаемых по третьему этапу, записываем структурную модель применительно к рассматриваемому объекту.

Структурная модель в этом случае будет включать ограничения или соотношения базовой модели и дополнения, вытекающие из данных анализа особенностей функционирования объекта.

При обосновании исходной информации исходной информации, прежде всего, необходимо выбрать единицы измерения переменных.

В экономико-математической модели ее переменные можно разделить на три группы: основные, дополнительные и вспомогательные.

Основные переменные описывают основное содержание задачи, определяют ее конструкцию, дополнительные детализируют или поясняют содержание основных, а вспомогательные дают дополнительную информацию о функционировании объекта.

При подготовке информации следует учитывать, что и ограничения делятся на основные, дополнительные и вспомогательные.

Основные ограничения описывают главные особенности функционирования объекта.

Дополнительные ограничения устанавливают интервалы избиения переменных (от минимума до максимума). Чем меньше эти границы, тем меньше свобода выбора, тем жестче требования задачи. Поэтому дополнительные ограничения на размеры переменных надо вводить только в случае необходимости, когда они вытекают из технологии производства, экономической целесообразности.

Вспомогательные ограничения важные по своей роли – устанавливают соотношение между отдельными параметрами (переменными) объекта.

Обоснование информации – трудоемкий процесс.

Трудность получения приемлемых для практики решений в значительной степени зависит от недостаточной изученности особенностей формирования параметров моделируемых систем.

Сложность обоснования информации связана с многообразием факторов формирования показателей. Исходная информация экономико-математической модели отражает в себе влияние социально-экономических, биологических, производственных, управляемых и неуправляемых факторов, через их значение отражается специфика, особенности состояния и развития производства.

Изложенные соображения определяют, что методика обоснования исходной информации экономико-математических моделей должны базироваться на анализе причинных связей элементов явлений, диалектической взаимосвязи качественной и количественной сущности явлений. При этом количественные характеристики явления преимущественно определяются его качественным содержанием. Выявив причинные связи элементов явления, характер и особенности их проявления, получаем возможность для количественного анализа.

При обосновании информации используются различные методы, основные из которых следующие:

a) Данные технологических карт;

b) Метод экстраполяции;

c) Экспертные оценки;

d) Корреляционные и оптимизационные модели и др.

Данные технологических карт позволяют получить информацию о значении нормативов урожайности, затрат труда, затрат на создание техники и ее эксплуатацию при определенных усредненных условиях. Недостатком метода является то, что он оторван от реальной ситуации. Технологические карты предполагают показатели часто идеальные, часто прогнозные и могут существенно отрываться от реальных в условиях определенных предприятий.

Метод экстраполяции предполагает перенесение сложившихся тенденций на перспективу.

Существенное место в обосновании информации занимают экспертные оценки. Ценность этих методов особенно возрастает в период преобразований, перехода от одной формы хозяйствования к другим. Поэтому в нынешних условиях при обосновании программ развития было бы правильно начинать обоснование программы с экспертных оценок. Они должны дать ответ на вопрос: в каком направлении осуществить развитие, т.е. экспертные оценки позволяют обосновать стратегию развития.

Решение экономико-математической задачи связано с поиском варианта, отвечающего многим требованиям. С одной стороны, эти требования выражаются ограничениями задачи, описывающими особенности функционирования объекта. С другой стороны, наряду с особенностями функционирования объекта необходимо записать общие требования к решению, которые выражаются через критерий оптимальности.

Критерий оптимальности есть качественная категория, выражающая требования общества в целом и коллектива, применительно к условиям которого решается задача, к уровню эффективности использования ресурсов. Отсюда следует, что чем крупнее задача, чем в большей мере ее решение должно отвечать требованиям всего общества.

Нахождение наилучшего варианта требует решения задачи, возникает необходимость количественного выражения критерия оптимальности. Количественное выражение критерия оптимальности есть целевая функция. Целевая функция выражается через показатель эффективности или посредством их объединения. Поскольку сельское хозяйство и аграрно-промышленный комплекс многокритериальны, т.е. имеют несколько целей развития, возникает необходимость в выборе одного показателя эффективности из нескольких, в наибольшей мере выражающего эти цели.

При выборе критерия оптимальности следует учитывать социально-экономический смысл этой категории. Глобальный критерий оптимальности прямо вытекает из особенностей функционирования экономики. В условиях рыночной системы хозяйствования главная особенность в развитии экономики предприятий любой формы собственности является полная ответственность за результаты деятельности. А это означает, что работа предприятия должна осуществляться в условиях самоокупаемости и самофинансирования. Подобное возможно при рентабельной работе предприятий, а это предполагает, что содержание наиболее предпочтительно критерия оптимальности ориентировано на максимизацию прибыли.


1.3 Методики моделирования программы развития сельскохозяйственного предприятия в работах ученых экономистов


В экономических исследованиях издавна применялись простейшие математические методы. В хозяйственной жизни широко используются геометрические формулы. Так, площадь участка поля определяется путем перемножения длины на ширину или объем силосной траншеи - перемножением длины на среднюю ширину и глубину. Существует целый ряд формул и таблиц, облегчающих хозяйственным работникам определение тех или иных величин.[Кравченко 6].

В 60-е годы нашего столетия развернулась дискуссия о математических методах в экономике. Например, академик Немчинов выделял пять базовых методов исследования при планировании:

1) балансовый метод;

2) метод математического моделирования;

3) векторно-матричный метод;

4) метод экономико-математических множителей (оптимальных общественных оценок);

5) метод последовательного приближения.[немчинов].

В то же время академик Канторович выделял математические методы в четыре группы:

Макроэкономические модели, куда относил балансовый метод и модели спроса;

Модели взаимодействия экономических подразделений (на основе теории игр);

Линейное моделирование, включая ряд задач, немного отличающихся от классического линейного программирования;

Модели оптимизации, выходящие за пределы линейного моделирования (динамическое, нелинейное, целочисленное, и стохастическое программирование). [Контрович].

По широте применения различных методов в реальных процессах планирования несомненным лидером является метод линейной оптимизации , который был разработан академиком Канторовичем в 30-е годы ХХ-го века. Чаще всего задача линейного программирования применяется при моделировании организации производства. Вот как по Канторовичу выглядит математическая модель организации производства:

В производстве участвуют M различных производственных факторов (ингредиентов) - рабочая сила, сырье, материалы, оборудование, конечные и промежуточные продукты и др. Производство использует S технологических способов производства, причем для каждого из них заданы объемы производимых ингредиентов, рассчитанные на реализацию этого способа с единичной эффективностью, т.е. задан вектор a k = (a 1k , a 2k ,..., a mk), k = 1,2...,S, в котором каждая из компонент a ik указывает объем производства соответствующего (i-го) ингредиента, если она положительна; и объем его расходования, если она отрицательна (в способе k).

Выбор плана означает указание интенсивностей использования различных технологических способов, т.е. план определяется вектором x = (x 1 , x 2 ,..., x S ) c неотрицательными компонентами [Контрович].

Обычно на количества выпускаемых и затрачиваемых ингредиентов накладываются ограничения: произвести нужно не менее, чем требуется, а затрачивать не больше, чем имеется. Такие ограничения записываются в виде

S a ik x k > b i ; i=1,2,...,m.


Если i > 0, то неравенство означает, что имеется потребность в ингредиенте в размере i, если i < 0,то неравенство означает, что имеется ресурс данного ингредиентов размере - i =¦ i¦. Далее предполагается, что использование каждого способа, связанного с расходом одного из перечисленных ингредиентов или особо выделенного ингредиента в количестве Ck при единичной интенсивности способа k. В качестве целевой функции принимается суммарный расход этого ингредиента в плане.

f(x) = S c k x k .


Теперь общая задача линейного программирования может быть представлена в математической форме. Для заданных чисел a ik , c k , и b i найти


при условиях

k > 0, k = 1,2,...,s

S a ik x k > b i , i = 1,2,...,m


План, удовлетворяющий условиям и , является допустимым, а если в нем, кроме того, достигается минимум целевой функции, то этот план оптимальный.

Задача линейного программирования двойственна, то есть, если прямая задача имеет решение, (вектор x =(x 1 , x 2 ,..., x k)), то существует и имеет решение обратная задача основанная на транспонировании матрицы прямой задачи. Решением обратной задачи является вектор y = (y 1 , y 2 ... ,y m) компоненты которого можно рассматривать как объективно обусловленные оценки ресурсов, т.е. оценки, показывающие ценность ресурса и насколько полно он используется. [Контрович]

На основе объективно обусловленных оценок американским математиком Дж. Данцигом - был разработан симплекс-метод решения задач оптимального программирования. Этот метод весьма широко применяется. Алгоритм его весьма детально проработан, и даже составлены прикладные пакеты программ, которые применяются во многих отраслях планирования.

Его идея состоит в следующем: вначале достигается опорное решение поставленной задачи, т.е. допустимый вариант, удовлетворяющий всем ограничениям. Затем, проделывая ряд последовательных шагов, сводящихся к выполнению элементарных алгебраических преобразований, получают новое решение. Оно лучше или, по крайней мере, не хуже предшествующего. После конечного числа шагов (итераций) либо устанавливают неразрешимость задачи, либо опорный план является оптимальным.

Необходимо отметить, что симплекс метод работает только для системы линейных уравнений в каноническом виде, в которой должна быть предварительно записана исходная задача.

Решение задачи включает поиск опорного и нахождение оптимального решения. Признаки опорного решения – это наличие положительных свободных членов. В случае его отсутствия поступаем следующим образом:

1 – выбираем любой отрицательный свободный член;

2 – находим любой отрицательный коэффициент в строке отрицательного свободного члена;

3 – проводя деление коэффициентов столбца свободных членов на соответствующие коэффициенты столбца с выбранным отрицательным элементом, находим наименьшее положительное значение, которое укажет на разрешающий коэффициент.

После выбора разрешающего элемента симплексное преобразование выполняется по следующим правилам:

1. Новый коэффициент вместо разрешающегося равен 1, деленной на разрешающийся коэффициент. При этом новыми будут называться коэффициенты следующей симплексной таблицы по отношению к предыдущей;

2. Новые коэффициенты строки разрешающегося элемента равны предыдущим, деленным на разрешающий;

3. Новые коэффициенты столбца разрешающегося элемента равны предыдущим, деленным на разрешающий элемент, взятый с противоположным знаком;

4. Новые коэффициенты, не стоящие в строке или столбце разрешающегося элемента, равны частному от деления разности произведения коэффициентов главной и побочной диагоналей на разрешающий элемент.

Все результаты расчетов элементов заносятся в симплекс-таблицу. [Колеснев]

Несмотря на широту применения метода линейного программирования, он учитывает лишь три особенности экономических задач - большое количество переменных, ограниченность ресурсов и необходимость целевой функции. Конечно, многие задачи с другими особенностями можно свести к линейной оптимизации, но это не дает нам права упустить из виду другой хорошо разработанный метод математического моделирования - динамическое программирование . По сути, задача динамического программирования является описанием многошаговых процессов принятие решений. Задача динамического программирования можно сформулировать следующим образом:

имеется некоторое количество ресурса х, которое можно использовать N различными способами. Если обозначить через х i количество ресурса, используемое i-m способом, то каждому способу сопоставляется функция полезности (х i), выражающая доход от этого способа. Предполагается, что все доходы измеряются в одинаковых единицах и общий доход равен сумме доходов, полученных от использования каждого способа.

Теперь можно поставить задачу в математической форме. Найти


max y 1 (x 1)+ y 2 (x 2)+ ... + y n (x n)


(общий доход от использования ресурсов всеми способами) при условиях:

Выделяемые количества ресурсов неотрицательны;


X 1 > 0,..., x N > 0


Общее количество ресурсов равно x .


X 1 + x 2 + ... + x N = x


Для этого общей задачи могут быть построены рекуррентные соотношения


¦ 1 (x) = max {j 1 (x 1)},

0 <=X1<= X

¦ k (x) = max {j k (x k)+ ¦ k-1 (x - x k)}.

к = 2,3,..., N,


с помощью которых находится ее решение.

При выводе этих рекуррентных соотношений, по сути, использовался следующий принцип, оптимальная стратегия обладает тем свойством, что по отношению к любому первоначальному состоянию после некоторого этапа решения совокупность последующих решений должна составлять оптимальную стратегию. Этот принцип оптимальности лежит в основе всей концепции динамического программирования. Именно благодаря ему удается при последующих переходах испытывать не все возможные варианты, а лишь оптимальные выходы. Рекуррентные соотношения позволяют заменить чрезвычайно-трудоемкие вычисления максимума по N переменным в исходной задаче решением N задач, в каждой из которых максимум находится лишь по одной переменной.

Таким образом, метод динамического программирования позволяет учесть такую важную особенность экономических задач, как детерминированность более поздних решений от более ранних. [беллман]

Кроме этих двух, достаточно детально разработанных методов, в экономических исследованиях в последнее время стали применяться множество других методов.

Одним из подходов к решению экономических задач является подход, основанный на применении новой математической дисциплины - теории игр .

Суть этой теории заключается в том, что игрок (участник экономических взаимоотношений) должен выбрать оптимальную стратегию в зависимости от того, какими он представляет действия противников (конкурентов, факторов внешней среды и т.д.). В зависимости от того, насколько игрок осведомлен о возможных действиях противников, игры (а под игрой здесь понимается совокупность правил, тогда сам процесс игры это партия) бывают открытые и закрытые. При открытой игре оптимальной стратегией будет выбор максимального минимума выигрыша ("максимина") из всей совокупности решений, представленных в матричной форме. Соответственно противник будет стремится проиграть лишь минимальный максимум ("минимаск") который в случае игр с нулевой суммой будет равен "максимину". В экономике же чаще встречаются игры с ненулевой суммой, когда выигрывают оба игрока.

Кроме этого в реальной жизни число игроков редко бывает равно всего двум. При большем же числе игроков появляются возможности для кооперативной игры, когда игроки до начала игры могут образовывать коалиции и соответственно влиять на ход игры. [нейман]

Создатель теории игр Дж. Нейман еще в 1947 г. установил, что любую конечную игру двух лиц с нулевой суммой можно представить в виде задачи линейного программирования и наоборот. Для изучения данного подхода обозначим через Р 1 , Р 2 …Р m вероятность применения игроком А в ходе игры своих чистых стратегий А 1 , А 2 …А m. Тогда пусть Q 1 , Q 2 …Q n – вероятности применения игроком В своих чистых стратегий В 1 , В 2 …В n .

Для вероятностей P i и Q j выполняются условия:

P i ≥ 0, i=1, m(i=1, 2 … m). P i = 1,

Q j ≥ 0, j = 1 n(j=1,2,…n) Q j =1


если обозначим смешанные стратегии первого (А) и второго (В) игроков через Q и P, то Q=(Q 1 , Q 2 …Q n), P=(Р 1 , Р 2 …Р m). Например смешанной стратегией игрока А является полный набор вероятностей применения его чистых стратегий. [Колеснев]

Методы управления запасами. В научных исследованиях аграрной экономики особое внимание уделяется такому аспекту повышения эффективности работы предприятий, как грамотное управление имеющимися запасами. Во всех сферах АПК важно поддерживать рациональный уровень запасов (сырья, полуфабрикатов, готовых изделий). Затраты на хранение слишком больших запасов уменьшают прибыльность организации; подержание запасов на слишком низком уровне связано с риском возникновения дефицита и остановкой производства. Для компромиссного решения данной проблемы применяют модели управления запасами.

Запас – это все то, на что имеется спрос и что выключено временно из потребления. В народном хозяйстве различают: а) запасы средств производства; б) запасы предметов потребления. Если рассматривать совокупные запасы на пути технологической цепи «поставщик – потребитель», то их можно разделить на две основные части: товарные и производственные.

Товарные – это часть совокупных запасов, которые находятся в сфере обращения. Они формируются в различных звеньях оптовой и розничной торговли, на складах предприятий-изготовителей, на снабженческих и сбытовых базах.

К производственным относится часть совокупных запасов, находящаяся в руках производителей и вступившая (или готовая вступить) в процесс непосредственного производства. Под ними подразумевается продукция производственно-технического назначения.

В процессе применения методов управления запасами важно понимать и учитывать приведенные ниже особенности.

1. Величина запаса. Она определяется в натуральном или стоимостном выражении. В натуральных величинах (т, кг, шт) измеряется запас отдельного товара, сырья, инструмента или их родственной группы. Совокупный запас измеряется в стоимостном выражении.

2. Спрос- потребность в материальных ресурсах или товарах. Он бывает детерминированным (достоверно известный, характеризуемый заранее определенной величиной) или недетерминированный (случайный, стохастический, описанный вероятностным распределением), что приводит к постановке детерминированных и стохастических моделей.

В свою очередь, детерминированный спрос может быть:

Статический (стационарный, постоянный во времени)

Динамический (нестационарный, когда объем спроса является функцией времени).

3. Порядок пополнения запасов (или срок выполнения заказа). Речь идет об интервале времени между моментом размещения заказа и его поставкой.

4. Издержки. Цель модели управления запасами – сведение к минимуму отрицательных последствий накопления запасов, что выражается в определённых издержках. Эти издержки бывают трех основных видов: на размещение заказов, на хранение, а также потери, связанные с недостаточным уровнем запасов. В этом случае продажа готовой продукции или предоставление обслуживания становятся невозможными, а также возникают потери от простоя производственных линий, в частности, в связи с необходимостью оплаты труда работников, хотя они не работают в данный момент.

Поддержание высокого уровня запасов избавляет от потерь, обуславливаемых их нехваткой. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку предприятие может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками типа расходов на хранение, перегрузку, выплату процентов, затрат на страхование, потерь от порчи, воровства и т.д

Имитационное моделирование. Имитационное моделирование обозначает процесс создания модели и ее экспериментальное применение для определения изменений реальной ситуации. Главная идея имитационного моделирования состоит в использовании некоего устройства для имитации реальной системы для того, чтобы исследовать и понять ее свойства, поведения и характеристики. Специалисты по производству и финансам могут разрабатывать модели, позволяющие имитировать ожидаемый прирост производительности и прибыли в результате применения новой технологии или изменения состава рабочей силы.

Имитация используется в ситуациях, слишком сложных для математических методов типа линейного программирования. Это может быть связано с чрезмерно большим числом переменных, трудностью математического анализа определенных зависимостей между переменными или высоким уровнем неопределенности.

Имитационные методы применяются в различных сферах АПК.

1. Можно смоделировать различные параметры, связанные с производственной, коммерческой и внешнеторговой деятельностью организаций. (количество выпускаемой продукции, объем продаж, ценовые характеристики, урожайность сельскохозяйственных культур, текучесть кадров и др.)

2. Можно решить экономические задачи производственно-технологического характера, возникающие при управлении запасами и в процессе создания систем массового обслуживания.

Использование методов имитационного моделирования приносит исследователю ряд преимуществ, так как:

1. обеспечивает учет неопределенности различных переменных (например, цены конкурентов, сроки поставки и д.);

2. позволяет проводить сравнение альтернативных вариантов (например, можно проанализировать воздействие различной политики ценообразования на спрос или системы налогообложения на рост производства);

3. дает возможность оценивать многообразные исходы;

4. устраняет риски, так как позволяет не проверять различные стратегии в реальных ситуациях;

5. ведет к экономии финансовых средств и времени.

В некоторых задачах имитационное моделирование может проводиться путем формального описания реальной последовательности взаимосвязей между показателями, не используя специального математического аппарата. В этом суть сингулярной имитационной модели, которая предназначена для машинной имитации исследуемого экономического процесса путем изменения входных данных.

Имитационне модели, в которых присутствует фактор времени, различают двух типов:

1. Непрерывные модели используются для систем, поведение которых изменяется непрерывно во времени. Типичным примером непрерывной имитационной модели является изучение динамики населения

2. Дискретные модели используются для систем, поведение которых изменяется лишь в заданные моменты времени.

Методы имитационного моделирования также используются для решения задач, связанных с массовым обслуживанием. Такие ситуации возникают там, где есть покупатели, а также товары или заказы, поступающие в определенное время. При этом обслуживание осуществляется в определенной последовательности.

Итак, имитационное моделирование – это часто весьма практичный способ подстановки модели на место реальной системы или натурального прототипа. Эксперименты на реальных или прототипных системах стоят дорого и продолжаются долго, а релевантные переменные не всегда поддаются регулированию. Экспериментируя на модели системы, можно установить, как она будет реагировать на определенные изменения или события, в то время когда отсутствует возможность наблюдать эту систему в реальности. Если результаты экспериментирования с использованием имитационной модели свидетельствует о том, что модификация ведет к улучшению, руководитель может с большей уверенностью принимать решение об осуществлении изменения в реальной системе.


Глава 2. Обоснование программы развития

2.1 Постановка экономико-математической задачи


Сельскохозяйственное предприятие представляет собой социально-экономическую систему с определенными соотношениями и пропорциями ее подразделений и взаимосвязями с другими предприятиями АПК. Рассматриваемая модель развития предприятия - комплексная. Она учитывает все составляющие предприятий. Необходимость решения данной модели диктуется условиями:

Переход к рыночной системе хозяйствования предполагает самоокупаемость и самофинансирование, т.е. полную ответственность за результаты хозяйствования. Наряду с этим важную роль приобретает инициатива, умение найти рынки сбыта и в целом продуманная система реализации продукции. В нашей задаче кроме реализации продукции государству предусмотрен рыночный фонд.

Хозяйство должно развиваться с учетом имеющихся земельных, трудовых и прочих ресурсов.

Важнейшей пропорцией в экономике предприятий являются взаимосвязи растениеводства и животноводства. В результате оптимизации эти взаимосвязи должны обеспечить оптимизацию структуры кормопроизводства на основе оптимальных рационов кормления и эффективного соотношения между поголовьем и ресурсами кормов.

Животноводство может использовать побочную продукцию основных отраслей растениеводства (солому).

СПК «Курманово» собирается возделывать озимые и яровые зерновые, зернобобовые, однолетние и многолетние травы, рапс, кукурузу.

Предполагается покупка недостающих видов кормов - концентратов, обрата и картофеля, которые в хозяйстве не выращиваются.

Предприятие планирует реализовывать зерно, говядину и молоко, в счет договорных поставок. Также предполагается сбыт зерна и говядины по рыночным каналам.

Сельскохозяйственное предприятие - часть экономической системы государства, участник общественного разделения труда, что предопределяет необходимость предусмотреть для соблюдения пропорциональности в народном хозяйстве производство отдельных видов продукции в размере, не ниже установленного минимума, учесть, что часть продукции - т.е. рыночный фонд - будет реализована по другим негосударственным каналам.

Критерием оптимальности в решении данной задачи выступит максимум прибыли.

Расчеты будут проводиться на ближайший год в силу изменчивости аспектов экономики, цен и т.д.


2.2 Структурная экономико-математическая модель


Структурная экономико – математическая модель используется при описании прошлого, настоящего и прогнозировании будущего.

Чтобы эти возможности моделей были реализованы, необходимо составлять и решать развернутые экономико – математические модели. Развернутая (расширенная) модель (задача) есть детализация структурной модели применительно к конкретному объекту.

Отличие развернутой экономико – математической модели не только в информации, но и в том, что новое знание о моделируемом объекте можем сразу отразить в задаче, т.е. развернутая модель учитывает нюансы изучаемого явления (часто важные).

Взаимосвязь структурной и развернутой моделей – один из наиболее важных и существенных моментов всей теории моделирования.

Чтобы понять эти взаимосвязи построим на основе развернутой модели структурную модель.

Для построения структурной модели необходимо ввести условные обозначения, которые включают 3 группы:

2) неизвестные величины;

3) известные величины: технико-экономические коэффициенты и коэффициенты F-строки.

При введении условных обозначений необходимо руководствоваться следующими основными принципами:

¾ последовательность – обозначает, что в структурной модели каждый индекс должен обозначать одно понятие и не больше. Если индекс обозначает номер строки, то он ни при каких обстоятельствах не обозначает номер столбца;

¾ экономичность – обозначает, что каждое понятие по возможности должно иметь постоянное обозначение. Например, если i – номер строки в одной модели, то в другой – тоже;

¾ запоминаемость – предполагает, сто при введении обозначений вводим индексы, встречающиеся в других дисциплинах (h – номер корма в теории кормления и т.д.)

Индексация:

Номер сельскохозяйственных культур и отраслей;

Множество сельскохозяйственных культур и отраслей;

Множество отраслей растениеводства, ;

Множество отраслей животноводства, ;

Номер ресурсов, питательных веществ, видов товарной продукции;

Множество видов земельных угодий;

Множество видов труда;

Множество видов питательных веществ;

Множество видов товарной продукции;

Множество видов привлеченного труда;

Номер вида корма;

Множество видов кормов;

Множество покупных кормов, ;

Множество кормов животного происхождения и побочных кормов, ;

Множество побочных кормов, ;

Множество собственных основных кормов, ;

Множество обмениваемых кормов, ;

Неизвестные:

Размер отрасли;

Количество покупных кормов;

Количество побочных кормов и кормов животного происхождения;

Количество побочных кормов;

Скользящая переменная по корму для вида или половозрастной группы скота;

Количество кормов в обмен h;

Количество привлеченного труда;

Рыночный фонд продукции;

Стоимость товарной продукции;

Известные:

Ресурсы земельного угодья;

Ресурсы труда;

План продажи продукции;

Расход корма на внутрихозяйственные нужды;

Ограничения на привлеченный труд;

Соответственно минимальный и максимальный размер отрасли;

Расход труда на единицу отрасли;

Выход корма от единицы отрасли;

Соответственно минимальный и максимальный расход корма на единицу отрасли животноводства;

Расход питательного вещества на единицу отрасли животноводства;

Выход товарной продукции от единицы отрасли;

Стоимость товарной продукции на единицу отрасли;

Необходимо найти

По особенностям записи, содержанию коэффициентов переменных в нашей задаче восемь однородных групп ограничений, следовательно, в структурной модели будет восемь соотношений. Соотношения (условия) модели:

1) По использованию сельскохозяйственных угодий

Сумма площадей сельскохозяйственных культур, возделываемая на данном виде сельскохозяйственных угодий, не должна превышать площади этих угодий.

2) По использованию труда

а) годового

б) привлечённого

Затраты труда на развитие отраслей растениеводства и животноводства не должна превышать наличие труда на предприятии с учетом его привлечения.

3) По балансу отдельных видов кормов и формированию рационов:

а) по балансу основных видов кормов

б) по балансу покупных кормов, кормов животного происхождения и побочных кормов

в) по производству побочных кормов

Нормы рас хода отельного вида корма, умноженные на поголовье соответствующих групп животных по всем видам и половозрастным группам с учетом скользящих переменных, не должны превышать объема соответственного производства корма, с учетом возможной покупки и рас хода его для нужд населения.

4) По балансу питательных веществ

В левой части находится расход питательных веществ для всего поголовья каждого вида скота, а в правой – наличие питательных веществ в кормах предприятия.

В левой части – разность между потребностью в питательном веществе на 1 голову животного и содержанием этого вещества в рационе по минимальной норме, умноженная на поголовье животного, а в правой – содержание питательного вещества в добавках кормов для данного вида животного.

6) По величине скользящей переменной

т.е. добавка корма для животных не должна превышать разности между максимальной и минимальными нормами кормления на голову, умноженной на поголовье.

7) По размерам отдельных отраслей

8) По реализации продукции

где производство товарной продукции распределяется по различным каналам реализации.


2.3 Обоснование исходной информации задачи


В качестве объекта исследования у нас выступает СПК «Курманово» Мстиславского района Могилевской области.

Обоснование сбалансированной программы развития предприятия будем проводить по данным 2008 года. Период прогноза 1 год.

Определяем объемы ресурсов предприятия, возможные тенденции их изменения на плановый период:

а) Земельные ресурсы (пашня, сенокосы, пастбища) планируем на фактическом уровне.

б) Запас годового труда определяем как количество среднегодового отработанного времени с учетом выбытия трудовых ресурсов 1% в год.

в) Ресурс труда в напряженный период 55% от годового.


Таблица 2.3.1. Производственные ресурсы


Обоснование информации по растениеводству

Ø Определяем урожайность зерновых культур в физической массе после доработки на перспективу по следующей корреляционной модели:

= + a 1 x

29,9 + 29,9 + * 1,3 = 31,2


где, – расчетная (планируемая) урожайность зерновых культур хозяйства на перспективу, ц\га;

Фактическая урожайность зерновых культур на начало планового периода по хозяйству, ц\га;

0 - фактическая урожайность зерновых культур по хозяйствам района в среднем, ц\га;

Величина планового периода, лет (1 год)

1 – коэффициент регрессии, характеризующий возможное среднегодовое приращение урожайности в хозяйстве.

Коэффициент приращения в зависимости от средней фактической урожайности на начало планового периода составил 1,3.


Таблица 2.3.2. Расчет перспективной урожайности отдельных видов зерновых культур


Ø При обосновании урожайности с\х культур определяем по КМ соотношения урожайности зерновых и этих культур. После расчета параметры этих КМ будут иметь следующий вид:


у х = у 0 + а 0


где у х – расчетная урожайность сельскохозяйственной культуры, ц\га;

у 0 – фактическая урожайность сельскохозяйственной культуры, ц\га;

а 0 , а 1 – коэффициенты регрессии;

∆u – приращение урожайности зерновых культур (-), ц\га;


Таблица 2.3.3. Коэффициенты регрессии


у Кукуруза на силос = 244 + 14,1 * = 244+14,1*2,18 0,6 = 66,6

у многолетние травы на сено = 2,8 + 1,13 + = 28+1,13*2,18 0,034 = 29,1

у Однолетние травы на зеленую массу = 74 + 1,17 * = 74+1,17*2,18 1,3 = 77,3


Урожайность многолетних трав на зеленую массу = урожайность многолетних трав на сено*4,5 = 29,1*4,5=131,0

Урожайность многолетних трав на семена = урожайность многолетних трав на сено ÷ 10 = 29,1 ÷ 10 = 2,9

Урожайность многолетних трав на сенаж = урожайность многолетних трав на зеленую массу * 0,45 = 131*0,45=59,0

Урожайность многолетних трав на травяную муку = урожайность многолетних трав на сено*0,8 = 29,1*0,8 = 23,3

Урожайность силосных культур = урожайность многолетних трав на зеленую массу*0,75 = 59,0*0,75 = 44,3

Затраты труда по культурам (колонка 8) (чел.-час./га) рассчитываются по КМ в зависимости от фактических затрат по хозяйству (х 1) и расчетной урожайности по культурам (х 2), ц\га

Яровые зерновые: у х = 7,3+0,712 х 1 – 0,416 х 2 = 7,3+0,712*38,5 – 0,416*31,2=21,7

Озимые зерновые: у х = 13,6+0,712 х 1 - 0,416 х 2 =13,6+0,712*35–0,416*28,1=28,6

Кукуруза на зеленый корм: у х =14,6+0,55 х 1 -0,031 х 2 =14,6+0,55*20-0,031*266,6=17,3

Однолетние травы на зеленый корм: у х =20,3+0,45 х 1 -0,12 х 2 =20,3+0,45*15-0,12*77,3=17,8

Затраты труда на 1га многолетних трав на сено рассчитываем по формуле: у х =6,3+0,75 х 1 -0,23 х 2 = 6,3+0,75*28,4-0,23*29,1=20,9

Затраты труда на 1га многолетних трав на семена = затраты труда по многолетним травам на сено * 1,36 = 20,9*1,36=28,4

Затраты труда на 1га многолетних трав на зеленый корм = затраты труда по многолетним травам на сено*0,3=20,9*0,3=6,3

Затраты труда на 1га многолетних трав на сенаж = затраты труда по многолетним травам на сено*0,9 = 20,9*0,9 = 18,8

Затраты труда на 1га многолетних трав на травяную муку = затраты труда по многолетним травам на сено*1,3 = 20,9*1,3 = 27,2

Затраты труда на 1га кукурузы на силос = затраты труда кукурузы на зеленый корм*1,08 = 17,3*1,08 = 18,7

Затраты труда на 1га сенокосов, пастбищ, озимой ржи на зеленый корм, пожнивных планируем по нормативу.

Затраты труда на 1 га овощей, рапса, сахарной свеклы планируем на уровне фактических.

Затраты труда по зернобобовым рассчитываются по формуле:


ЗТг = ЗТн+0,5*∆


где ЗТ – перспективные годовые затраты труда, чел.-час/га

ЗТн – нормативные затраты труда, чел.-час/га

∆ - разница расчетной и фактической урожайностью, ц\га

Ун – нормативная урожайность, ц\га


ЗТ по зернобобовым = 13,0+0,5*0,6 = 13,2

Затраты труда по культурам в напряженный период рассчитываем в процентах к затратам труда за год по следующей формуле:


ЗТнп = ЗТг*,


где ЗТнп – перспективные затраты труда в напряженный период, чел.-час/га;

ЗТг – перспективные годовые затраты труда, чел.-час/га (8 колонка);

ЗТнпн–нормативные затраты труда в напряженный период, чел.-час/га

(7 колонка);

ЗТнгод – нормативные затраты труда за год, чел.-час/га (6 колонка).

Обоснование информации по животноводству

Определяем продуктивность среднегодовой коровы (центнер ), привес молодняка КРС и свиней (грамм) в зависимости от фактической на начало планового периода, приращения урожайности зерновых культур как мерила кормовой базы:


где - соответственно перспективная продуктивность животных и ее значение на начало планового периода;

t – продолжительность планового периода;

Приращение урожайности зерновых, ц;

а 1 – коэффициент регрессии (для коров – 2,6; молодняка КРС – 0,0054; свиней – 0,024)


Расчет продуктивности (заносим результаты расчетов в табл.2.3.5. к.1)


Определяем прирост ж.м. не перспективу (заносим результаты расчетов в табл.2.3.5. к.1)


Расход питательных веществ (ц. к.ед.) на производство 1ц продукции животноводства определяем по КМ(заносим результаты расчетов в табл.2.3.5. к.2):

На 1ц молока: У х = = 1,19

где х 2 – надой молока за год, ц

На 1ц привеса КРС: У х = = У х = = 16,2

где х 2 – среднесуточный привес, кг

Определяем расход питательных веществ (ц. к.ед.) на среднегодовую голову животного (заносим результаты расчетов в табл.2.3.5. к.3) =

Расход питательных веществ (ц. к.ед.) * среднегодовую

на производство 1ц продукции продуктивность

Коровы : 35,6*1,19 = 42,4

Молодняк КРС : 1,65*16,2 = 26,7

Для коров будем рассчитывать рацион кормления со скользящими переменными , поэтому определяем расход перевариваемого протеина (п.п.) исходя из потребности: на 1ц к.ед. должно содержаться в рационе не менее 0,105 ц п.п. (заносим результаты расчетов в табл.2.3.5. к.4)

Методика расчета потребности ц п.п. на 1 корову: потребность ц к.ед.*0,105 ц п.п. на 1ц к.ед.

Коровы : 42,4*0,105=4,6

Молодняк КРС : 26,7*0,105=2,8

Затраты труда на среднегодовую голову рассчитываются по КМ в зависимости от фактических затрат труда (х 1) и перспективной продуктивности животного (х 2): (заносим результаты расчетов в табл.2.3.5. к.7)

Коровы : У х = 60,2+0,85 х 1 -1,62 х 2 = 60,2+0,85*207,5-1,62*36,7 = 177,1

Молодняк КРС : У х = 26,6+0,6 х 1 -0,7 х 2 = 26,6+0,6*65,8-0,7*1,65 = 64,9

Затраты труда в напряженный период рассчитываем по ранее приведенной формуле. (заносим результаты расчетов в табл.2.3.5. к.8)

Коровы : * 177,1 = 42,3

Молодняк КРС : * 64,9 = 21,6


Таблица 2.3.5. Исходная информация по животноводству

Вид животных

тивность, ц

Расход ц к.ед./ц продукции

Расход ц к.ед./гол

Расход ц п.п./гол

Затраты труда, чел.час./гол

нормативные

прогнозные

в напряж. период

в напряж. период


Коровы, ц

Молодняк КРС, кг





Таблица 2.3.6. Рационы кормления на 1гол. животных

Наименование кормов

Содержится в 1ц корма

КРС на выращивании и откорме





За итого берем расход ц к.ед./гол молодняка КРС и рассчитываем согласно %

ц корма (7к.)* ц п.п. (3к.)

ц к.ед.(5к.)/ ц п.п.(2к.)





Концентраты

Корнеплоды

Картофель

Зеленый корм





Определяем расход кормов на внутрихозяйственные нужды.

Для этого 1) определяем количество семей:



где d – число семей в хозяйстве

N – годовой запас труда на перспективу, тыс.чел.час.

1,8 – выработка на среднегодового работника, чел.час.

1,4 – число среднегодовых работников на одну семью.


d = 548,46*2,52 = 1382,12


2) число коров в личном пользовании: У х = d*0,6, где 0,6 – плотность коров в расчете на 1 семью.


У х = 1382,1*0,6 = 829


3) определяем корма на внутрихозяйственные нужды, исходя из того, что на каждую семью выделяется 8ц концентратов, на 1 корову 20ц сена, 65ц зеленой массы.


Таблица 2.3.8. Расчет расхода кормов на внутрихозяйственные нужды

Вид корма

Содержится в 1ц корма

Концентраты

Зеленый корм


Определяем перспективный объем реализации продукции

Предполагается, что рост объемов реализации без закупок у населения по продукции растениеводства составляет 3% в год, по продукции животноводства – 2% в год. Договорные поставки по видам продукции для которой вводится рыночный фонд (зерно, картофель, овощи) составляют 80% от перспективных объемов реализации, по остальным видам продукции – 100%. Перспективный объем реализации находим как разницу между фактическим объемом реализации и купленной у населения продукцией, увеличенной на % роста.


Таблица 2.3.9. Перспективный объем реализации продукции


Вид продукции

Фактический объем реализации, ц

у населения, ц

Объем реализации на перспективу, ц

Объем договорных поставок, ц

Мясо: говядина


Технологические ограничения

1. Площадь посева зерновых от 30 до 60% от площади пашни. Удельный вес отдельных видов зерновых в структуре зернового клина определяем на основании следующих расчетов: min – 30% от пашни прогнозной, max – 60% от пашни прогнозной.


Таблица 2.3.10. Структура зернового клина

Наименование зерновых культур

Посевная площадь

фактическая

Перспективная

Минимальная

(80% от факт.)

Максимальная

(120% от факт.)

Зернобобовые


2. Площадь посева картофеля до 10% от площади пашни (если больше оставляем на фактическом уровне);

3. Площадь посева льна до 15% от площади пашни;

4. Общая площадь многолетних трав не менее 50% от фактической площади многолетних трав;

5. Площадь посева однолетних трав на зеленый корм не менее 50% от фактической площади однолетних трав;

6. Площадь посева рапса, овощей сахарной свеклы не более 200% от фактической площади;

7. Площадь посева озимой ржи на зеленый корм не более 5% от площади пашни;

8. Планируемое поголовье животных составит от 100 до 130% от фактического поголовья;


Таблица 2.3.11. Предельное поголовье животных


9. Планируемое поголовье лошадей соответствует фактическому;

10. Площадь посева трудоемких культур (картофель, корнеплоды, лен, овощи) не более 20% от площади пашни;

Предполагается реализация части продукции на рынке. Цены реализации данной продукции на рынке на 50% выше реализационных цен.


Таблица 2.3.12. Закупочные цены сельскохозяйственной продукции


Зерно обмениваем на комбикорм с коэффициентом 1,3.


2.4 Анализ результатов решения развернутой экономико-математической задачи


Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Получив решение задачи (Приложение 2), произведем его анализ путем сравнения фактических и расчетных показателей.


Таблица 2.4.1. Использование производственных ресурсов

Показатели

Используется

Уровень использования, %

Пашня, га

Сенокосы, га

Пастбища, га

Труд, че.час.:

в напряженный период





Из таблицы 2.4.1. видим, что площадь пашни, сенокосов и пастбищ используются на 100%, а вот труд как годовой, так и в напряженный период не полностью.

Для получения максимальной прибыли в хозяйстве необходимо произвести некоторые изменения в структуре посевных площадей. Эти изменения отражены в таблице 2.4.2.


Таблица 2.4.2. Размер и структура посевных площадей

Культуры


Фактическое значение

Расчетное значение

Расчетное значение в % к фактическому

Зерновые,- всего

в т.ч.: озимые

зернобобовые

Многолетние травы

Однолетние травы

Кукуруза

Всего посевов


Таблица 2.4.3. Предполагаемый объем покупки кормов, ц


В хозяйстве покупаются не производимые корма – обрат, картофель, концентратами оно обеспечивает себя самостоятельно. По результатам решения можем сделать вывод, что для получения максимальной прибыли мы должны снизить покупку кормов на 54,8%.


Таблица 2.4.4. Поголовье животных


В данной задаче по оптимальному решению наблюдается увеличение поголовья как коров, так и молодняка КРС. Поголовье лошадей планируем на фактическом уровне.


Таблица 2.4.5. Расход и структура кормов для коров

Виды кормов

Нормативное значение

Расчетное значение

Расчетное значение

в % к фактическому

Концентраты

Корнеплоды

Картофель





Методика расчета: расчетное значение нормы вскармливания какого-либо корма = вскармливания этого корма на 1гол.

При анализе таблицы 2.4.5. следует отметить, что одни корма планируются с превышением над их потребностью, а другие наоборот – со снижением как в кормовых единицах, так и в перевариваемом протеине.


Таблица 2.4.6. Объем реализации товарной продукции, ц


Расчётный объём реализации увеличился по всем видам товарной продукции. Резкий рост реализации зерна и рапса связан с таким же резким ростом площадей данных культур, а также плановой урожайности. Продажа по всем видам животноводческой продукции продажа тоже увеличилась. Это обусловлено тем, что увеличилось поголовье и продуктивность животных.


Таблица 2.4.7. Объем и структура товарной продукции

Виды кормов

Нормативное значение

Расчетное значение

Расчетная сумма в % к фактической

сумма, млн.руб


сумма, млн.руб


Итого по растениеводству






Говядина

Итого по животноводству










Структура товарной продукции по расчетным данным отличается от фактической.

Так, удельный вес продукции растениеводства по расчёту возрос на 167,5%, но специализация хозяйства не изменилась. В растениеводстве возрос удельный вес зерна, рапса.

В животноводстве удельный вес снизился по молоку, но незначительно. В целом расчётное значение товарной продукции превышает факт на 105,9%.


Таблица 2.4.8. Основные показатели уровня производства


Методика расчета основных показателей уровня производства:

ü Произведено на 100га с/х угодий, ц:


· Молока:

молоко (факт.значение) = = 285,1

молоко (расч.значение) = = 381,9

· Говядина:

говядина (факт.значение) = =27,1

говядина (расч.значение) = =30,9

· Товарная продукция:

товарная продукция (факт.значение) = = 38,8

товарная продукция (расч.значение) = = 79,9

ü Произведено на 100га пашни, ц:

зерно (факт.значение) = = 1441,8

зерно (расч.значение) = = 1827,9

ü Произведено товарной продукции на 1 чел.час., тыс.руб.

товарная продукция (факт.значение) = = 6285,9

товарная продукция (расч.значение) = * 1000000 = 17885,6


При анализе производства на 100 га сельскохозяйственных угодий можно сделать выводы:

производства молока возросло на 33,9% вследствие увеличения поголовья коров на 29,9% и их продуктивности;

производство говядины выросло на 10,7% вследствие роста поголовья молодняка КРС на 10,6% и плановой продуктивности;

При анализе производства на 100 га пашни выводы следующие:

производство зерна увеличилось на 26,8%, т.к рост площадей по этим культурам составил 21,5%, а так же выше плановая урожайность;

Производство товарной продукции на 1 чел. - ч. возрастёт на 184,5%, а на 100 га с/х угодий на 105,9%, что свидетельствует о повышении производительности труда и более эффективном использовании ресурсов.


Выводы и предложения


В данной курсовой работе мы изучили особенности и методику моделирования программы развития сельскохозяйственного предприятия.

В теоретической части курсового проекта мы рассмотрели сущность и классификацию экономико математических методов и содержание этапов их построения. Проанализировали методики моделирования программы развития сельскохозяйственных предприятий в работах ученых экономистов. Рассмотрели подробнее основные экономико-математические модели. Возникшие при планировании трудности, связанные с определением основных и вспомогательных отраслей, устраняются путём применения экономико-математических методов в сочетании с вычислительной техникой. При этом все вопросы увязываются в процессе решения задачи. Экономико-математические методы обеспечивают формирование сбалансированного плана специализации и сочетания отраслей, который определяется как наилучший при заданных условиях производства.

В практической части курсовой работы построена соответствующая экономико-математическая модель задачи и решена хорошо разработанными и широко освещенными в литературе методами, проведены соответствующие расчеты и получены количественные результаты.

Исходя из анализа решения можно сделать следующие выводы:

сельскохозяйственные угодья будут использоваться в полном объёме;

годового труда достаточно, поэтому привлекать рабочую силу не имеет смысла;

площади зерновых в общем увеличились максимально. Размеры яровых зерновых - на 36,0%, зернобобовых - на 3,0%, а вот площадь яровых уменьшилась на 4,2%;

площади однолетних и многолетних трав сократились;

поголовье коров возросло максимально (на 29,9%), по молодняку КРС - на 10,6%;

рацион кормления коров по к. ед. и по п. п. выше фактического;

расчётный объём реализации увеличился по всем видам товарной продукции. Резкий рост реализации зерна и рапса связан с таким же ростом площадей данных культур, а также плановой урожайности. По всем видам животноводческой продукции продажа увеличилась.

удельный вес продукции растениеводства по расчёту возрос на 13,5%, что не привело к изменению специализации хозяйства. В животноводстве удельный вес снизился по всем видам на 13,5%;

производство выросло по всем видам.

Разработанная программа развития СПК “Курманово” Мстиславского района Могилёвской области при данных условиях позволяет получить прибыль при наличии 3868,6 млн.руб. При этом затраты труда уменьшить на 1%, объем реализации продукции возрастает в среднем на 220,3% , а прибыль на 105,9%.