Прохождение света звезд через солнечную корону. Солнце – уникальная звезда. Структура и состав Солнца

Уже в эту субботу, 11 августа 2018 года, в космос отправится новая миссия по изучению Солнца - Parker Solar Probe (или солнечный зонд «Паркер»). Через несколько лет аппарат подойдет к Солнцу так близко, как это еще не удавалось ни одному рукотворному объекту. Редакция N + 1 с помощью Сергея Богачева, главного научного сотрудника лаборатории рентгеновской астрономии Солнца ФИАН, решила разобраться, зачем ученые посылают аппарат в столь жаркое место и каких результатов от него ждут.

Когда мы смотрим на ночное небо, то видим огромное количество звезд - самую многочисленную категорию объектов во Вселенной, доступных для наблюдений с Земли. Именно эти огромные сияющие газовые шары производят в своих термоядерных «топках» многие химические элементы тяжелее водорода и гелия, без которых не существовала бы и наша планета, и все живое на ней, и мы сами.

Звезды находятся на огромных дистанциях от Земли - расстояние до ближайшей из них, Проксимы Центавра , оценивается в несколько световых лет. Но есть одна звезда, чей свет идет до нас всего восемь минут, - это наше Солнце, и наблюдения за ним помогают нам больше узнать о других звездах Вселенной.

Солнце гораздо ближе к нам, чем это кажется на первый взгляд. В определенном смысле, Земля находится внутри Солнца - ее постоянно омывает поток солнечного ветра , исходящего из короны - внешней части атмосферы звезды. Именно потоки частиц и излучения от Солнца управляют «космической погодой» вблизи планет. От этих потоков зависит появление полярных сияний и возмущения в магнитосферах планет, а вспышки на Солнце и корональные выбросы массы выводят из строя спутники, влияют на эволюцию жизненных форм на Земле и определяют радиационную нагрузку на пилотируемые космические миссии. Причем подобные процессы происходят не только в Солнечной системе, но и в других планетных системах. Поэтому понимание процессов в короне Солнца и внутренней гелиосфере позволяет нам лучше ориентироваться в особенностях поведения плазменного «океана», окружающего Землю.

Строение Солнца

Wikimedia Commons

«Из-за удаленности Солнца практически всю информацию о нем мы получаем через генерируемое им излучение. Даже какие-то простые параметры, такие как температура, которые на Земле могут измеряться обычным градусником, для Солнца и звезд определяются существенно более сложным способом - по спектру их излучения. Это относится и к более сложным характеристикам, например к магнитному полю. Магнитное поле способно влиять на спектр излучения, расщепляя линии в нем, - это так называемый эффект Зеемана . И именно благодаря тому, что поле меняет спектр излучения звезды, мы способны его зарегистрировать. Если бы такого влияния не было в природе, то мы бы ничего не знали о магнитном поле звезд, так как способа прямо подлететь к звезде нет», - говорит Сергей Богачев.

«Но у этого способа есть и ограничения - взять хотя бы то, что отсутствие излучения лишает нас информации. Если говорить про Солнце, то солнечный ветер не излучает свет, поэтому никакого способа удаленно определять его температуру, плотность и иные свойства нет. Не излучает свет и магнитное поле. Да, в нижних слоях солнечной атмосферы магнитные трубки заполнены светящейся плазмой и это дает возможность измерять магнитное поле вблизи поверхности Солнца. Однако уже на удалении одного радиуса Солнца от его поверхности такие измерения невозможны. И таких примеров можно привести довольно много. Как же быть в такой ситуации? Ответ очень простой: надо запускать зонды, которые могут подлететь прямо к Солнцу, погрузиться в его атмосферу и в солнечный ветер и проводить измерения непосредственно на месте. Такие проекты широко распространены, хотя менее известны, чем проекты космических телескопов, производящих удаленные наблюдения и поставляющих намного более эффектные данные (например, фотографии), чем зонды, с которых идут скучные потоки цифр и графиков. Но если говорить про науку, то, конечно, мало какое удаленное наблюдение может сравниться по силе и убедительности с исследованием объекта, который находится вблизи», - продолжает Богачев.

Загадки Солнца

Наблюдения за Солнцем велись еще в Древней Греции и в Древнем Египте, а на протяжении последних 70 лет не один десяток космических спутников, межпланетных станций и телескопов, начиная от «Спутника-2» и заканчивая работающими сегодня космическими обсерваториями, такими как SDO , SOHO или STEREO , пристально следили (и следят) за поведением самой близкой к нам звезды и ее окрестностями. Тем не менее, у астрономов по-прежнему остается немало вопросов, связанных со строением Солнца и его динамикой.

Например, уже более 30 лет перед учеными стоит проблема солнечных нейтрино , заключающаяся в недостатке зарегистрированных электронных нейтрино, образующихся в ядре Солнца в результате ядерных реакций, по сравнению с их теоретически предсказанным количеством. Другая загадка связана с аномальным нагревом короны . Этот самый внешний слой атмосферы звезды имеет температуру более миллиона градусов Кельвина, в то время как видимая поверхность Солнца (фотосфера), над которой располагаются хромосфера и корона, нагрета всего до шести тысяч градусов Кельвина. Это кажется странным, ведь по логике более внешние слои звезды должны быть более холодными. Прямого теплопереноса между фотосферой и короной недостаточно для обеспечения подобных температур, что означает, что здесь работают иные механизмы подогрева короны.


Корона Солнца во время полного солнечного затмения в августе 2017 года.

NASA’s Goddard Space Flight Center/Gopalswamy

Существуют две основные теории, объясняющие эту аномалию. Согласно первой, за перенос тепла из конвективной зоны и фотосферы Солнца в хромосферу и корону ответственны магнитоакустические волны и Альвеновские волны , которые, рассеиваясь в короне, увеличивают температуру плазмы. Однако эта версия имеет ряд недостатков, например магнитоакустические волны не могут обеспечить перенос достаточно большого объема энергии в корону из-за рассеяния и отражения обратно в фотосферу, а волны Альвена относительно медленно преобразуют свою энергию в тепловую энергию плазмы. Кроме того, долгое время каких-либо прямых свидетельств распространения волн через солнечную корону просто не существовало - лишь в 1997 году космическая обсерватория SOHO впервые зарегистрировала магнитоакустические солнечные волны на частоте в один миллигерц, которые дают лишь десять процентов энергии, необходимой для нагрева короны до наблюдаемых температур.


Вторая теория связывает аномальный нагрев короны с постоянно происходящими микровспышками, возникающими из-за непрерывного пересоединения магнитных линий в локальных областях магнитного поля в фотосфере. Эта идея была предложена в 1980-х годах американским астрономом Юджином Паркером , чьим именем зонд и который также предсказал наличие солнечного ветра - потока высокоэнергетичных заряженных частиц, непрерывно испускаемых Солнцем. Однако теория микровспышек также до сих пор не получила подтверждения. Возможно, на Солнце работают оба механизма, однако это необходимо доказать, а для этого надо подлететь к Солнцу на достаточно близкое расстояние.

С короной связана еще одна тайна Солнца - механизм образования солнечного ветра, заполняющего всю Солнечную систему. Именно от него зависят такие явления космической погоды, как северные сияния или магнитные бури. Астрономов интересуют механизмы возникновения и ускорения медленного солнечного ветра , рождающегося в короне, а также роль магнитных полей в этих процессах. Здесь также существует несколько теорий, имеющие как доказательства, так и недостатки, и ожидается, что зонд «Паркер» поможет расставить точки над i.

«В целом, в настоящее время существуют достаточно проработанные модели солнечного ветра, которые предсказывают, как должны меняться его характеристики по мере удаления от Солнца. Точность этих моделей достаточно высока на расстояниях порядка земной орбиты, но насколько точно они описывают солнечный ветер на близких расстояниях от Солнца, не понятно. Вероятно, „Паркер“ может помочь с этим. Еще довольно интересный вопрос - ускорение частиц на Солнце. После вспышек к Земле приходят потоки большого числа ускоренных электронов и протонов. Не до конца ясно, однако, происходит ли их ускорение непосредственно на Солнце, а потом они просто движутся к Земле по инерции, или эти частицы дополнительно (а может быть и полностью) ускоряются на пути к Земле межпланетным магнитным полем. Возможно, когда на Землю придут данные, собранные зондом вблизи Солнца, с этим вопросом тоже можно будет разобраться. Есть еще несколько аналогичных проблем, продвинуться в решении которых можно тем же путем, - сравнив аналогичные измерения вблизи Солнца и на уровне земной орбиты. В целом, именно на решение таких вопросов и нацелена миссия. Остается только надеяться, что аппарат ждет успех», - говорит Сергей Богачев.

Прямиком в пекло

Зонд «Паркер» будет запущен 11 августа 2018 года со стартового комплекса SLC-37 на базе ВВС США на мысе Канаверал, в космос его будет выводить тяжелая ракета-носитель Delta IV Heavy - это самая мощная ракета из действующих, она может выводить на низкую орбиту почти 29 тонн груза. По грузоподъемности ее превосходит только , но этот носитель пока находится в стадии испытаний. Чтобы добраться в центр Солнечной системы, необходимо погасить очень высокую скорость, которую имеет Земля (и все объекты на ней) относительно Солнца - около 30 километров в секунду. Помимо мощной ракеты для этого понадобится серия гравитационных маневров у Венеры.

По плану процесс сближение с Солнцем продлится семь лет - с каждой новой орбитой (всего их 24) аппарат будет все ближе подходить к светилу. Первый перигелий будет пройден уже 1 ноября, на расстоянии 35 солнечных радиусов (около 24 миллионов километров) от звезды. Затем, после серии из семи гравитационных маневров вблизи Венеры, аппарат сблизится с Солнцем до расстояния около 9-10 солнечных радиусов (около шести миллионов километров) - это произойдет в середине декабря 2024 года. Это в семь раз ближе, чем перигелий орбиты Меркурия, еще ни один рукотворный космический аппарат не подбирался настолько близко к Солнцу (текущий рекорд принадлежит аппарату Helios-B , который приближался к звезде на 43,5 миллиона километров).


Схема перелета до Солнца и основных рабочих орбит зонда.


Основные этапы работы на каждой из орбит.

Выбор подобной позиции для наблюдений не случаен. По расчетам ученых, на расстоянии десяти радиусов от Солнца находится точка Альвена - область, где солнечный ветер ускоряется настолько, что покидает Солнце, а волны, распространяющиеся в плазме, уже не оказывают на него влияния. Если зонд сможет оказаться вблизи точки Альвена, то можно считать, что он вошел в солнечную атмосферу и коснулся Солнца.


Зонд «Паркер» в собранном состоянии, в ходе установки на третью ступень ракеты-носителя.

"Задача зонда заключается в измерении основных характеристик солнечного ветра и солнечной атмосферы вдоль своей траектории. Научные инструменты на его борту не являются уникальными, не обладают рекордными характеристиками (если не считать такими способность выдержать потоки солнечной радиации в перигелии орбиты). Parker Solar Probe - это аппарат с обычными приборами, но на уникальной орбите. Большинство (а может быть, даже все научные приборы) планируется держать отключенными на всех участках орбиты, кроме перигелиев, где аппарат наиболее близок к Солнцу. В некотором смысле такая научная программа дополнительно акцентирует, что главной задачей миссии является изучение солнечного ветра и солнечной атмосферы. Когда аппарат будет уходить от перигелия, данные с тех же приборов будут превращаться в рядовые, и для сохранения ресурса научных инструментов их будут просто переключать в фоновый режим до следующего сближения. В этом смысле способность выйти на заданную траекторию и способность прожить на ней заданное время - это те факторы, от которых в первую очередь будет зависит успех миссии«, - рассказывает Сергей Богачев.


Устройство теплозащитного щита «Паркера».

Greg Stanley/Johns Hopkins University


Вид теплозащитного щита на этапе установки на зонд.

NASA/Johns Hopkins APL/Ed Whitman


Зонд «Паркер» с установленным теплозащитным щитом.

NASA/Johns Hopkins APL/Ed Whitman

Чтобы выжить вблизи звезды, зонд оснащен теплозащитным щитом, работающим в качестве «зонта», под которым укроются все научные приборы. Передняя часть щита будет выдерживать нагрев до температур более 1400 градусов Цельсия, в то время как температура его задней части, где находятся научные инструменты, не должна превысить тридцати градусов Цельсия. Такой перепад температур обеспечивает особая конструкция этого «солнечного зонтика». При общей толщине всего в 11,5 сантиметра он состоит из двух панелей, сделанных из углеграфитового композита , между которыми находится слой углеродной пены. На переднюю часть щита нанесено защитное покрытие и белый керамический слой, увеличивающий его отражательные свойства.


Кроме щита, проблему перегрева призвана решить система охлаждения, использующая в качестве хладагента 3,7 литра деионизированной воды, находящейся под давлением. Электрическая проводка аппарата сделана с использованием высокотемпературных материалов, таких как сапфировые трубочки и ниобий, а во время сближений с Солнцем солнечные панели будут убираться под тепловой щит. Помимо сильного нагрева, инженерам миссии придется учитывать сильное световое давление со стороны Солнца, которое будет сбивать правильную ориентацию зонда. Чтобы облегчить эту работу, на зонд в разных местах установлены датчики солнечного света, помогающие контролировать защищенность научной аппаратуры от воздействия Солнца.

Инструментарий

Практически все научные инструменты зонда «заточены» под изучение электромагнитных полей и свойств окружающей его солнечной плазмы. Исключение составляет лишь оптический телескоп WISPR (Wide-field Imager for Solar PRobe), задачей которого станет получение изображений солнечной короны и солнечного ветра, внутренней гелиосферы, ударных волн и любых других наблюдаемых аппаратом структур.

Под действием гравитации С., как и любая звезда, стремится сжаться. Этому сжатию противодействует перепад давления, возникающий из-за высокой темп-ры и плотности внутр. слоев С. В центре С. темп-ра Т ≈ 1,6 . 10 7 К, плотность ≈ 160 гћсм -3 . Столь высокая температура в центральных областях С. может поддерживаться длительно только синтеза гелия из водорода. Эти реакции и явл. осн. источником энергии С.

При темп-рах ~10 4 К (хромосфера) и ~10 6 (корона), а также в переходном слое с промежуточными темп-рами появляются ионы различных элементов. Соответствующие этим ионам эмиссионные линии довольно многочисленны в коротковолновой области спектра (λ < 1800 . Спектр в этой области состоит из отдельных эмиссионных линий, самые яркие из к-рых - линия водорода L a (1216 ) и линия нейтрального (584 ) и ионизованного (304 ) гелия. Излучение в этих линиях выходит из области эмиссии практически не поглощаясь. Излучение в радио- и рентг. областях сильно зависит от степени солнечной активности, увеличиваясь или уменьшаясь в несколько раз в течение 11-летнего и заметно возрастая при вспышках на Солнце.

Физ. характеристики различных слоев приведены на рис. 5 (условно выделена нижняя хромосфера толщиной ≈ 1500 км, где газ более однороден). Нагрев верхней атмосферы С.- хромосферы и короны - может быть обусловлен механич. энергией, переносимой волнами, возникающими в верхней части конвективной зоны, а также диссипацией (поглощением) энергии электрич. токов, генерируемых магн. полями, движущимися вместе с конвективными потоками.

Существование на С. поверхностной конвективной зоны обусловливает ещё ряд явлений. Ячейки самого верхнего яруса конвективной зоны наблюдаются на поверхности С. в виде гранул (см. ). Более глубокие крупномасштабные движения во втором ярусе зоны проявляются в виде ячеек сверхгрануляции и хромосферной сетки. Имеются основания считать, что конвекция в ещё более глубоком слое наблюдается в виде гигантских структур - ячеек с большими, чем сверхгрануляция, размерами.

Большие локальные магн. поля в зоне ± 30 o от экватора приводят к развитию т. н. активных областей с входящими в них пятнами. Число активных областей, их положение на диске и полярности пятен в группах изменяются с периодом ≈ 11,2 года. В период необычайно высокого максимума 1957-58 гг. активность затрагивала практически весь солнечный диск. Кроме сильных локальных полей на С. имеется более слабое крупномасштабное магн. поле. Это поле меняет знак с периодом ок. 22 лет и близ полюсов обращается в нуль в максимуме солнечной активности.

При большой вспышке выделяется громадная энергия, ~10 31 -10 32 эрг (мощность ~10 29 эрг/с). Она черпается из энергии магн. поля активной области. Согласно представлениям, к-рые успешно развиваются с 1960-х гг. в СССР, при взаимодействии магнитных потоков возникают токовые слои. Развитие в токовом слое может приводить к ускорению частиц, причём существуют триггерные (стартовые) механизмы, приводящие к внезапному развитию процесса.


Рис. 13. Виды воздействия солнечной вспышки на Землю (по Д. X. Мензелу).

Рентг. излучение и солнечные космические лучи, приходящие от вспышки (рис. 13), вызывают дополнительную ионизацию земной ионосферы, что сказывается на условиях распространения радиоволн. Поток выброшенных при вспышке частиц примерно через сутки достигает орбиты Земли и вызывает на Земле магнитную бурю и полярные сияния (см. , ).

Помимо корпускулярных потоков, порождённых вспышками, существует непрерывное корпускулярное излучение С. Оно связано с истечением разреженной плазмы из внеш. областей солнечной короны в межпланетное пространство - солнечным ветром. Потери вещества за счёт солнечного ветра невелики,≈ 3 . 10 -14 в год, но он представляет собой осн. компонент межпланетной среды.

Солнечный ветер выносит в межпланетное пространство крупномасштабное магн. поле С. Вращение С. закручивает линии межпланетного магн. поля (ММП) в спираль Архимеда, что отчётливо наблюдается в плоскости эклиптики. Поскольку осн. особенностью крупномасштабного магн. поля С. явл. две околополюсные области противоположной полярности и прилегающие к ним поля, при спокойном С. северная полусфера межпланетного пространства оказывается заполненной полем одного знака, южная - другого (рис. 14). Близ максимума активности из-за смены знака крупномасштабного поля С. происходит переполюсовка этого регулярного магн. поля межпланетного пространства. Магн. потоки обоих полушарий разделены токовым слоем. При вращении С. Земля находится неск. дней то выше, то ниже изогнутой "гофрированной" поверхности токового слоя, т. е. попадает в ММП, направленное то к С., то от него. Это явление наз. межпланетного магнитного поля.

Близ максимума активности наиболее эффективно воздействуют на атмосферу и магнитосферу Земли потоки частиц, ускоренных при вспышках. На фазе спада активности, к концу 11-летнего цикла активности, при уменьшении числа вспышек и развитии межпланетного токового слоя становятся более существенными стационарные потоки усиленного солнечного ветра. Вращаясь вместе с С., они вызывают повторяющиеся каждые 27 сут геомагн. возмущения. Эта рекуррентная (повторяющаяся) активность особенно высока для концов циклов с чётным номером, когда направление магн. поля солнечного "диполя" антипараллельно земному.

Лит .:
Мартынов Д. Я., Курс общей астрофизики, 3 изд., М., 1978;
Мензел Д. Г., Наше Солнце, пер. с англ., М., 1963; Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, пер. с англ., М., 1980;
Шкловский И. С., Физика солнечной короны, 2 изд., М., 1962;
Северный А. Б., Магнитные поля Солнца и звезд, "УФН", 1966, т. 88, в. 1, с. 3-50; - Солнечная корона - грануляция


Мы ознакомились с вращением Солнца и с солнечно-земным взаимо-центрическим движением.
Теперь обратим свой взор на Луну!

Каким образом вращается Луна, как движется вокруг планеты Земля и в системе взаимо-центризма Солнце - Земля?
Еще со школьного курса астрономии нам известно, что Луна вращается вокруг Земли в том же направлении, что и Земля вокруг своей оси. Время полного оборота (период вращения) Луны вокруг Земли относительно звезд называется сидерическим или звездным месяцем (лат. сидус - звезда). Он составляет 27,32 суток.
Синодическим месяцем, или лунацией (греч. синодос - соединение) называют промежуток времени между двумя последовательными одинаковыми фазами Луны или период времени между последовательными новолуниями - в среднем составляет 29,53 дней (709 часов). Синодический месяц длиннее звездного. Причиной этого является вращение Земли (вместе с Луной) вокруг Солнца. За 27,32 суток Луна совершает полный оборот вокруг Земли, которая за это время проходит дугу примерно 27° по орбите. Более двух суток нужно для того, чтобы Луна снова заняла соответствующее место относительно Солнца и Земли, т.е. чтобы снова наступила данная фаза (новолуние).
Лунный путь (траектория Луны на небесной сфере), как и солнечная эклиптика проходит через 12 зодиакальных созвездий. Причиной этого является действительное вращения Луны вокруг Земли в плоскости, почти совпадающей с плоскостью орбиты нашей планеты. Угол между плоскостями эклиптики и месячного лунного пути составляет всего 5°9".
Луна вращается вокруг своей оси , но она всегда обращена к Земле одной и той же стороной, то есть обращение Луны вокруг Земли и вращение вокруг собственной оси синхронизировано.

Как практически подтвердить официальные утверждения?

С этой целью обратимся к такому явлению, как затмение Солнца, в котором именно Луна играет ключевую роль.
Со́лнечное затме́ние — астрономическое явление, которое заключается в том, что Луна закрывает (затмевает) полностью или частично Солнце от наблюдателя на Земле. Солнечное затмение возможно только в новолуние, когда сторона Луны, обращённая к Земле, не освещена, и сама Луна не видна. Затмения возможны, только если новолуние происходит вблизи одного из двух лунных узлов (точки пересечения видимых орбит Луны и Солнца), не далее чем примерно в 12 градусах от одного из них.
Тень Луны на земной поверхности не превышает в диаметре 270 км, поэтому солнечное затмение наблюдается только в узкой полосе на пути тени. Поскольку Луна обращается по эллиптической орбите, расстояние между Землёй и Луной в момент затмения может быть различным, соответственно, диаметр пятна лунной тени на поверхности Земли может варьироваться в широких пределах от максимального до нуля (когда вершина конуса лунной тени не достигает поверхности Земли). Если наблюдатель находится в полосе тени, он видит полное солнечное затмение, при котором Луна полностью скрывает Солнце, небо темнеет, и на нём могут появиться планеты и яркие звёзды. Вокруг скрытого Луной солнечного диска можно наблюдать солнечную корону , которая при обычном ярком свете Солнца не видна. Поскольку температура короны гораздо выше чем у фотосферы, она имеет блёкло-голубоватый цвет, неожиданный для тех, кто видит ее первый раз, и сильно отличается от ожидаемого цвета Солнца. При наблюдении затмения неподвижным наземным наблюдателем полная фаза длится не более нескольких минут. Минимальная скорость движения лунной тени по земной поверхности составляет чуть более 1 км/с . Во время полного солнечного затмения космонавты, находящиеся на орбите, могут наблюдать на поверхности Земли бегущую тень от Луны.

Посмотрим на видео, как Википедия представляет прохождение Луны через диск солнца на большом расстоянии от Земли.

https://upload.wikimedia.org/wikipedia/commons/transcoded/2/29/Moon_transit_of_sun_large.ogv/Moon_transit_of_sun_large.ogv.480p.vp9.webm
Видео 1.

Поэтапно выглядит так:


Рис 1. Прохождение Луны через диск солнца на большом расстоянии от Земли 25.02.2007 г .
Луна по солнечному диску на видео проходит слева направо . Наверняка это съемки телескопом со спутника.

Как проходит тень Луны по Земле во время затмения?

Рассмотрим недавнее реальное полное солнечное затмение!
Полное солнечное затмение 21 августа 2017 года .
Полное солнечное затмение двадцать первого августа 2017 года - это 22-е затмение сто сорок пятого Сароса.
Область наилучшей его видимости попадает в средние и субтропические широты северного полушария.

Видео 2. Анимация СЗ 21.08.2017 г.
На данной анимации видно, что тень Луны смещается по западному полушарию Земли, Северной Америке слева направо или с запада на восток .

Максимума затмение достигает в точке с координатами 37° северной широты, 87.7° западной долготы , длится в максимуме 2 минуты 40 секунд , а ширина лунной тени на земной поверхности составляет 115 километров . В момент и в точке наибольшего затмения направление на солнце (азимут) составляет 198°, а высота солнца над горизонтом составляет 64°.
Динамическое мировое время в момент наибольшего затмения: 18:26:40, поправка динамического времени: 70 секунд.
Ось тени проходит между центром Земли и северным полюсом, минимальное расстояние от центра Земли до оси конуса лунной тени составляет 2785 километров. Таким образом, Гамма затмения равна 0.4367, а максимальная фаза достигает 1.0306.

Полное солнечное затмение - солнечное затмение при котором конус лунной тени пересекает земную поверхность (Луна достаточно близко к Земле, чтобы полностью закрыть Солнце). Средняя длина лунной тени составляет 373320 км , а расстояние от Земли до Луны 21 августа 2017 года составляет 362235 км. При этом видимый диаметр Луны в 1.0306 раз больше видимого диаметра солнечного диска. При полном затмении видны солнечная корона, звезды и планеты, находящиеся вблизи Солнца.


Рис 2. Прохождение лунной тени по западному полушарию Земли.

Посмотрите на СЗ в оригинале, глазами наблюдателей в США.

https://youtu.be/lzJD7eT2pUE
Видео 3.


Рис 3. Фазы затмения Солнца.
(сверху), постепенно закрывает Солнце, образовывая его левый серп. Закрывает полностью, затем открывает правый серп Солнца.
Мы видим картину, противоположную указанной на Видео и Рис. 1.

Полное солнечное затмение 2017 года из Айдахо-Фолс, штат Айдахо , 21 августа 2017 года.

Видео 4. СЗ в Айдахо.






Рис. 4,5,6. СЗ в штате Айдахо.
Интересный прорыв солнечных лучей после полного затмения?

Полное солнечное затмение 2017 года от Беатрис, Небраска, 21 августа 2017 года
https://youtu.be/gE3rmKISGu4
Видео 5. СЗ в штате Небраска.
Также на этих видео Луна проходит через Солнце справа сверху, уходит влево вниз, открывая Солнце.

Теперь глянем, как снимают солнечное затмение телескопы, установленные на искусственных спутниках земли.
Солнечное затмение 2017, увиденное Hinode JAXA, 21 августа 2017.

Видео 6.
Спутник солнечного наблюдения «Hinode» запечатлел частичное солнечное затмение 21 августа 2017 года. Изображения были получены с помощью рентгеновского телескопа (XRT) на борту «Hinode» во время его полета над Тихим океаном (у западного побережья США). на высоте 680км.

Со спутника тоже Луна «наезжает» на Солнце справа , только снизу.

Теперь рассмотрим движение лунной тени по земному шарику.

Полное солнечное затмение 2017 года, наблюдаемое DSCOVR EPIC (4K)

Видео 7.

Камера полихроматического изображения Земли (EPIC) НАСА, находящаяся на борту Обсерватории глубокого космоса (DSCOVR) NOAA, запечатлела из космоса Полное солнечное затмение 21 августа 2017 года.
Видим движение какой-то тени по поверхности западного полушария. Она движется с запада на восток, опережая собственное вращение земного шара в том же направлении!
Все же не воспринимается картинка живой планетой; словно «симулятор» воспроизводит какой-то запрограммированный фрагмент движения. Облака вращаются синхронно вместе с Землей. Несколько вопросов возникает: Почему облака при вращении земли остаются такими же? Как быстро и почему в данном направлении движется лунная тень? За какой промежуток времени эта тень пересекла Америку?

Посмотрим на хорошую анимацию этого солнечного затмения.

Видео 8. Полное солнечное затмение 2017.






Рис. 7,8,9. Движение лунной тени по земному шару во время СЗ 21.08.2017 г.

Линия эклиптики - плоскость движения, отчетливо прослеживающаяся в затмении Луны и Солнца. Нас учат, что явление затмения происходит только вдоль описываемой линии .
Нам также хорошо известно, что линия эклиптики не поднимается выше тропика Рака (23,5° над небесным экватором) и не опускается ниже тропика Козерога (-23,5° под небесным экватором).
Солнце бывает в зените (точке небесной сферы, расположенной над головой наблюдателя) только в области земного шара, лежащей между тропиками Рака и Козерога. Тропики - это воображаемые параллельные круги на поверхности земного шара, отстоящие на 23 градуса и 27 минут от экватора к северу и югу. К северу от экватора расположен Северный тропик (он же тропик Рака), к югу - Южный (тропик Козерога). На тропиках раз в году (22 июня на тропике Рака и 22 декабря на тропике Козерога) центр Солнца в полдень проходит через зенит. Между тропиками лежит область, в каждом пункте которой Солнце бывает в зените дважды в год. Севернее тропика Рака и южнее тропика Козерога Солнце никогда не поднимается до точки зенита.

В проекции на земной шар эклиптика проходит между 23,5° северной широты и южной широты, между Тропиками Рака и Козерога.


Рис. 10. Земной шар, указаны экватор и тропики Рака, Козерога.

Возникает вопрос: Почему затмения происходят выше тропика Рака и ниже тропика Козерога, если эклиптика Солнца не проецируется на эти области?

Смотрим внимательно на Рис 6,7,8 - анимацию СЗ, на смещение точки - центра полного затмения Солнца по Северной Америке. Эта точка проходит слева направо, от запада к востоку, от 50-й до 30-й северной параллели. Значит проекция полного затмения- движение точки-тени (полной фазы затмения) проходит выше тропика Рака, выше 23,5° северной широты.
Следовательно, опровергается утверждение, что затмения происходят только вдоль линии солнечной эклиптики!

Согласно титров на анимации:
В штат Орегон на северо-западе тень полного затмения входила в 10.15.50 am , 44°53" N , 125°88" W . (Рис. 7)
Из штата Южной Каролины (Чарльстон) на юго-востоке тень вышла в 02.48.50 pm (14.48.50) , 32°49" N , 79°03" W . (Рис. 9)
Между этими точками порядка 4000 км . точка-тени прошла за 4 часа 33 мин (16380 сек ). Значит тень прошла со скоростью 0,244 км/сек .
Согласно полученным данным, полное СЗ происходило на линии-траектории гораздо выше эклиптики, на широте 32 °- 44 ° и выше тропика Рака (23,5 °). Причем не берем движение полутеней, а только движение точки полного затмения, когда Луна полностью закрывает Солнце. Что это значит? Солнце и Луна в данный момент не находятся в области эклиптики, если проецируются на 44-й градус северной широты на Земле? А склонение Солнца на небе в этот момент равно +12° (см. ниже) над небесным экватором и не выходит за границы тропика. А астрономам известно, что склонение полностью соответствует земной широте. Лгут? Так что, небесный экватор не совпадает с земным? Почему такое происходит?

Сравним с данными Астрокалькулятора.


Скрин 1. 21.08.2017 г. точка наблюдения 37° с.ш., 87.7° з.д.

Угол между плоскостями эклиптики и месячного пути Луны небольшой, максимум 5°9".
Эклиптика указана одной белой линией, а траектория движения Луны - множественной.
Видим, что затмение происходит в восходящем лунном узле .






Скрин 2,3,4. Фазы солнечного затмения. Луна «наезжает» на Солнце с запада (справа).

Астрокалькулятор воспроизводит небосвод глазами наблюдателя, который стоит лицом к югу. Восток слева, запад справа. Мы видим, что луна движется справа (запада), «наезжает» на солнце, видим левый его серп. После полного затмения видим правый солнечный серп. Все в точности, как на Рис. 3. Луна с Солнцем для наблюдателя движутся слева направо, с востока на запад - восход, закат (видимость за счет земного вращения).

На кадрах (скринах) калькулятора заметно, что Солнце с Луной находятся на 10 часовом меридиане (прямое восхождение) в зодиакальном созвездии Лев, практически рядом со звездой Регул .


Скрин 5. СЗ происходит в созвездии Льва, рядом со звездой Регул.
Склонение Солнца +11°52".

Земля вращается против часов стрелки (с Запада на Восток) со скоростью 0.465 км/сек.
Луна вращается вокруг Земли против часовой стрелки (с Запада на Восток) с орбитальной скоростью 1,023 км/сек (разделить длину орбиты 2х3.14хR (R=384000 км) на период вращения 27.32 дня ).
В Вики читаем: Минимальная скорость движения лунной тени по земной поверхности составляет чуть более 1 км/с . Получается, что скорость Луны на орбите равна скорости движения лунной тени по Земле. Еще и больше линейной скорости вращения земли вокруг оси.
Так ли это? Выше мы уже высчитали скорость движения лунной тени - 0,244 км/сек . Скорость, высчитанная на основе официальной анимации затмения.
Продолжим исследование.


Рис. 5. Солнечное затмение.

Посмотрим внимательно на эту общеобразовательную картинку происхождения солнечного затмения.

Направление движения Земли против часовой стрелки, от запада к востоку обозначил красной стрелкой.
Если Луна была бы статичной, то тень Луны во время вращения Земли смещалась бы в противоположную сторону, к западу, по черным стрелкам .
Однако, Луна движется в направлении вращения Земли (по красной стрелке ), ее орбитальная скорость в два с лишним раза больше скорости ее вращения. Именно поэтому наблюдается движение лунной тени по земной поверхности с запада на восток. А вот с какой скоростью тень должна уходить от наблюдателя на земле влево, т.е. в сторону востока (наблюдатель лицом к югу) - вопрос открыт? … открыт для обсуждения!

Итак, подведем некоторые итоги в нашем исследовании движения Луны.

Луна движется влево относительно неподвижной звездной сферы (для наблюдателя с земли, стоящего лицом к югу), с запада на восток, в сторону вращения самой Земли, но быстрее, со скоростью один оборот за 27,3 дня, 13,2° в день или 1,023 км/сек. Д огоняет Солнце и «наезжает» на него справа во время солнечного затмения. Происходит это потому, что Солнце движется по знакам зодиака тоже к востоку, совершая полный круг за 365,24 суток, медленнее 1° в день.

Тень Луны движется налево, обгоняет вращение Земли, проходит по земной поверхности с запада к востоку.

Для самого наблюдателя с Земли (в северном полушарии) картина самого затмения, смещение светил Солнца и Луны будет происходить вправо, к западу, т.е. от восхода к закату. Связано это движение с вращением Земли вокруг своей оси с запада на восток.

Некоторые поднятые в теме вопросы остаются открытыми, буду рад услышать ответы и обоснования.

Сам постараюсь в следующей части прояснить данные вопросы, исходя из реального вращения Луны.
Продолжение следует…

Затмения относятся к числу самых зрелищных астрономических явлений. Однако никакие технические средства не могут в полной мере передать ощущения, возникающие при этом у наблюдателя. И все же в силу несовершенства человеческого глаза ему видно далеко не все сразу. Ускользающие от взгляда детали этой чудесной картины способна выявить и запечатлеть только специальная техника фотографирования и обработки сигналов. Многообразие затмений далеко не исчерпывается явлениями в системе Солнце-Земля-Луна. Относительно близко расположенные космические тела регулярно отбрасывают друг на друга тени (нужно лишь, чтобы неподалеку был какой-нибудь мощный источник светового излучения). Наблюдая за этим космическим театром теней, астрономы получают множество интересных сведений об устройстве Вселенной. Фото Вячеслав Хондырев

На болгарском курорте Шабла 11 августа 1999 года был самый обычный летний день. Голубое небо, золотой песок, теплое ласковое море. Но на пляже никто не заходил в воду — публика готовилась к наблюдениям. Именно здесь стокилометровое пятно лунной тени должно было пересечь берег Черного моря, а длительность полной фазы, согласно расчетам, достигала 3 минут 20 секунд. Отличная погода вполне соответствовала многолетним данным, но все с тревогой поглядывали на облако, висящее над горами.

На самом деле затмение уже шло, просто его частные фазы мало кого интересовали. Иное дело — полная фаза, до начала которой оставалось еще полчаса. Новенькая цифровая зеркалка, специально купленная для этого случая, стояла в полной готовности. Все продумано до мелочей, каждое движение отрепетировано десятки раз. Погода испортиться уже не успеет, и все же беспокойство почему-то нарастало. Может, дело в том, что света заметно поубавилось и резко похолодало? Но так и должно быть с приближением полной фазы. Впрочем, птицам этого не понять — все способные летать пернатые поднялись в воздух и с криками выписывали круги над нашими головами. С моря задул ветер. С каждой минутой он крепчал, и тяжелая фотокамера начинала дрожать на штативе, который еще недавно казался таким надежным.

Делать нечего — за несколько минут до расчетного момента, рискуя все испортить, я спустился с песчаного холма к его подножию, где кусты гасили ветер. Несколько движений, и буквально в последний момент техника вновь настроена. Но что это за шум? Лают и воют собаки, блеют овцы. Кажется, все животные, способные издавать звуки, делают это как в последний раз! Свет меркнет с каждой секундой. Птиц в потемневшем небе уже не видно. Все разом стихает. Нитевидный солнечный серпик освещает морской берег не ярче, чем полная Луна. Вдруг и он гаснет. Кто следил за ним в последние секунды без темного фильтра, в первые мгновения наверняка ничего не видит.

Мое суетливое волнение сменилось настоящим шоком: затмение, о котором я мечтал всю жизнь, уже началось, летят драгоценные секунды, а я даже не могу поднять голову и насладиться редчайшим зрелищем — фотосъемка прежде всего! По каждому нажатию кнопки фотокамера автоматически делает серию из девяти снимков (в режиме «брекетинг»). Еще одну. Еще и еще. Пока камера щелкает затвором, все же отваживаюсь оторваться и взглянуть на корону в бинокль. От черной Луны во все стороны разбрелось множество длинных лучей, образуя жемчужную корону с желтовато-кремовым оттенком, а у самого края диска вспыхивают ярко-розовые протуберанцы. Один из них необычно далеко отлетел от края Луны. Расходясь в стороны, лучи короны постепенно бледнеют и сливаются с темно-синим фоном неба. Эффект присутствия такой, будто не на песке стою, а лечу в небе. А время словно исчезло...

Вдруг по глазам ударил яркий свет — это выплыл из-за Луны краешек Солнца. Как же быстро все кончилось! Протуберанцы и лучи короны видны еще несколько секунд, и съемка продолжается до последнего. Программа выполнена! Несколько минут спустя вновь разгорается день. Птицы сразу позабыли испуг от внеочередной скоротечной ночи. Но моя память вот уже много лет хранит ощущение абсолютной красоты и величия космоса, чувство сопричастности к его тайнам.

Как впервые измерили скорость света

Затмения происходят не только в системе Солнце-Земля-Луна. Например, четыре крупнейших спутника Юпитера, открытых еще Галилео Галилеем в 1610 году, сыграли важную роль в развитии мореплавания. В ту эпоху, когда еще не было точных морских хронометров, по ним можно было вдали от родных берегов узнавать гринвичское время, необходимое для определения долготы судна. Затмения спутников в системе Юпитера происходят почти каждую ночь, когда то один, то другой спутник входит в тень, отбрасываемую Юпитером, или скрывается от нашего взгляда за диском самой планеты. Зная из морского альманаха предварительно вычисленные моменты этих явлений и сравнивая их с местным временем, получаемым из элементарных астрономических наблюдений, можно определить свою долготу. В 1676 году датский астроном Оле Кристенсен Рёмер заметил, что затмения спутников Юпитера немного отклоняются от предвычисленных моментов. Юпитерианские часы то уходили вперед на восемь с небольшим минут, то потом, спустя около полугода, на столько же отставали. Рёмер сопоставил эти колебания с положением Юпитера относительно Земли и пришел к выводу, что все дело в задержке распространения света: когда Земля ближе к Юпитеру, затмения его спутников наблюдаются раньше, когда дальше — позже. Разница, составлявшая 16,6 минуты, соответствовала времени, за которое свет проходил диаметр земной орбиты. Так Рёмер впервые измерил скорость света.

Встречи в небесных узлах

По удивительному совпадению видимые размеры Луны и Солнца почти одинаковы. Благодаря этому в редкие минуты полных солнечных затмений можно увидеть протуберанцы и солнечную корону — самые внешние плазменные структуры солнечной атмосферы, постоянно «улетающие» в открытый космос. Не будь у Земли такого большого спутника, до поры до времени никто бы и не догадался об их существовании.

Видимые пути по небу Солнца и Луны пересекаются в двух точках — узлах, через которые Солнце проходит примерно раз в полгода. Именно в это время и становятся возможны затмения. Когда Луна встречается с Солнцем в одном из узлов, наступает солнечное затмение: вершина конуса лунной тени, упираясь в поверхность Земли, образует овальное теневое пятно, которое с большой скоростью смещается по земной поверхности. Только попавшие в него люди увидят лунный диск, полностью перекрывающий солнечный. Для наблюдателя полосы полной фазы затмение будет частным. Причем вдали его можно даже не заметить — ведь когда закрыто менее 80—90% солнечного диска, уменьшение освещенности почти неощутимо для глаза.

Ширина полосы полной фазы зависит от расстояния до Луны, которое из-за эллиптичности ее орбиты меняется от 363 до 405 тысяч километров. При максимальном расстоянии конус лунной тени немного не дотягивается до поверхности Земли. В этом случае видимые размеры Луны оказываются немного меньше Солнца и вместо полного затмения происходит кольцеобразное: даже в максимальной фазе вокруг Луны остается яркий ободок солнечной фотосферы, мешающий увидеть корону. Астрономов, разумеется, в первую очередь интересуют полные затмения, при которых небо темнеет настолько, что можно наблюдать лучистую корону.

Лунные затмения (с точки зрения гипотетического наблюдателя на Луне они будут, разумеется, солнечными) происходят во время полнолуния, когда наш естественный спутник проходит узел, противоположный тому, где находится Солнце, и попадает в конус тени, отбрасываемой Землей. Внутри тени нет прямых солнечных лучей, но свет, преломившийся в земной атмосфере, все же попадает на поверхность Луны. Обычно он окрашивает ее в красноватый (а иногда буро-зеленоватый) цвет из-за того, что в воздухе длинноволновое (красное) излучение поглощается меньше, чем коротковолновое (синее). Можно представить себе, какой ужас наводил на первобытного человека внезапно помрачившийся зловеще красный диск Луны! Что уж говорить о солнечных затмениях, когда с неба вдруг начинало исчезать дневное светило — главное божество для многих народов?

Неудивительно, что поиск закономерностей в распорядке затмений стал одной из первых сложных астрономических задач. Ассирийские клинописные таблички, относящиеся к 1400—900 годам до н. э., содержат данные о систематических наблюдениях затмений в эпоху вавилонских царей, а также упоминание о замечательном периоде в 65851/3 суток (саросе), в течение которого повторяется последовательность лунных и солнечных затмений. Греки пошли еще дальше — по форме тени, наползающей на Луну, они сделали вывод о шарообразности Земли и о том, что Солнце намного превосходит ее по размерам.

Как определяют массы других звезд

Александр Сергеев

Шесть сотен «исходников»

С удалением от Солнца внешняя корона постепенно тускнеет. Там, где на фотоснимках она сливается с фоном неба, ее яркость в миллион раз меньше яркости протуберанцев и окружающей их внутренней короны. На первый взгляд невозможно сфотографировать корону на всем ее протяжении от края солнечного диска до слияния с фоном неба, ведь хорошо известно, что динамический диапазон фотографических матриц и эмульсий в тысячи раз меньше. Но снимки, которыми иллюстрирована эта статья, доказывают обратное. Задача имеет решение! Только идти к результату нужно не напролом, а в обход: вместо одного «идеального» кадра нужно сделать серию снимков с разной экспозицией. Разные снимки будут выявлять области короны, находящиеся на разных расстояниях от Солнца.

Такие снимки сначала обрабатываются отдельно, а потом совмещаются друг с другом по деталям лучей короны (по Луне снимки совмещать нельзя, ведь она быстро движется относительно Солнца). Цифровая обработка фотоснимков не так проста, как кажется. Однако наш опыт показывает, что свести воедино можно любые снимки одного затмения. Широкоугольные с длиннофокусными, с малой и большой экспозицией, профессиональные и любительские. В этих снимках частицы труда двадцати пяти наблюдателей, фотографировавших затмение 2006 года в Турции , на Кавказе и в Астрахани.

Шесть сотен исходных снимков, претерпев множество преобразований, превратились всего лишь в несколько отдельных изображений, но зато каких! Теперь на них есть все мельчайшие детали короны и протуберанцев, хромосфера Солнца и звезды до девятой величины. Такие звезды даже ночью видны только в хороший бинокль. Лучи короны «проработались» до рекордных 13 радиусов солнечного диска. И еще цвет! Все, что видно на итоговых изображениях, имеет реальную окраску, совпадающую с визуальными ощущениями. И достигнуто это не искусственным подкрашиванием в «Фотошопе», а с помощью строгих математических процедур в программе обработки. Размер каждого снимка приближается к гигабайту — можно сделать отпечатки шириной до полутора метров без всякой потери детализации.

Как уточняют орбиты астероидов

Затменно-переменными звездами называют тесные двойные системы, в которых две звезды обращаются вокруг общего центра масс так, что орбита повернута к нам ребром. Тогда две звезды регулярно затмевают друг друга, а земной наблюдатель видит периодические изменения их суммарного блеска. Самая известная затменно-переменная звезда — Алголь (бета Персея). Период обращения в этой системе составляет 2 суток 20 часов и 49 минут. За это время на кривой блеска наблюдается два минимума. Один глубокий, когда небольшая, но горячая белая звезда Алголь А полностью скрывается позади тусклого красного гиганта Алголя B. В это время совокупная яркость двойной звезды падает почти в 3 раза. Менее заметный спад блеска — на 5—6% — наблюдается, когда Алголь А проходит на фоне Алголя В и немного ослабляет его блеск. Тщательное изучение кривой блеска позволяет узнать много важных сведений о звездной системе: размеры и светимости каждой из двух звезд, степень вытянутости их орбиты, отклонение формы звезд от шарообразной под действием приливных сил и самое главное — массы звезд. Без этих сведений было бы трудно создать и проверить современную теорию строения и эволюции звезд. Звезды могут затмеваться не только звездами, но и планетами. Когда 8 июня 2004 года планета Венера прошла по диску Солнца, мало кому пришло в голову говорить о затмении, поскольку на блеске Солнца крошечное темное пятнышко Венеры почти не сказалось. Но если бы на ее месте оказался газовый гигант типа Юпитера, он заслонил бы примерно 1% площади солнечного диска и на столько же снизил бы его блеск. Это уже можно зарегистрировать современными инструментами, и на сегодня уже есть случаи таких наблюдений. Причем некоторые из них выполнены любителями астрономии. Фактически «экзопланетные» затмения — это единственный доступный любителям способ наблюдать планеты у других звезд.

Александр Сергеев

Панорама в лунной тени

Необыкновенная красота солнечного затмения не исчерпывается сверкающей короной. Ведь есть еще заревое кольцо по всему горизонту, которое создает в момент полной фазы уникальное освещение, как будто закат происходит сразу со всех сторон света. Вот только мало кому удается оторвать взгляд от короны и посмотреть на удивительные цвета моря и гор. И тут на помощь приходит панорамная фотосъемка. Несколько соединенных вместе снимков покажут все, что ускользнуло от взгляда или не врезалось в память.

Приведенный в этой статье панорамный снимок — особенный. Его охват по горизонту — 340 градусов (почти полный круг), а по вертикали — почти до зенита. Только на нем мы позже рассмотрели перистые облака, которые едва не испортили нам наблюдения — они же всегда к перемене погоды. И действительно, дождь начался уже через час после того, как Луна сошла с диска Солнца. Видимые на снимке инверсионные следы двух самолетов на самом деле не обрываются в небе, а просто уходят в лунную тень и из-за этого становятся невидимыми. Справа на панораме затмение в самом разгаре, а на левом краю снимка полная фаза только что закончилась.

Правее и ниже короны расположен Меркурий — он никогда не уходит далеко от Солнца, и увидеть его удается далеко не всем. Еще ниже сверкает Венера , а по другую сторону от Солнца — Марс . Все планеты расположены вдоль одной линии — эклиптики — проекции на небо плоскости, вблизи которой обращаются все планеты. Только во время затмения (и еще из космоса) можно вот так с ребра увидеть нашу планетную систему, окружающую Солнце. В центральной части панорамы видны созвездия Ориона и Возничего. Яркие звезды Капелла и Ригель белые, а красный сверхгигант Бетельгейзе и Марс получились оранжевыми (цвет виден при увеличении). Сотням людей, наблюдавшим затмение в марте 2006-го, теперь кажется, что все это они видели своими глазами. А ведь им панорамный снимок помог — он уже выставлен в Интернете.

Как нужно фотографировать?

29 марта 2006 года в поселке Кемер на средиземноморском побережье Турции в ожидании начала полного затмения опытные наблюдатели делились секретами с начинающими. Самое главное на затмении — не забыть открыть объективы. Это не шутка, такое действительно случается. А еще не стоит дублировать друг друга, делая одинаковые кадры. Пусть каждый снимает то, что именно с его аппаратурой может получиться лучше, чем у других. Для наблюдателей, вооруженных камерами с широкоугольной оптикой, главная цель — внешняя корона. Надо постараться сделать серию ее снимков с разной выдержкой. Владельцы телеобъективов могут получить детальные изображения средней короны. А если у вас есть телескоп, то надо фотографировать область у самого края лунного диска и не тратить драгоценные секунды на работу с другой аппаратурой. И призыв тогда был услышан. А сразу после затмения наблюдатели стали свободно обмениваться файлами со снимками, чтобы собрать комплект для дальнейшей обработки. Позже это привело к созданию банка оригинальных снимков затмения 2006 года. Каждый теперь понимал, что от исходных снимков до детального изображения всей короны еще очень-очень далеко. Времена, когда любой резкий снимок затмения считался шедевром и окончательным результатом наблюдений, безвозвратно прошли. По возвращении домой всех ждала работа за компьютером.

Активное Солнце

Солнце, как и другие похожие на него звезды, отличается периодически наступающими состояниями активности, когда в его атмосфере в результате сложных взаимодействий движущейся плазмы с магнитными полями возникает множество неустойчивых структур. В первую очередь это солнечные пятна, где часть тепловой энергии плазмы переходит в энергию магнитного поля и в кинетическую энергию движения отдельных плазменных потоков. Солнечные пятна холоднее окружающей среды и выглядят темными на фоне более яркой фотосферы — слоя солнечной атмосферы, из которого к нам приходит большая часть видимого света. Вокруг пятен и во всей активной области атмосфера, дополнительно нагреваемая энергией затухающих магнитных полей, становится ярче, и возникают структуры, называемые факелами (видимые в белом свете) и флоккулами (наблюдаемые в монохроматическом свете от дельных спектральных линий, например, водорода).

Над фотосферой располагаются более разреженные слои солнечной атмосферы толщиной 10—20 тысяч километров, называемые хромосферой, а над ней на многие миллионы километров простирается корона. Над группами солнечных пятен, а иногда и в стороне от них часто возникают протяженные облака — протуберанцы, хорошо заметные во время полной фазы затмения на краю солнечного диска в виде ярких розовых дуг и выбросов. Корона — самая разреженная и очень горячая часть атмосферы Солнца, которая как бы испаряется в окружающее пространство, образуя непрерывный поток удаляющейся от Солнца плазмы, называемый солнечным ветром. Именно он придает солнечной короне лучистый вид, оправдывающий ее название.

По движению вещества в хвостах комет выяснилось, что скорость солнечного ветра постепенно увеличивается с удалением от Солнца. Удалившись от светила на одну астрономическую единицу (величина радиуса земной орбиты), солнечный ветер «летит» со скоростью 300—400 км/с при концентрации частиц 1—10 протонов на кубический сантиметр. Встречая на своем пути препятствия в виде планетных магнитосфер, поток солнечного ветра образует ударные волны, которые влияют на атмосферы планет и межпланетную среду. Наблюдая солнечную корону, мы получаем информацию о состоянии космической погоды в окружающем нас космическом пространстве.

Самыми мощными проявлениями солнечной активности являются плазменные взрывы, называемые солнечными вспышками. Они сопровождаются сильным ионизующим излучением, а также мощными выбросами горячей плазмы. Проходя через корону, потоки плазмы заметно влияют на ее структуру. Например, в ней образуются шлемовидные образования, переходящие в длинные лучи. По сути, это вытянутые трубки магнитных полей, вдоль которых с большими скоростями распространяются потоки заряженных частиц (в основном это энергичные протоны и электроны). Фактически видимая структура солнечной короны отражает интенсивность, состав, структуру, направление движения и другие характеристики солнечного ветра, постоянно воздействующего на нашу Землю. В моменты вспышек его скорость может достигать 600—700, а иногда и более 1000 км/с.

В прошлом корона наблюдалась только во время полных солнечных затмений и исключительно вблизи Солнца. В совокупности накопилось около часа наблюдений. С изобретением внезатменного коронографа (специального телескопа, в котором устраивается искусственное затмение) стало возможным постоянно следить с Земли за внутренними областями короны. Также всегда можно регистрировать радиоизлучение короны, причем даже сквозь облака и на больших расстояниях от Солнца. Но в оптическом диапазоне внешние области короны по-прежнему видны с Земли только в полной фазе солнечного затмения.

С развитием внеатмосферных методов исследований появилась возможность непосредственно получать изображение всей короны в ультрафиолетовых и рентгеновских лучах. Наиболее впечатляющие снимки регулярно поступают с космической Солнечной орбитальной гелиосферной обсерватории SOHO, запущенной в конце 1995 года совместными усилиями Европейского космического агентства и NASA. На снимках SOHO лучи короны очень длинные, да и звезд видно много. Однако в середине, в области внутренней и средней короны, изображение отсутствует. Искусственная «луна» в коронографе великовата и заслоняет гораздо больше, чем настоящая. Но иначе нельзя — слишком уж ярко светит Солнце. Так что съемка со спутника не заменяет наблюдений с Земли. Зато космические и земные снимки солнечной короны идеально дополняют друг друга.

SOHO также постоянно наблюдает за поверхностью Солнца, причем затмения ей не помеха, ведь обсерватория находится вне пределов системы Земля-Луна. Несколько ультрафиолетовых изображений, сделанных SOHO в моменты около полной фазы затмения 2006 года, были собраны воедино и помещены на место изображения Луны. Теперь видно, какие активные области в атмосфере ближайшей к нам звезды связаны с теми или иными особенностями в ее короне. Может показаться, что некоторые «купола» и зоны турбулентности в короне ничем не вызваны, но в действительности их источники просто скрыты от наблюдения на другой стороне светила.

«Русское» затмение

Очередное полное солнечное затмение в мире уже называют «русским», поскольку главным образом оно будет наблюдаться в нашей стране. Во второй половине дня 1 августа 2008 года полоса полной фазы протянется от Северного Ледовитого океана почти по меридиану до Алтая, пройдя точно через Нижневартовск, Новосибирск, Барнаул, Бийск и Горно-Алтайск — прямо вдоль федеральной трассы M52. Кстати, в Горно-Алтайске это будет уже второе затмение за два с небольшим года — именно в этом городе пересекаются полосы затмений 2006 и 2008 годов. Во время затмения высота Солнца над горизонтом составит 30 градусов: этого достаточно для фотографирования короны и идеально для панорамной съемки. Погода в Сибири в это время обычно хорошая. Еще не поздно приготовить пару фотоаппаратов и купить билет на самолет.

Это затмение никак нельзя пропустить. Следующее полное затмение будет видно в Китае в 2009 году, а потом хорошие условия для наблюдений сложатся только в США в 2017 и 2024 годах. В России же перерыв продлится почти полвека — до 20 апреля 2061-го.

Если соберетесь, то вот вам хороший совет: наблюдайте группами и обменивайтесь полученными снимками, присылайте их для совместной обработки в Цветочную обсерваторию: www.skygarden.ru . Тогда кому-то обязательно повезет с обработкой, и тогда все, даже оставшиеся дома, благодаря вам увидят затмение Солнца — увенчанную короной звезду.